Supplement 2. Further Details of the Regression Calibration Method Used to Adjust Results for the Biasing Effects of Dietary Measurement Errors. 
Regression calibration is a well-described (1, 2, 3), but less commonly used, method to produce adjusted regression coefficients, that subject to assumptions, will adjust for the biasing effects of dietary measurement errors and produce unbiased estimates of the true coefficients. It has been used on occasion by the Multi-Ethnic Cohort (MEC) (references), the European Prospective Evaluation into Cancer (EPIC) (see references 4 and 5 as examples), and previously in Adventist Health Study-2 (6).
[bookmark: _GoBack]Regression calibration was described originally, assuming the existence of a representative subset of subjects (the calibration sub-study), who have both true assessments of diet (usually impossible, but reasonable surrogates maybe available) and the error-prone questionnaire assessment (that is also used for the whole study population). 
Next, among calibration sub-study subjects only, calibration regressions are formed for each dietary variable j, having form 
 T(j) = a+ b1.F(1) + …bj.F(j)…+ bJ.F(J) + g1.X(1)+…+ gk.X(k)+… +gK.X(K) + e(j) , 
where there are dietary variables j=1,…,J; T indicates a true dietary variable; F indicates a questionnaire dietary variable; b and g values are regression coefficients; non-dietary covariates, X(k), are assumed to not be measured with error, k=1,…K; and e is an error term. This regression can then be written as
E[T(j)| {F}, {X}] =  a+ b1.F(1) + …bj.F(j)…+ bJ.F(J) + g1.X(1)+…+ gk.X(k)+… +gK.X(K)----------(1),
or in words, the expected value of the True dietary variable, conditional on the observed questionnaire dietary and non-dietary variables.  
Next, it can be shown algebraically that a linear regression for the whole study population, predicting some continuous outcome variable of interest, Y,
Y = α + β1.E(T(1)|{F},{X}) +…+ βK.E(T(K)|{F},{X}) + γ1.X(1) +…+ γK.X(K) + ε ,
provides unbiased estimates (β’s and γ’s) of the true regression coefficients that would be found if true dietary values, {T}, had been available for the whole cohort. Expressed in words this is a regression that is used for the whole study population, that instead of predicting Y from just {F}—the error-prone regression--, and {X}, instead uses the expected values of T (calculated from {F} and {X} as in eqn (1) above), to predict Y.  Note that although the calibration relationship (eqn(1)) is formed in only the calibration sub-set population, it can be applied to all subjects in the whole study, as all have values of {F} and {X}. 
A necessary assumption, that is usually assumed to be reasonable, is the non-differential error assumption that can be expressed as follows: pr(Y|{T},{ F}, {X}) =pr(Y|{T},{X}), or expressed in words—“If you know {T}, also knowing {F} carries no additional predictive information about Y, implying that the information in {F} about Y is only that which it carries in common with {T}. 
But in much of epidemiologic work, and in the application of this paper, the main regression of interest is not a linear regression like that above, but instead has a binary disease (Yes/No) outcome. Hence logistic or Cox proportional hazards regressions are often used. Can regression calibration be adapted to their use?
First, the calibration equations are not affected by this change in outcome variable. The main calibrated regression of interest becomes 
F(Y) = α + β1.E(T(1)|{F},{X}) +…+ βK.E(T(K)|{F},{X}) + γ1.X(1) +…+ γK.X(K) + ε, where F is the link function corresponding to the form of the chosen model. It can be shown (see supplement to reference 7) that this also produces approximately unbiased estimates of the true beta coefficients.  In most practical situations where the dose-response relationship is not very strong, departures from linearity in these models are slight. 
In practice, this means that instead of submitting independent variables {F} and {X} to the computer package used, one can again submit E[{T}|{F},{X}] and {X} as the independent regression variables. 
A further complication comes from being forced to use a surrogate of the true dietary variable (such as a dietary record, or repeated 24 hour recalls) that is still not perfect but probably provides dietary values much better than {F}. Call these surrogates {R}.  So, in practice, R replaces T in all situations described above. This raises the need for two further assumptions (8),  They are: 1) Correlation[e(R), e(F)] = 0, where e(R) and e(F) are the respective errors of R and F about T. 2) E[e(R)] = 0 , i.e. R is an unbiased estimator of T. In fact, neither of these is likely to be completely satisfied, but depending on the selection of R, may be approximately satisfied. Most believe that in comparison to the uncalibrated analysis, that erroneously assumes that F = T, calibrated analyses represent a definite improvement.  Nevertheless, for this reason, calibrated analyses are always referred to as producing partially corrected estimates, in the paper that this supplement accompanies.
A final complication comes with the calculation of confidence intervals and P values for calibrated regressions. Regression analyses assume generally that the independent variables are measured without error. Yet the practical quantities, E[{R}|{F},{X}], come from the calibration equations and the calibration beta coefficients are estimated with error. Thus, the intervals and P values printed from standard analytic packages are too small. This problem is overcome by using bootstrap methods to estimate the confidence intervals and P values.  We take bootstrap random samples (with replacement) of the size of the whole study population. The members of this sample (with replicates as occurs with the replacement selection) who are also members of the original calibration study become a new calibration sub-study to be used in analyses with the current bootstrap sample. As usual we select a large number of these bootstrap samples.  Perform the calibrated analysis on each sample, then use this set of beta coefficients in a prescribed way (9) to produce final more accurate estimated confidence intervals and P values.
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