Table 1  Hospital admissions for AMI (ICD-9: 410) in the Portuguese population during four international football competitions

<table>
<thead>
<tr>
<th>When Portugal played</th>
<th>When Portugal did not play</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of events (number of days)</td>
<td>RR (95% CI)</td>
</tr>
<tr>
<td>Euro 1996</td>
<td>70 (4)</td>
</tr>
<tr>
<td>Euro 2000</td>
<td>107 (5)</td>
</tr>
<tr>
<td>World Cup 2002</td>
<td>110 (3)</td>
</tr>
<tr>
<td>Euro 2004</td>
<td>219 (6)</td>
</tr>
<tr>
<td>Overall</td>
<td>506 (18)</td>
</tr>
</tbody>
</table>

The RR of AMI on match days involving the Portuguese team is compared with the other days of the competition.

aAdjusted for day of the week.

Conflict of interest: None declared.

Reference


doi:10.1093/ije/dyq221

LETTERS TO THE EDITOR

Spurious association between telomere length reduction over time and baseline telomere length

From ERIK J GILTAY,1* GEJA J HAGEMAN2 and DAAN KROMHOUT3

1Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands, 2Department of Health Risk Analysis and Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands and 3Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands

*Corresponding author. Department of Psychiatry, Leiden University Medical Center, Leiden, PO Box 9600, 2300 RC Leiden, The Netherlands. E-mail: giltay@dds.nl

Ehrlenbach et al.1 found a linear relationship between baseline relative telomere length (RTL) and the decrease of RTL over 10 years (r = 0.674; P < 0.001). Similarly, others have reported on this relationship between the telomere attrition rate and the baseline telomere length and found largely similar associations.2,3 Likewise, when we correlated the RTL and delta RTL during 7 years of follow-up in 75 men from the Zutphen Elderly Study4 with an age range of 70–91 years, we found a largely identical association (r = 0.733; P < 0.001; EJ Giltay et al., unpublished results).

We question whether this association is trivial. We used a random number generator to produce 510 baseline RTL values, similar to the number of pairs in the study of Ehrlenbach et al.1 A mean of 1.49 was aimed at for baseline values and 1.05 at 10-year follow-up, with distributions comparable to those presented in Table 1.1 Using these random numbers, we found a beta coefficient that was nearly similar to the beta coefficient that was presented in Table 2 (0.557 vs. 0.589, respectively). Because baseline RTL (X) was used to calculate the RTL shortening rate (X–Y), the ‘dependent’ and ‘independent’ variables were functionally related.5 Pearson’s correlation coefficients using randomly generated factors can be estimated to be around 1/√2, if baseline and outcome have equal variances.5 Therefore, it was to be expected that a linear regression model would best fit the data (as X was regressed on X–Y) and that an exceptional P-value of 2.3 × 10⁻⁹⁰ was found (Table 2).1 We think that the slope of the regression line should have been tested against the slope of a no-effect line, instead of zero (i.e. a horizontal line).

We think, therefore, that the reported association is explained neither by older cells having lower division rates nor by telomerase that acts preferentially on short telomeres as a special protection mechanism, as was suggested as potential explanations,1,2 but is merely a consequence of mathematical coupling. It seems more likely that the attrition rate of RTL is biologically independent of baseline RTL.
References

Authors’ Response
Correlation between baseline telomere length and shortening over time—spurious or true?
From ANITA KLOSS-BRANDSTÄTTER,1* PETER WILLEIT,2,3 CLAUDIA LAMINA,1 STEFAN KIECHL2 and FLORIAN KRONENBERG1
1Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria, 2Department of Neurology, Innsbruck Medical University, Innsbruck, Austria and 3Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
*Corresponding author. Division of Genetic Epidemiology, Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Schöpstrasse 41, 6020 Innsbruck, Austria. E-mail: anita.kloss@i-med.ac.at

Accepted 1 November 2010

Although we do not concur with their conclusions, we very much appreciate the stimulating comments by Erik Giltay et al.1 regarding our previous report2 on the association between baseline telomere length and subsequent telomere shortening. They argue that the correlation observed in our study and in other studies3–4 is mainly due to mathematical coupling and suggest using the correlation due to mathematical coupling as the comparator rather than a correlation coefficient of zero. To enforce their view, Giltay and co-workers have also performed simulation studies with two random variables, X and Y, and then tested the correlation between X and X−Y.

However, this simulation is not appropriate because it ignores that X and Y are repeated measurements in the same individuals and highly correlated (r_{Spearman} = 0.652, P = 4.7 \times 10^{-63}). Only for two series of independent random numbers X and Y with the same standard deviation, the correlation between X−Y and X expected based on mathematical coupling is indeed \frac{1}{\sqrt{2}} \approx 0.71 as formulated by Giltay et al. (please see Tu and Gilthorpe3 for a comprehensive review). However, as Giltay et al. correctly state, the null hypothesis \beta = 0 is not a correct null hypothesis any more. Tu and Gilthorpe3 proposed a method for testing the correlation between X and X−Y (\text{corr}(X−Y)). Since this test is based on Pearson’s correlation coefficient, it cannot be seen as a correction for the Spearman’s correlation coefficient, which we presented in the paper, but it is comparable with the P value presented for the linear regression model.

The correct null hypothesis can be derived by setting s_x = s_y. In this case, the Pearson’s correlation coefficient that is only due to mathematical coupling is \text{r}_{Pearson} = \text{corr}(X, Y−X) = \frac{1}{\sqrt{1−\text{corr}(X, Y)/2}}. If X and Y are not correlated (\text{corr}(X, Y) \approx 0), then \text{corr}(X, Y−X) = \frac{1}{\sqrt{2}}. Therefore, \text{corr}(X, Y−X) has to be compared with the expected correlation coefficient under the hypothesis of no effect, which is \sqrt{1−\text{corr}(X, Y)/2}. To make them comparable, Fisher’s z transformation has to be performed. In our data, \text{r}_{Pearson} = \text{corr}(RTL_{Baseline}, RTL_{Change}) = 0.743 is clearly higher than the expected correlation coefficient of \sqrt{1−\text{corr}(RTL_{Baseline}, RTL_{Follow-up})/2} = \sqrt{1−0.616/2} = 0.438. The test on Fisher’s z-transformed values yields a value of P = 2.52 \times 10^{-25}. In comparison, the crude P value of \text{corr}(RTL_{Baseline}, RTL_{Change}) is P = 1.01 \times 10^{-90}. This P value is not adjusted for age, gender and smoking, but since adjustment did not alter the P value of baseline RTL on the change of RTL (adjusted