Adjunctive α_2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission

Monica M. Marcus¹, Charlotte Wiker¹, Olivia Frånberg¹, Åsa Konradsson-Geuken¹, Xavier Langlois², Kent Jardemark¹ and Torgny H. Svensson¹

¹ Department of Physiology and Pharmacology, Section of Neuropsychopharmacology, Karolinska Institutet, Stockholm, Sweden
² Neuroscience, RED Europe, Johnson & Johnson Pharmaceutical Research and Development, Turnhouseweg, Beerse, Belgium

Abstract

Compared to both first- and second-generation antipsychotic drugs (APDs), clozapine shows superior efficacy in treatment-resistant schizophrenia. In contrast to most APDs clozapine possesses high affinity for α_2-adrenoceptors, and clinical and preclinical studies provide evidence that the α_2-adrenoceptor antagonist idazoxan enhances the antipsychotic efficacy of typical D_2 receptor antagonists as well as olanzapine. Risperidone has lower affinity for α_2-adrenoceptors than clozapine but higher than most other APDs. Here we examined, in rats, the effects of adding idazoxan to risperidone on antipsychotic effect using the conditioned avoidance response (CAR) test, extrapyramidal side-effect (EPS) liability using the catalepsy test, brain dopamine efflux using in-vivo microdialysis in freely moving animals, cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission using intracellular electrophysiological recording in vitro, and ex-vivo autoradiography to assess the in-vivo α_{2A}- and α_{2C}-adrenoceptor occupancies by risperidone. The dose of risperidone needed for antipsychotic effect in the CAR test was $\sim 0.4 \text{ mg/kg}$, which produced 11% and 17% in-vivo receptor occupancy at α_{2A}- and α_{2C}-adrenoceptors, respectively. Addition of idazoxan (1.5 mg/kg) to a low dose of risperidone (0.25 mg/kg) enhanced the suppression of CAR, but did not enhance catalepsy. Both cortical dopamine release and NMDA receptor-mediated responses were enhanced. These data propose that the therapeutic effect of risperidone in schizophrenia can be enhanced and its EPS liability reduced by adjunctive treatment with an α_2-adrenoceptor antagonist, and generally support the notion that the potent α_2-adrenoceptor antagonistic action of clozapine may be highly important for its unique efficacy in schizophrenia.

Received 31 March 2009; Reviewed 18 May 2009; Revised 10 September 2009; Accepted 15 September 2009;
First published online 19 October 2009

Key words: α_2-adrenoceptor, dopamine, glutamate, receptor occupancy, schizophrenia.

Introduction

Clinical studies have shown that clozapine exerts superior clinical efficacy compared to first-generation antipsychotic drugs (FGAs) in treatment-resistant schizophrenia, including positive, negative and cognitive symptoms (Kane et al. 1988; Rosenheck et al. 1997), and also, in comparison with second-generation antipsychotic drugs (SGAs) clozapine is the most effective drug for individuals with a poor symptom response to previous antipsychotic drug (APD) treatment (Davies et al. 2008; Lewis et al. 2006; McEvoy et al. 2006; Swartz et al. 2008). In addition, clozapine has shown superiority compared to FGAs and the SGA olanzapine in reducing suicidality in schizoaffective disorders and schizophrenia (Meltzer et al. 2003). Indeed, the efficacy of clozapine seems to be superior to both FGAs and most, if not all SGAs (Davis et al. 2003; Leucht, 2009). Besides its modest affinity for the D_2 receptor, clozapine possesses high affinity for a
number of other receptors, including a potent α_2-adrenoceptor antagonistic action (Ashby & Wang, 1996; Shahid et al. 2009). Interestingly, adjunctive treatment with idazoxan, a selective α_2-adrenoceptor antagonist, has been found to enhance the effect of FGAs in treatment-resistant schizophrenia (Litman et al., 1993, 1996).

Both negative symptoms and cognitive dysfunction in schizophrenia are thought to be related to a hypodopaminergic state in the prefrontal cortex (PFC; e.g. Stone et al. 2007). Prefrontal dopamine, specifically via dopamine D₄ receptors, has been shown to be importantly involved with normal cognitive function (Goldman-Rakic et al. 2000). In schizophrenia, both clinical and preclinical results indicate an impairment of prefrontal dopamine function (see Tan et al. 2007; Weinberger et al. 2001), and D₄ receptor dysregulation is suggested to be critically involved in the cognitive impairments associated with this disease (Abi-Dargham & Moore, 2003; Abi-Dargham et al. 2002). Experimentally, SGAs, e.g. clozapine, increase dopamine output preferentially in the PFC, whereas FGAs, e.g. haloperidol, induce higher dopamine output in subcortical areas such as the nucleus accumbens (NAc) and the striatum (Kuroki et al. 1999; Moghaddam & Bunney, 1990; Nomikos et al. 1994; Svensson, 2003). In accordance with these experimental observations some clinical studies suggest that SGAs, but not FGAs, may improve various aspects of cognitive dysfunction in schizophrenia (Davis et al. 2003; Meltzer & McGurk, 1999).

Glutamate, the main transmitter in cortical pyramidal cells, is involved in higher mental functions, such as cognition, memory and learning. Thus, antagonists at the glutamatergic N-methyl-D-aspartate (NMDA) receptors impair learning and memory, while NMDA receptor agonists and facilitators may improve memory (Francis, 2003; Francis et al. 1993). In addition, NMDA receptor antagonists have, in healthy volunteers, been shown to be capable of inducing both positive and negative symptoms as well as the formal thought disorder that is a distinct feature of schizophrenia (Javitt & Zukin, 1991), and to generate cognitive impairment, e.g. verbal working memory (Honey et al. 2003). Therefore, a glutamatergic synaptic hypofunction in schizophrenia has been proposed (see Coyle et al. 2003), a notion recently supported by a reduced prefrontal expression of the NMDA receptor subunits NR1, NR2A and NR2C in schizophrenia (Beneyto & Meador-Woodruff, 2008). Significantly, SGAs, but not FGAs have been found to facilitate cortical NMDA receptor-mediated transmission (Jardemark et al. 2002; Ninan et al. 2003).

Although the 5-HT₂A/D₂ ratio has been proposed as a critical determinant of atypicality among the SGAs (Meltzer, 1989; Meltzer et al. 1989), which may have a bearing on their extrapyramidal side-effect (EPS) liability, little attention has so far been focused on the α_2/D₂ ratio of various APDs (but see Nutt, 1994). Previous work from our group has shown that the α_2-adrenoceptor antagonist idazoxan enhances the effect of a low dose of raclopride, a selective D₂/₃ receptor antagonist, on conditioned avoidance response (CAR), a preclinical test with high predictive validity for clinical antipsychotic effect (Wadenberg & Hicks, 1999), and similarly with SGAs, but not FGAs, produces an increased dopamine efflux in the medial PFC (mPFC; Hertel et al. 1999a). Both clozapine and the combination of idazoxan + raclopride have also been shown to enhance cortical NMDA receptor-mediated transmission, effects mediated by dopamine acting at D₄ receptors, as well as to reverse cognitive impairment in rats induced by NMDA receptor blockade (Marcus et al. 2005). Addition of idazoxan to low doses of the FGA haloperidol and the SGA olanzapine, both possessing low affinity for the α_2-adrenoceptor (Schotte et al. 1996; Shahid et al. 2009), also enhances the effect of these APDs in the CAR test as well as on cortical dopamine release (Wadenberg et al. 2007).

Risperidone possesses lower affinity for the α_2-adrenoceptor than clozapine but higher than most other SGAs (Schotte et al. 1996; Shahid et al. 2009). Therefore, in the present study, we investigated the significance of additional α_2-adrenoceptor blockade by adding idazoxan to a low dose of risperidone and examined the effect on antipsychotic efficacy using the CAR test, EPS liability using a catalepsy test, dopamine efflux in the mPFC and NAc using the microdialysis technique in freely moving rats, and cortical NMDA receptor-mediated transmission, using intracellular electrophysiological recording in pyramidal neurons in vitro. In addition, we assessed the in-vivo α_{2A}- and α_{2C}-adrenoceptor occupancies of risperidone, using ex-vivo autoradiography.

Methods

Animals

Adult male Wistar rats (200–270 g upon arrival) were used for behavioural and microdialysis experiments, whereas male Sprague–Dawley rats (~70 g upon arrival; B&K Universal, Sweden) were used for in-vitro electrophysiological experiments. The animals were housed under standard laboratory conditions with food and water available ad libitum. For the
behavioural tests the animals were kept on a reversed 12 h light/dark cycle (lights off 06:00 hours), whereas for the other experiments, animals were maintained on a 12 h light/dark cycle (lights on 06:00 hours). Experiments were approved by, and conducted in accordance with, the local Ethics Committee, Stockholm North and the Karolinska Institutet, Sweden.

For the ex-vivo radioligand binding experiments male Wistar rats (180–220 g) were housed in a rat raising facility with food and water available ad libitum. All procedures were conducted in strict accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) and were approved by the animal care and use committee of Johnson and Johnson Pharmaceutical Research and Development.

CAR behaviour

Rats were trained and tested in conventional shuttle boxes (530 × 250 × 225 mm), divided into two compartments of equal size by a partition with an opening (Salmi et al. 1994). Upon presentation of the 80-dB white noise (Lafayette Instruments, USA) conditioned stimulus (CS), the rats had 10 s to move from one compartment of the shuttle box into the other. If the rat remained in the same compartment for more than 10 s, an intermittent electric shock (intershock interval 2.5 s, shock duration 0.5 s) of ~0.4 mA, i.e. the unconditioned stimulus (UCS), was presented to the grid floor until an escape was performed. If the rat did not respond within 50 s, the trial was terminated, i.e. escape failure. Avoidance (response to CS within 10 s), escape (response to CS + UCS) and escape failure (failure to respond within 50 s) were recorded. The animals were trained for 5 d, each session consisted of ~20 trials randomly distributed over 15 min. Only animals reliably performing >85% avoidance were included in the study. Experiments were preceded by a pre-test and experiment sessions, lasting 10 min, were conducted at 20, 90 and 240 min. Experimental days were separated by at least two non-experimental days. The animals were tested in a counterbalanced change-over design serving as their own controls (Li, 1964).

Catalepsy measurements

Catalepsy was observed in a dimly lit room by placing the animals on an inclined grid (60°) for a maximum of 2.5 min. The animals were allowed 30 s of adaptation on the grid before observation started. The different treatments were unknown to the observer. Catalepsy was scored from 0 to 5, according to the time (square-root transformation) the rat remained immobile (min): 0 = 0.00–0.08; 1 = 0.09–0.35; 2 = 0.36–0.80; 3 = 0.81–1.42; 4 = 1.43–2.24; 5 ≥ 2.25 (Ahlenius & Hillegaart, 1986).

In-vivo microdialysis

Procedures for microdialysis were as previously described (Schilstro¨m et al. 1998). Rats were anaesthetized with a cocktail of Hypnorm® (0.315 mg/ml fentanyl citrate and 10 mg/ml fluanisone; Janssen-Cilag Ltd, UK) and Dormicum® (5 mg/ml midazolam; Roche AB, Sweden) diluted in distilled water [1:1:2; 5 ml/kg, intraperitoneal (i.p.)] mounted in a stereotoxic frame, and implanted with dialysis probes in the mPFC or NAc [AP (mm): +2.6, +1.4; ML: −0.6, −1.4; DV: −5.2, −8.2], respectively, relative to bregma and dural surface (Faxinos & Watson, 1998). Dialysis occurred through a semi-permeable membrane (Filtral AN69, Hospal Industrie, France) with an active surface length of 4 mm (mPFC) or 2.25 mm (NAc). Dialysis experiments were conducted ~48 h after surgery in awake, freely moving rats. The dialysis probe was perfused with a physiological perfusion solution [in mM: 147 NaCl, 3.0 KCl, 1.3 CaCl₂, 1.0 MgCl₂, 1.0 NaHPO₄ (pH 7.4)] at a rate of 2.5 µl/min, set by a microinfusion pump (Harvard Apparatus, USA). Dialysate samples were collected over 30 min (mPFC) or 15 min (NAc). Online quantification of dopamine was accomplished by high performance liquid chromatography (HPLC) coupled to electrochemical detection (ESA Bioscience, USA), with a detection limit of ~0.2 fmol/min. The injector (Valco Instruments, USA) was directed by a computerized system, Totalcrom WS version 6.3 (PerkinElmer, USA). Separation of dopamine and metabolites was achieved by reversed-phase liquid chromatography. The mobile phase consisted of 55 mM sodium acetate buffer (pH 4.0), 12% methanol and 0.55 mM octanesulfonic acid delivered by an HPLC pump (model 2150, Pharmacia LKB, Sweden) on a C-18 column (Nucleocil 150/75 × 4.6 mm, 5 µm), flow rate 0.8 ml/min. After separation, the analyte was passed through a guard cell with an applied oxidizing potential of 50 mV to reduce baseline. Samples were quantified by sequential oxidation and reduction in a high sensitive analytical cell (model 5011; ESA Bioscience) that was controlled by a potentiostat (Coulochem II model 5200; ESA Bioscience) with applied potentials of 400 mV and −200 mV for detection of metabolites and dopamine. Injection of drug was performed after a stable outflow (<10% variation) of dopamine and metabolites. Baseline was calculated as the average of
the last two (mPFC) or four (NAc) pre-injection values. The placement of the probe was later verified in slices stained with Neutral Red.

Electrophysiological experiments

Procedures for electrophysiological experiments were as previously described (Konradsson et al. 2006). Briefly, the rats were decapitated while under halothane anaesthesia (AstraZeneca AB, Sweden). The brains were quickly removed and cooled in ice-cold Ringer’s solution [in mM: 126 NaCl, 2.5 KCl, 2.4 CaCl₂, 1.3 MgCl₂, 1.2 NaH₂PO₄, 10 d-glucose, 18 NaHCO₃ (pH 7.4)] aerated by 95% O₂:5% CO₂. The brains were cut coronally into 450-μm slices, using a Vibroslice (Campden model MA 752, World Precision Instruments, USA), and kept submerged in aerated Ringer’s solution at room temperature for >1 h to allow for recovery. A slice containing mPFC (approximately AP +3.2 mm from bregma) was transferred to a recording chamber (32°C), and held submerged between two nylon nets. The chamber was continuously perfused with aerated Ringer’s solution, flow rate 1.5–2.5 ml/min. Electrodes were pulled from borosilicate glass capillaries (i.d. 0.58 mm; Clark Electromedical Instruments, UK) by using a horizontal electrode puller (model P-87, Sutter Instruments, USA). Recording electrodes were filled with 2 M KAc, tip resistance 55–120 MΩ, and used for recording with an Axoclamp 2A amplifier (Molecular Devices, USA). Penetration of cells by a sharp electrode was performed blindly. The electrophysiological criteria for distinguishing presumed pyramidal from non-pyramidal neurons have been described previously (Arvanov et al. 1997). It is very rare to impale fast-spiking interneurons with a relatively low resistance microelectrode (McCormick et al. 1985), which might account for not recording fast-spiking non-pyramidal cells. The presumed pyramidal cells of the mPFC have relatively long spike duration (1–3 ms at half-maximum spike amplitude) and show a pronounced spike-frequency adaptation in response to constant-current depolarization pulses. Single electrode voltage-clamp (holding potential −60 mV) was performed in the discontinuous mode with a sampling rate of 5–6.2 kHz. The voltage-clamp recordings were acquired using digital/analogue sampling and acquisition software (Clampex version 9.2, Molecular Devices, USA). During the voltage-clamp recordings of NMDA (10–15 μM)-evoked currents, tetrodotoxin (0.5 μM, to block action potentials), glycine (1 μM, to enhance NMDA-induced responses), and bicuculline (5 μM, to block GABA_A responses) were included in the Ringer’s solution. All drugs were diluted in Ringer’s solution and administered via bath perfusion. The effects of the drug/drug combination on the NMDA-induced current were calculated as percent of NMDA-induced current, before and after bath application of the drug/drug combination.

Ex-vivo receptor binding

Rats were treated by vehicle or risperidone [0.16–10 mg/kg subcutaneously (s.c.)]. Six animals per dose were used. The animals were decapitated 1 h after drug administration. Brains were immediately removed from the skull and rapidly frozen in dry-ice cooled 2-methylbutane (−40°C). Sections (20-μm thick) were cut using a Leica CM 3050 cryostat-microtome (van Hopplynus, Belgium), and thaw-mounted on microscope slides (SuperFrost Plus, LaboNord, France). The sections were kept at −20°C until required.

The occupancy of α²A- and α₂C-adrenoceptors by risperidone was measured by ex-vivo autoradiography using the radioligands [³H]RS79948-197 and [³H]rauwolscine as previously described (Marcus et al. 2005). Quantitative autoradiography analysis was performed with the β-imager (Biospace, Paris) according to our standard protocol (Langlois et al. 2001). α₂A- and α₂C-adrenoceptor occupancy were measured by quantifying the specific binding of [³H]RS79948-197 in the septum and the specific binding of [³H]rauwolscine in the striatum, respectively. The percentage of receptor occupancy was plotted against dosage and the sigmoidal log dose–effect curve of best fit was calculated by nonlinear regression analysis, using the GraphPad Prism program (USA). From these dose–response curves, the ED⁵₀ (the drug dose producing 50% receptor occupancy) were calculated, with their 95% confidence limits.

Statistics

Data from the behavioural experiments are not normally distributed and accordingly non-parametric tests are used. Thus, for the CAR data we used the Friedman two-way analysis of variance (ANOVA) followed by Wilcoxon matched-pairs signed-ranks test, and for the catalepsy data the Kruskal–Wallis one-way ANOVA followed by Mann–Whitney U test. Statistical evaluation of microdialysis data over time was performed by two-way ANOVA for repeated measures followed by planned comparison test. To analyse differences between different treatments, we also measured the overall effects (AUC = area under curve), i.e. interval 60–180 min for mPFC and
45–180 min for NAc. The overall effects were statistically evaluated by one-way ANOVA, followed by planned comparison test. One-way ANOVA was used to detect differences between baseline values. Statistical evaluation of the electrophysiological experiments was performed by one-way ANOVA followed by post-hoc least significant difference (LSD) test. In all statistical measures $p < 0.05$ was considered significant. The statistical evaluations were performed by using Statistica version 8.0 (StatSoft Inc., USA).

Drugs

Risperidone was provided by Johnson & Johnson Pharmaceutical Research & Development, division of Janssen Pharmaceutica NV, Belgium. Idazoxan HCl, bicuculline methiodide, glycine and NMDA were purchased from Sigma-Aldrich, USA. Tetrodotoxin was obtained from Tocris, UK. For in-vivo experiments risperidone was dissolved in a minimal amount of acetic acid with a 5.5% glucose solution added to volume and idazoxan was dissolved in saline (0.9% NaCl). For electrophysiological experiments, stock solutions of risperidone (dissolved in dimethyl sulfoxide) and idazoxan (dissolved in purified water) were prepared.

Results

Effects of risperidone alone and in combination with idazoxan on CAR behaviour

The dose–response relationship for the antipsychotic-like effect of risperidone was established. Risperidone (0.25, 0.3, 0.4, 0.5 mg/kg, $n=11$) produced a suppression of CAR [20 min: $\chi^2(4)=32.84$, $p<0.001$, Fig. 1a; 90 min: $\chi^2(4)=16.07$, $p<0.01$, Fig. 1b] in a dose-dependent manner. All doses of risperidone produced statistically significant suppression of CAR at 20 min ($p<0.01–0.001$) and 0.4 and 0.5 mg/kg at 90 min ($p<0.05$). At 240 min all animals were back to baseline performance. The results show that the dose needed for antipsychotic effect, i.e. ~80% suppression of CAR (Wadenberg et al. 2001) is between 0.4 and 0.5 mg/kg. However, at 20 min both 0.4 and 0.5 mg/kg risperidone induced some escape failures, 4 and 5 of 11 rats, respectively, indicating that these doses also produce non-specific behavioural effects. ED$_{50}$ was 0.28 mg/kg.

In another set of animals ($n=12$), pre-treatment with 1.5 mg/kg idazoxan was added to a dose of risperidone, that by itself did not produce a suppression of CAR sufficient for antipsychotic effect, i.e. 0.25 mg/kg. A statistically significant suppression of CAR was found at 20 min [$\chi^2(3)=22.88$, $p<0.001$, Fig. 2a], but not at 90 min (Fig. 2b). No escape failures were induced. Compared to vehicle, 0.25 mg/kg risperidone enhanced suppression of CAR ($p<0.01$). Compared to risperidone alone, the combination of risperidone + idazoxan also significantly enhanced the suppression of CAR ($p<0.01$).

Effects of risperidone alone and in combination with idazoxan in the catalepsy test

Risperidone (0.3, 0.5 and 1.0 mg/kg) was tested in the catalepsy test [30 min: $\chi^2(3)=9.50$, $p<0.05$; 60 min: $\chi^2(3)=11.61$, $p<0.01$; 120 min: $\chi^2(3)=2.58$, $p=0.46$; Table 1a]. Compared to vehicle, risperidone (0.3 and 0.5 mg/kg) reached statistically significant levels at 30 min ($p<0.05–0.01$), and 1.0 mg/kg risperidone at both 30 and 90 min ($p<0.05–0.01$). However, the

![Fig. 1. Effects of risperidone (0.25, 0.3, 0.4, and 0.5 mg/kg i.p.) on conditioned avoidance response (CAR) behaviour in rats at (a) 20 and (b) 90 min after administration of drug. The results are presented as median (avoidance %) ± semi-interquartile range. Animals ($n=11$) are serving as their own control in a change-over design (Li, 1964). * $p<0.05$, ** $p<0.01$, *** $p<0.001$ for vehicle vs. risperidone-treated animals.](image-url)
The mean ± S.E.M. basal dopamine level in the mPFC and the NAc were 0.34 ± 0.03 fmol/min (n = 24) and 3.18 ± 0.43 fmol/min (n = 25), respectively. No statistically significant differences between mean baseline concentrations of dopamine output were found between different treatment groups within the same brain region studied. Vehicle injections had no statistically significant effect on dopamine output.

Statistical evaluation for dopamine output in the mPFC (Fig. 3a) revealed a significant treatment (F(3,20) = 8.07, p < 0.001), time (F(6,120) = 22.00, p < 0.001) as well as interaction effect (F(4,140) = 3.02, p < 0.001). Compared to baseline, 0.25 mg/kg risperidone increased dopamine efflux in the mPFC at 60–90 and 150 min (p < 0.05–0.01), 1.5 mg/kg idazoxan at 60–150 min (p < 0.05) and the combination at 30–210 min (p < 0.05–0.01). For the interaction effect, there were a statistically significant difference between vehicle and risperidone at 90 and 150 min (p < 0.05), vehicle and idazoxan at 90 and 150 min (p < 0.05), vehicle and the combination at 60–180 min (p < 0.01–0.001). There was also a statistically significant difference between risperidone and the combination at 60 and 120 min (p < 0.05). In order to assess the effects of the two drugs in combination, we analysed the overall effect following injection of the second drug, AUC (60–180 min). The overall effect was statistically significant (F(3,20) = 9.06, p < 0.001). Compared to saline/vehicle, all treatments were significantly higher (p < 0.01–0.001) and the combination of risperidone + idazoxan was statistically higher than both risperidone (p < 0.05) and idazoxan (p < 0.05), when given alone.

Statistical evaluation for dopamine output in the NAc (Fig. 3b) revealed a significant treatment (F(3,21) = 4.73, p < 0.01), time (F(16,336) = 14.77, p < 0.001) as well as interaction effect (F(45,336) = 4.73, p < 0.001). Compared to baseline, 1.5 mg/kg idazoxan had no significant effect on dopamine efflux in the NAc, whereas 0.25 mg/kg risperidone increased dopamine efflux at 30–90 min (p < 0.05–0.01) and the combination at 15–180 min (p < 0.05–0.01). For the interaction effect, there was a statistically significant difference between vehicle and risperidone at 45–75 min (p < 0.05–0.001), vehicle and idazoxan at 15 min (p < 0.05), vehicle and the combination at 30–120 and 150–180 min (p < 0.05–0.001). There was also a statistically significant difference between risperidone and the combination at 60 min (p < 0.05) and between idazoxan and the combination at 45–120 and 165 min (p < 0.05–0.001). The overall effect, AUC (45–180 min), was statistically significant (F(3,21) = 6.43, p < 0.01). Compared to saline/vehicle, only the combination of idazoxan + risperidone was significantly higher (p < 0.001), and the combination was statistically higher than idazoxan (p < 0.01), but not compared to risperidone.

Effects of risperidone alone and in combination with idazoxan on dopamine output in the mPFC and the NAc

The mean ± S.E.M. basal dopamine level in the mPFC and NAc were 0.34 ± 0.03 fmol/min (n = 24) and 3.18 ± 0.43 fmol/min (n = 25), respectively. No statistically significant differences between mean baseline concentrations of dopamine output were found between different treatment groups within the same brain region studied. Vehicle injections had no statistically significant effect on dopamine output.

The overall effect, AUC (45–180 min), was statistically significant (F(3,21) = 6.43, p < 0.01). Compared to saline/vehicle, only the combination of idazoxan + risperidone was significantly higher (p < 0.001), and the combination was statistically higher than idazoxan (p < 0.01), but not compared to risperidone.

Effects of risperidone alone and in combination with idazoxan on NMDA-induced currents in pyramidal cells

Intracellular voltage-clamp recordings were performed in pyramidal cells in layers V and VI in the
α2-adrenoceptor blockade enhances effects of risperidone

Table 1. Effects of (a) risperidone and (b) idazoxan + risperidone on catalepsy in rats

<table>
<thead>
<tr>
<th></th>
<th>Score at 30 min</th>
<th>Score at 60 min</th>
<th>Score at 120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Effects of risperidone (0.3, 0.5, 1.0 mg/kg i.p.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>0 ± 0.5</td>
</tr>
<tr>
<td>Risperidone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 mg/kg</td>
<td>0.5 ± 0.5*</td>
<td>0 ± 0.5</td>
<td>0 ± 0.25</td>
</tr>
<tr>
<td>0.5 mg/kg</td>
<td>1.5 ± 1.5**</td>
<td>0 ± 0.25</td>
<td>0.5 ± 0.5</td>
</tr>
<tr>
<td>1.0 mg/kg</td>
<td>0.5 ± 1.5*</td>
<td>1.5 ± 1.0**</td>
<td>1.0 ± 1.25</td>
</tr>
<tr>
<td>(b) Effects of idazoxan (1.5 mg/kg s.c.) + risperidone (0.25 mg/kg i.p.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline + vehicle</td>
<td>0 ± 0.25</td>
<td>1 ± 0.5</td>
<td>1 ± 0.5</td>
</tr>
<tr>
<td>Saline + risperidone (0.25 mg/kg)</td>
<td>0 ± 0.5</td>
<td>0 ± 0.5</td>
<td>0 ± 0.25</td>
</tr>
<tr>
<td>Idazoxan (1.5 mg/kg) + vehicle</td>
<td>0.5 ± 0.5</td>
<td>0 ± 0.5</td>
<td>0 ± 0.5</td>
</tr>
<tr>
<td>Idazoxan (1.5 mg/kg) + risperidone (0.25 mg/kg)</td>
<td>0 ± 0</td>
<td>0 ± 0.5</td>
<td>0 ± 0</td>
</tr>
</tbody>
</table>

The results are shown as medians ± semi-interquartile range based on observations of eight animals per treatment group. *p < 0.5, **p < 0.01 vehicle vs. risperidone-treated animals.

prelimbic region of the rat mPFC. The characterization of pyramidal cells was performed according to criteria previously described (see above).

Concentration–response curves for both clozapine and risperidone on NMDA-induced currents have previously been established in our laboratory (Konradsson et al. 2006), showing biphasic response curves with a maximal effect at 100 nm for clozapine [214 ± 16% (mean ± S.E.M.)] and 20 nm for risperidone (147 ± 26%), i.e. a concentration that has been found to generate functionally effective α2-adrenoceptor blockade in rat cortical slices (Leysen et al. 1988). For comparative reasons these data are included in Fig. 4. To investigate the effect of adjunctive α2-blockade, a submaximal concentration of risperidone was chosen, i.e. 10 nm. Here we show (Fig. 4) that whereas neither 1 μM idazoxan (96 ± 8%, n = 4) nor 10 nm risperidone (101 ± 7%, n = 6) had any effect on their own, the combination of 1 μM idazoxan + 10 nm risperidone enhanced NMDA-induced currents (177 ± 26%, n = 5). Group comparison (F2,12 = 7.55, p < 0.01) revealed a statistically significant difference between risperidone and the combination of risperidone + idazoxan (p < 0.01) and between idazoxan and the combination of risperidone + idazoxan (p < 0.01).

α2A- and α2C-adrenoceptor occupancies by risperidone

The dose-dependent occupancy of α2A- and α2C-adrenoceptors by risperidone in the rat brain is illustrated in Fig. 5. The ED50 value (95% confidence limit) generated from the curves is 3.5 mg/kg (2.9–4.3) for α2A-adrenoceptors and 1.6 mg/kg (1.4–1.9) for α2C-adrenoceptors 1 h after s.c. administration.

Discussion

The present study shows that adjunctive treatment with the selective α2-adrenoceptor antagonist idazoxan when added to a low dose of risperidone significantly enhances the risperidone-induced suppression of CAR in rats, indicating an enhanced antipsychotic effect. In addition, both increased cortical dopamine release and enhanced NMDA receptor-mediated responses in cortical pyramidal cells were obtained. Previous studies suggest that such effects may be associated with an improvement of negative symptoms and cognitive impairment in schizophrenia. Our data generally propose that the α2/D2 ratio for risperidone is not necessarily optimal and that its therapeutic effect in schizophrenia can be enhanced by adjunctive treatment with an α2-adrenoceptor antagonist such as idazoxan in spite of a dose reduction of risperidone.

The CAR test provides a highly predictive and reliable animal assay of antipsychotic potential (Waddenberg & Hicks, 1999). Thus, within a certain dose range, all APDs so far tested have been found to effectively suppress CAR without affecting escape capability, whereas compounds with a general sedative but not antipsychotic action do not show this selectively at any dose. Previous data also show that the CAR test does not reflect amnesic effects, since anticholinergic drugs such as scopolamine, which induces amnesia in animals and causes memory disturbances in man, do not suppress CAR (Shannon et al. 1999).
different APDs. Whereas FGAs, such as haloperidol, typically produce a D₂ receptor occupancy of ~70%, clozapine generates only ~45% at clinically effective dosage (Farde & Nordström, 1992; Farde et al., 1989). The D₂ receptor occupancy generated by risperidone is approximately in the same range as that produced by FGAs (Kapur et al., 1995, 1999; Nyberg et al., 1999).

In rodents, a dose of clozapine that shows a robust antipsychotic effect in the CAR test, i.e. 5 mg/kg (Olssen et al., 2006), produces ~45% D₂-, 65% α_{2A}- and 95% α_{2C}-receptor occupancy (Marcus et al., 2005). In the present study, the dose of risperidone required to achieve a robust antipsychotic-like effect was between 0.4 and 0.5 mg/kg, corresponding to ~55% D₂ receptor occupancy (Wadenberg et al., 2001) and to ~12% α_{2A}- and ~19% α_{2C}-adrenoceptor occupancy.
However, already at this dose level some escape failures were registered, indicating a contribution of unspecific effects of the drug. Significantly, the combination of a low dose of risperidone (0.25 mg/kg), which produces \(\sim 50\% \) D\(_2\) receptor occupancy (Wadenberg et al. 2001), and idazoxan (1.5 mg/kg), which generates 75\% \(\alpha_2A\) and 90\% \(\alpha_2C\)-adrenoceptor occupancy (Marcus et al. 2005), thus resulted in receptor occupancies that are similar to those of clozapine and also produced a robust antipsychotic effect in the CAR test. Given the superior efficacy of clozapine in schizophrenia, it is therefore of considerable interest that we here, by adding idazoxan, obtained a robust antipsychotic activity by a low dose of risperidone, which by itself was not sufficient to generate such an effect. Yet, no catalepsy was observed with this drug combination, thus suggesting a very low EPS liability. Besides being an \(\alpha_2\)-adrenoceptor antagonist, idazoxan also has affinity for 5-HT\(_1A\) and imidazoline receptors. However, its affinity for \(\alpha_2\)-adrenoceptors is much higher than for both 5-HT\(_1A\) and imidazoline receptors (Ernsberger et al. 1990; Kleven et al. 2005), indicating that the effects seen with idazoxan are, in all probability, largely due to \(\alpha_2\)-adrenoceptor blockade.

Addition of idazoxan to a low dose of risperidone significantly enhanced dopamine output in the mPFC, and also in the NAc. Addition of idazoxan to a selective \(D_2\) antagonist and also to haloperidol has previously been shown to increase dopamine output in the mPFC but not in NAc (Hertel et al. 1999a; Wadenberg et al. 2007). However, the effect in the NAc by the combination of idazoxan + risperidone is comparable to the effects produced by adding idazoxan to olanzapine, which also produced a marked increase in prefrontal dopamine output as well as an enhanced antipsychotic-like effect (Wadenberg et al. 2007). Both olanzapine and risperidone possess higher affinity for serotonergic receptors, e.g. 5-HT\(_1A\) and 5-HT\(_{1C}\), than for \(D_2\) receptors (Shahid et al. 2009). Clinically, ritanserin, a 5-HT\(_{1A/C}\) receptor antagonist has been found to enhance the effect of FGAs in schizophrenia (Gelders et al. 1986; Reynitjens et al. 1986). However, when added to the selective \(D_2\) receptor antagonist raclopride, ritanserin not only enhanced the antipsychotic-like effect (Wadenberg et al. 1996) but also increased the raclopride-induced dopamine outflow in both the mPFC and NAc (Andersson et al. 1995). Moreover, asenapine, a SGA with higher affinity for a range of serotonergic receptors and \(\alpha_2\)-adrenoceptors than for \(D_2\) receptors (Shahid et al. 2009) increases dopamine output in mPFC as well as in both NAc and striatum (Frånberg et al. 2008). Thus, both preclinical and clinical data seem to indicate that the increased accumbal dopamine output induced by adding a 5-HT\(_{1A/C}\) receptor antagonist or idazoxan to various APDs does not prevent a concomitantly enhanced antipsychotic effect of the drug combinations. Indeed, previous data propose that a marked enhancement of dopamine outflow in the mPFC \textit{per se} is sufficient to produce an enhanced antipsychotic effect of APDs (Eltayb et al. 2005; Hertel et al. 1999a), a notion that is indirectly supported by several studies showing that cortical dopamine may regulate and functionally inhibit subcortical dopamine transmission (Murase et al. 1993; Saunders et al. 1998). An enhanced dopamine output in the NAc might seem counteractive to the antipsychotic-like effect of APDs, which has been shown to be mediated in the ventral striatum (Wadenberg et al. 1990). The increased dopamine output in the NAc does not seem to have any functional consequences, at least it does not prevent the antipsychotic-like effect seen in this model. The increased dopamine outflow in striatal areas might still contribute to reduce catalepsy. The combination of idazoxan + risperidone, in concentrations that had no effect by themselves, facilitated NMDA receptor-induced currents in the mPFC. Thus, both enhanced cortical dopaminergic and glutamatergic NMDA receptor-mediated transmission were observed following combined treatment with risperidone + idazoxan. In our previous study (Marcus et al. 2005), the facilitation of cortical NMDA receptor-mediated neurotransmission by the combination of \(D_2\) receptor and \(\alpha_2\)-adrenoceptor blockade was found to be mediated by dopamine and executed via the \(D_2\) receptor. Moreover, evidence for dopaminergic \(D_1\) dysregulation as well as glutamatergic NMDA receptor hypofunction in schizophrenia has been reported (see Introduction) and cognitive processes \textit{per se} seem to be dependent on normally functioning \(D_1\) receptors as well as NMDA receptors (Aura & Riekkinen, 1999; Goldman-Rakic et al. 2000). Consequently, the facilitation of cortical NMDA receptor-mediated transmission generated by a combination of idazoxan and a low dose of risperidone might contribute to improve cognitive deficits, e.g. impaired working memory, in schizophrenia, an effect that may contribute to improve treatment outcome (Green, 1996).

Clozapine has been shown to reduce suicidality in schizophrenia and schizoaffective disorder (see Introduction). The \(\alpha_2\)-adrenoceptor blocking effect of clozapine may well contribute to its suicide-preventing effect, since \(\alpha_2\)-adrenoceptor blockade represents one of the mechanisms of action of clinically effective antidepressant drugs such as mianserin and
mirtazapine, and blockade of \(\alpha_2 \)-auto- and hetero-receptors on nerve terminals results in an increased release of both noradrenaline and serotonin in the brain (de Boer, 1995; Haddjeri et al., 1995; Hertel et al., 1997, 1999). Indeed, the antidepressant drug mianserin has been found to enhance the effect of FGAs on positive and negative symptoms as well as cognitive dysfunction in schizophrenia (cf. above), thereby generating a clozapine-like effect. Therefore, adjunct treatment with an \(\alpha_2 \)-adrenoceptor antagonist may improve the efficacy of risperidone on depressive symptoms in schizophrenia and potentially even reduce suicidality.

Consequently, the enhanced prefrontal dopaminergic as well as cortical NMDA receptor-mediated transmission induced by adjunct idazoxan when added to a low dose of risperidone may improve its effect on negative symptoms and cognitive deficits in schizophrenia. In addition, the lower D\(_2\) receptor occupancy, which is achieved by a reduced dose of risperidone, might in itself contribute to such improvement, since a high degree D\(_2\) blockade per se has been shown to generate detrimental effects on both cognition and mood in healthy volunteers (Saeedi et al., 2006). In fact, a high degree of D\(_2\) blockade may in itself serve to exacerbate cognitive as well as negative symptoms in schizophrenia (Carpenter, 1996). Finally, a reduced EPS liability would, in principle, also be expected by the combination of idazoxan and a low dose of risperidone. The present results provide further evidence for the notion that the potent \(\alpha_2 \)-adrenoceptor antagonistic action of clozapine may significantly contribute to its unique efficacy in schizophrenia, as originally proposed by Nutt (1994).

Acknowledgements

This work was supported by the Swedish Research Council (grant no. 4747), Torsten och Ragnar Söderbergs Stiftelse and The Karolinska Institutet, Stockholm, Sweden. The expert technical assistance of Mrs Anna Malmerfelt and Mrs Ann-Chatrine Samuelsson is gratefully acknowledged. We also thank Johnson & Johnson Pharmaceutical Research & Development, division of Janssen Pharmaceutica NV, Beerse, Belgium for generously providing us with risperidone.

Statement of Interest

Dr X. Langlois is an employee of Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium.

References

Davis JM, Chen N, Glick ID (2003). A meta-analysis of the efficacy of second-generation antipsychotics. *Archives of General Psychiatry* 60, 553–564.

Eltayb A, Wadenberg ML, Svensson TH (2005). Enhanced cortical dopamine output and antipsychotic-like effect of...
alpha2 blockade enhances effects of risperidone

...

Tan HY, Callicott JH, Weinberger DR (2007). Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. *Cerebral Cortex* 17 (Suppl. 1), i171–i181.

