Regulation of T-cell-independent and T-cell-dependent antibody production by circadian rhythm and melatonin

Vitalij Černyšiov, Natalija Gerasimčik, Mykolas Mauricas and Irutė Girkontaitė

Institute of Immunology of Vilnius University, Moletu pl. 29, LT-2021 Vilnius, Lithuania

Correspondence to: I. Girkontaitė; E-mail: igirkontaite@yahoo.com

Received 22 February 2009, accepted 20 October 2009

Abstract

Melatonin is a hormone that has immunomodulatory activity and is believed to influence the production of antibodies in mammals. The aim of the present study was to investigate the effect of suppressed melatonin synthesis on the antibody production. BALB/c mice were immunized with T-cell-dependent (TD) and T-cell-independent (TI) antigens and kept under (i) normal lighting, (ii) constant exposure to light, (iii) exposed to light and treated daily with melatonin. It was revealed that melatonin modulated TD and TI antibody production. Suppressed melatonin synthesis increased the amount of IgM, IgG1, IgG2b and IgG3 antibodies after immunization with TI antigen. The level of TD antibodies IgM, IgG2a, IgG2b and IgG3 also increased, however, the antigen-specific antibodies of IgG1 isotype significantly decreased in mice exposed to light. Daily melatonin treatment brought the antibody level back to normal. The antibody concentration in the sera of mice kept at normal lighting was significantly higher when the immunizations were performed in the evening. The action of melatonin on B cells via MT2 receptor was shown in vitro and in vivo.

Keywords: antibodies, melatonin, MT2 melatonin receptor, T-cell dependent, T-cell independent

Introduction

Melatonin is a hormone mainly produced by the pineal gland (1). The production of melatonin occurs during the night in response to the darkness and is inhibited by the light. Melatonin has been called ‘the hormone of darkness’. The secretion of melatonin reaches maximum level in the middle of the night and gradually decreases by the morning. Melatonin is also synthesized extrapineally in different tissues and cells (2), the cells of immune system, e.g. human lymphocytes (3), resting or PHA-stimulated Jurkat cells (4), mouse, rat and human bone marrow cells (5), thymocytes (6), mast cells, natural killers, eosinophilic leukocytes, platelets and endothelial cells (3).

Melatonin is known as a regulator of the biological clock and also as a potential immunomodulator. It modulates the activity of dendritic cells (7), natural killer cells (8–10), neutrophils (11) and T cells (8). Melatonin modulates the functions of macrophages (12). It increases the expression of MHC class II molecules (thus enhances antigen presentation to T cells) and augments the cytokine [IL-1, IL-6, tumor necrosis factor (TNF) α and M-CSF] production (13). It is believed that melatonin could provide the third signal for T-cell activation (the first two signals are through the T-cell receptor and CD28 on the T cell) (14). It enhances the growth of T cells and modifies the cytokine secretion (3, 4, 13, 15). The effect of melatonin was observed on human T cells only when cells were not activated or were just slightly activated with PHA (13). The influence of melatonin on T cells is controversial. It can enhance the immune response, acting as a pro-inflammatory agent. It is suggested that melatonin promotes Th1-mediated immune responses in humans by up-regulating IL-12 production by antigen-presenting cells (16). It was also revealed that melatonin can differentially affect murine T cells. It promotes Th2 (17, 18) or Th1 response (19, 20).

The role of melatonin on the function of B cells is not clear enough. According to some studies, treatment with melatonin increases the production of antibodies (17, 18). Regodon et al. showed that melatonin could be used as vaccine agent in sheep. Melatonin implants resulted in the increase of antibody titers that synergized with aluminium hydroxide (21). We investigated the influence of suppressed melatonin synthesis on antibody production in mice. We showed that circadian rhythm and melatonin regulate T-cell-independent (TI) and T-cell-dependent (TD) antibody production.
Methods

Mice experimental models and immunizations
BALB/c and C57Bl/6 mice were bred and housed in our mouse facility in accordance with institutional guidelines.

Seven- to 8-week-old (TD responses) and 8- to 9-week (TI responses)-old mice were adapted for ~1 week before the experiment and kept during all experiment at appropriate lighting conditions: normal light/dark conditions, constant artificial light and constant dark conditions. In some experiments, mice were exposed to constant light and every evening injected intraperitoneally (i.p.) either with 5 mg kg\(^{-1}\) of melatonin (Sigma) or with PBS; mice kept at normal lighting conditions were administrated (i.p.) every evening with 0.25 mg kg\(^{-1}\) of MT2 antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT) (Tocris). Each experimental group contained 8–10 mice.

Mice were immunized intraperitoneally with 10 \(\mu\)g of trinitrophenyl (TNP)-Ficoll [TI type II antigen—TNP (89)-AECM-Ficoll], 50 \(\mu\)g TNP-LPS (TI type I antigen—TNP-LPS) in PBS or 100 \(\mu\)g of alum-precipitated TNP-ovalbumin (TD antigen—TNP (11)-ovalbumin). All antigens were obtained from Biosearch Technologies. TNP-ovalbumin-immunized mice were boosted on 14 and 21 days of immunization. Serum samples were collected before immunizations and on day 7 after the immunization with TI antigens or on days 7, 14, 21 and 28 after the immunization with TD antigen. TNP-specific antibodies were measured by ELISA.

Antibody secretion in vitro
Peritoneal or splenic cells were isolated from TD antigen-immunized mice 1 or 3 weeks after the last immunization. Splenic cells were purified using Lympholyte-M gradient centrifugation. The cells were plated into 96-well round-bottom plates at the concentration 2.2 \(\times\) 10\(^5\) cells per well in RPMI medium containing 10\% FCS. The cells were unstimulated or stimulated with TNP-ovalbumin (10 \(\mu\)g ml\(^{-1}\)), melatonin (10 \(\mu\)M), MT2 antagonists 10 \(\mu\)M luzindole (Sigma) or 1–10,000 nM 4-P-PDOT (Tocris) and cultured at 37\(^\circ\)C for 9–10 days. The amount of antibodies in the cell culture supernatant were detected by ELISA.

Determination of specific antibodies
ELISA maxisorb plates were coated with either TNP-BSA (for detection of hapten-specific antibodies in the sera) or TNP-ovalbumin (for detection of antibody production in cell culture). Antigen-specific antibodies were detected with biotin-conjugated antibodies to mouse IgM, IgG1, IgG2a, IgG2b and IgG3 (all from PharMingen). The coupled biotinilated antibodies were detected using streptavidin-conjugated horseradish peroxidase (Pierce). o-phenylenediamine was used as a substrate for horseradish peroxidase. The amount of each antigen-specific isotype was determined by comparing test samples with a standard serum (pooled sera from immunized mice and set at 100 AU).

Determination of melatonin concentration in sera and in cell culture
The concentration of melatonin was determined by ELISA using IBL melatonin ELISA kit. The samples were extracted and ELISA performed according to company’s guidelines.

Results
The influence of melatonin on TI and TD antibody production
The effect of melatonin on antibody production was investigated using mice model with suppressed melatonin synthesis. Melatonin secretion is inhibited by light. Therefore, to suppress synthesis of melatonin, BALB/c mice were exposed to constant lighting conditions (Fig. 1). The control mice were kept under normal light/dark conditions. To find out if the altered antibody secretion was due to suppressed melatonin synthesis or only due to dramatically altered circadian rhythms, we included the second control: mice were kept under constant light but got daily melatonin injections. Experimental mice were kept at certain lighting conditions for 1 week and immunized with TI (TNP-Ficol and TNP-LPS) or TD (TNP-ovalbumin) antigens as described in Methods. The animals throughout the experiment were kept at the same lighting conditions. The TNP-specific antibodies were measured in the pre-immune sera and sera of immunized animals. TNP-specific antibodies of IgM, IgG1, IgG2b and IgG3 isotypes were detected in the sera after the immunization with TI type II antigen TNP-Ficol (Fig. 2a). The amount of TNP-specific antibodies was higher in the sera of mice kept under constant light (inhibited melatonin synthesis) as compared with control mice kept under normal light/dark conditions. The amount of antibodies in mice exposed to constant light but with daily melatonin treatment was similar to the level of antibodies in mice kept at normal light/dark conditions. Thus, the production of specific antibodies increased when melatonin synthesis was inhibited (constant light). To prove the influence of melatonin on TI antibody production, we immunized the mice with TI type I antigen TNP-LPS. The increased amount of IgG1 and IgG3-specific antibodies (Fig. 2b) was obtained in the mice group that was kept under the constant lighting as compared with the control mice group (living at the normal light/dark conditions). The amount of IgM antibodies in that group varied from experiment to experiment. The IgM anti-TNP antibodies

Fig. 1. Melatonin concentration in the sera of mice kept at different lighting conditions. BALB/c mice (females, 8–9 weeks old) were divided into two groups and kept at normal light/dark conditions and at constant lighting for 2 weeks. The blood was collected at different time during one day and one night. The blood was pooled from two to three mice. The melatonin concentration in the sera was determined by ELISA. The dark bar represents the duration of the night.
were increased under the constant lighting or similarly as in the control group (Fig. 2b).

It means that melatonin inhibited the secretion of TI antibodies of IgM, IgG1, IgG2b and IgG3 classes.

In order to reveal the differences and similarities between the action of TI and TD antigens, we performed the immunizations with TD antigen TNP-ovalbumin (Fig. 3). Similar to the immunization with TI antigen, we detected increased amounts of IgM, IgG2a, IgG2b and IgG3 TNP-specific antibodies in the sera of mice kept at constant lighting conditions versus control groups. The amount of IgG1 class TNP-specific antibodies, on the contrary, was significantly lower in the sera of this mice group where melatonin synthesis was inhibited by the light. The influence of melatonin on regulation of TD antibody production was different: it stimulated IgG1 and inhibited IgM, IgG2a, IgG2b and IgG3 class antibody production. Similar data of melatonin effect on antibody production were obtained by immunizing BALB/c females and males, also C57BL6 females (data not shown.)

The daytime of immunization affects the amount of specific antibodies

To investigate how circadian rhythm modifies the production of antibodies, we immunized the mice with TD antigen in the morning and in the evening. The amount of antibodies in the sera significantly depends on the time of immunization. The level of antibodies was much higher when the immunizations were performed in the evening as compared with those in the morning (Fig. 4).

Melatonin modulated antibody production through MT2 receptors

The effect of melatonin on antibody production in vitro was also analyzed. Peritoneal or splenic cells were isolated.

Fig. 2. Production of TI antibodies at different lighting conditions. BALB/c mice were divided into three groups and kept at different lighting conditions: at normal light/dark (black circles), constant light (white circles) and constant light with daily administration of melatonin (gray circles). One week later, the mice were immunized with TI type II antigen TNP-Ficoll (A) or TI type I antigen TNP-LPS (B). The immunizations and daily melatonin injections were performed in the evening. The blood was collected before immunization (day 0) and at days 7, 14 after the immunization. TNP-specific antibodies were detected by ELISA. One circle represents the antibody concentration (arbitrary units) in sera of one mouse. Eight to ten mice were per group. One representative experiment of three (TNP-ficoll immunization) and one of two (TNP-LPS immunization) is shown. The significant differences (calculated by Student’s t-test) between mice groups kept in normal dark/light conditions and constant light are marked: *P < 0.05, **P < 0.005, ***P < 0.0005.
1 week after the last immunization with TD antigen and cultivated in vitro without stimulation or stimulated with TNP-ovalbumin for 9–10 days. Unstimulated splenocytes (Fig. 5a) as well as peritoneal cells (data not shown) from mice kept at normal light/dark conditions produced antibodies of IgG1 isotype. Similar as in serum, the IgG1 levels were significantly reduced in cultures from mice kept at constant lighting. The antibody production was restored when mice were treated with melatonin.

The IgG1 levels were not altered significantly when antigen (TNP-ovalbumin) or melatonin alone was added into the cell culture prepared 7 days after the last immunization. Antibody production did not change after addition of MT2-selective inhibitor luzindole into the cell culture with unstimulated splenocytes (data not shown). TNP-ovalbumin in the presence of melatonin up-regulated IgG1 antibody production in splenocyte cultures from mice kept at normal conditions (Fig. 5b). This antibody secretion was inhibited by luzindole. However, melatonin did not induce antibody secretion in TNP-ovalbumin-stimulated splenocytes from mice kept at constant lighting. Unstimulated splenocytes from mice kept at normal conditions did not produce IgM class antibodies but started to produce antibodies after antigen stimulation. The antibody secretion was inhibited by luzindole. Splenocytes from mice kept at constant lighting did not produce IgM class antibodies with or without antigen stimulation in vitro (Fig. 5).

The IgG1 isotype antibody production could be induced in vitro by antigen in the splenocytes isolated about 2–4
weeks after the last immunization (Fig. 5c). The IgG1 antibodies were synthesized only by splenocytes from mice kept at normal light/dark conditions and the secretion could be inhibited by luzindole and 4-P-PDOT. The concentration of endogenous melatonin did not differ in splenocyte culture from mice kept at normal and constant lighting (Fig. 5d), indicating that the differences of splenocyte activation in vitro depend on the disrupted circadian rhythm in vivo.

In conclusion, antibody secretion in vitro could be induced by antigen only in splenocytes from TD antigen immunized mice that were kept at normal lighting conditions. The antigen-induced antibody secretion is suppressed by MT2 antagonists; therefore, it means that melatonin synthesized in splenocytes has an autocrine effect through MT2 melatonin receptors.

To test if MT2 melatonin receptor is involved in antibody production in vivo, we treated the mice (kept at normal lighting conditions) daily with MT2 antagonist 4-P-PDOT before and during the immunization with TD antigen. The immunizations and treatments with 4-P-PDOT were performed in the evenings (Fig. 6). The 4-P-PDOT-treated mice produced significantly less IgG1 isotype antibodies and more antibodies of other isotypes. Thus, treatment with MT2 antagonist 4-P-PDOT gave the same effect as the exposure under constant lighting (Fig. 3).

Discussion

The secretion of melatonin occurs during the night in response to the darkness. It reaches its maximum in the middle of the night and then decreases until the morning. The light inhibits the synthesis of melatonin.

Maestroni *et al.* also Vivien-Roels *et al.* demonstrated that in mice (C57BL/6J, BALB/c, AKR/J, CBA and C57BL/6 strains) the secretion of melatonin follows a clear-cut circadian rhythm. The peak of melatonin in the sera was obtained in the middle of dark phase. The peaks were of different amplitude, with the smallest elevation in melatonin level found in BALB/e mice (22, 23). We investigated how the reduced melatonin synthesis influenced the antibody production. We used the animal model where melatonin synthesis was suppressed. All previously performed investigations on modulation of antibody production by melatonin were performed either with pinealectomized animals or using additional treatment with melatonin (13, 17, 18).

Direct influence of melatonin on B cells is not clear. Some data indicate that melatonin failed to influence the activity of B cells in a TI manner. Melatonin had no influence on LPS-stimulated B cell proliferation or secretion of immunoglobulins (IgA, IgM, IgG1 and IgG2a) (14). Our data demonstrates that melatonin can modulate TI antibody secretion by B cells. The amount of antibodies increased when melatonin synthesis was suppressed (mice kept at constant artificial lighting). Mice kept at constant lighting and treated daily with melatonin produced similar amount of antibodies as the control group. This means that melatonin negatively regulates TI antibody production.

The effect of melatonin on B cells could be indirect due to Th. According to the literature, daily injections of melatonin specifically enhance the production of IgG1 but decrease IgG2a antigen-specific antibody secretion and has no effect on the production of IgG2b- and IgG3-specific antibodies in BALB/c mice (18). The primary and secondary antibody production in response to sheep red blood cell (SRBC) was markedly decreased in mice treated with propranolol (inhibition of the night-time rise of melatonin) in the evening, while the responses of the morning-treated mice were similar to those of the controls. The immunoenhancing effect of melatonin was evident only when melatonin was administered in the afternoon or in the presence of TD antigenic stimulation (13). According to our results, inhibition of melatonin synthesis caused the increase of antibodies of IgG2a, IgG3 and IgM isotype after the immunization with TD antigen. On the other hand, the amount of IgG1 antibodies significantly decreased. The same tendency was observed with primary and secondary immune responses.

Melatonin could mediate effect on B cells through Th. The regulation of IgG isotype switching in vivo will depend on

Fig. 4. The amount of specific antibodies in the sera of mice depends on the time of immunization with TD antigen. BALB/c female mice were kept at normal light/dark conditions and immunized with TD antigen TNP-ovalbumin. The immunization was performed either in the evening (filled circles) or in the morning (filled triangles). Six to nine mice were per group. The TNP-specific antibodies in the sera were measured 1 week after the first immunization for IgM isotype and 1 week after the third immunization for IgG1, IgG2a and IgG3 isotypes. Student’s *t*-test: *P* < 0.05, **P** < 0.005, ***P*** < 0.0005.
Fig. 5. Production of TNP-specific antibodies in vitro by splenocytes from mice with suppressed synthesis of melatonin. (A) Decreased production of IgG1 isotype antibodies in unstimulated splenocyte cell culture. BALB/c mice were divided into three groups and kept at different lighting conditions: at normal light/dark (black circles), constant light (white circles) and constant light with daily administration of melatonin (gray circles). The mice were immunized with TD antigen TNP-ovalbumin. The splenocytes were isolated 7 days after the third immunization and cultured as described in Methods. The secreted antibodies were detected by ELISA after culturing the cells for 9 days. The significant
Splenocytes were isolated 23 days after the third immunization, stimulated with TNP-ovalbumin (10^10 M) in vitro. CD4 T cells were depleted and the supernatants were collected at days 7, 14 and 21 after the first immunizations. TNP-ovalbumin injections were performed in the evening. The blood was collected at days 7, 14 and 21 after the first immunizations. TNP-specific antibodies were detected by ELISA. One circle represents the antibody concentration (arbitrary units) in sera of one mouse. Eight to ten mice were per group. The significant differences (calculated by Student’s t-test) between mice groups kept in normal dark/light conditions and constant light are marked: ***P < 0.001, **P < 0.01, *P < 0.05.

Fig. 6. MT2-selective inhibitor 4-P-PDOT influences the amount of TNP-specific antibodies in sera of mice immunized with TD antigen. BALB/c mice (females, 8–9 weeks old) were divided into two groups and kept at normal light/dark conditions. One mouse group was untreated (black circles) and the second one got daily 0.25 mg kg^-1 4-P-PDOT injections (white circles). The mice were immunized with TD antigen TNP-ovalbumin. The immunizations (indicated by arrows) and daily 4-P-PDOT injections were performed in the evening. The blood was collected at days 7, 14 and 21 after the first immunizations. TNP-specific antibodies were detected by ELISA. One circle represents the antibody concentration (arbitrary units) in sera of one mouse. Eight to ten mice were per group. The significant differences (calculated by Student’s t-test) between mice groups kept in normal dark/light conditions and constant light are marked: ***P < 0.001, **P < 0.01, *P < 0.05. The experiments showing that melatonin induces T_n2 response (also possible class switch to IgG1) were performed using BALB/c mice, e.g. mouse strain that produces more T_n2 cytokines. Therefore, we checked how suppressed melatonin synthesis influences the antibody production in BALB/c and also in C57BL6 mice. CD4 cells from C57BL/6 as well as CBA/J mice produce more T_n1 cytokines (27). We obtained similar results with both strains of mice. Similarly, Lopes et al. (28) showed that melatonin influence on the granuloma-circadian rhythm in mice (C57B1/6 and Swiss) was not strain specific. Strain differences in the formation of 6-sulphatoxymelatonin from melatonin were also not obtained in the mouse strains C3H/He, C57BL/6 and BALB/c (29).

Jimenez-Caliani et al. (30) showed that melatonin acts differently on female and male MRL-lpr mice. These mice develop an autoimmune disease spontaneously. Administration of melatonin in drinking water for 1 month reduced symptoms of disease in females and enhanced in males, e.g. in females decreased pro-inflammatory cytokines (IL-2, IL-6, IFN-γ and TNF-γ, IL-1β), increased anti-inflammatory cytokine IL-10 in serum, decreased titers of auto-antibody and improved the histological pattern. The effect of melatonin on males was just the opposite (30). Authors assume that different cytokine pattern and antibody isotypes depend on sex hormones, i.e. estrogen and testosterone. Testosterone and estrogen differently affect T_n1 and T_n2 cytokine release following trauma-hemorrhage (31). Testosterone suppressed both IgG anti-dsDNA antibody and total IgG production in PBMC from systemic lupus erythematosus patients due to differences (calculated by Student’s t-test) between mice groups kept in normal dark/light conditions and constant light are marked: ***P < 0.001, **P < 0.01, *P < 0.05. (B) Melatonin receptor antagonist luzindole inhibits in vitro-induced IgG1 antibody secretion. The splenocytes were prepared as in (A) and stimulated in vitro with TNP-ovalbumin (10 μg ml^-1) and melatonin (10 μg ml^-1). Luzindole was added at 10 μM final concentration. (C) Luzindole and 4-P-PDOT inhibit the production of antigen-induced IgG1 antibodies in splenocyte cell culture from mice kept at normal lighting conditions. The mice were kept at normal lighting and constant light conditions and immunized with TNP-ovalbumin. The splenocytes were isolated 23 days after the third immunization, stimulated in vitro with TNP-ovalbumin (10 μg ml^-1) in the presence or absence of MT2 antagonists luzindole and 4-P-PDOT. The amount of IgG1 antibodies was analyzed 9 days later by ELISA. One representative experiment (of three) is shown. (D) Melatonin concentration in the splenocyte cell culture supernatant (from Fig. 4C) was determined by ELISA.

Influence of melatonin on antibody production

According to literature data, melatonin could act differently on T_n1, differentiation toward T_n1 and T_n2. It modulates human CD4 cells to differentiate into T_n1 (16, 25). Probably, the effect of melatonin on T cells is indirect, as melatonin enhances IL-12 production by cultured human monocytes. IL-12 drives T-cell differentiation toward T_n1 phenotype, causing the enhanced IFN-γ production reported for melatonin (8). Contrary to human system, majority data showed that melatonin activates murine T_n2 cells (17, 18). Melatonin could modify cytokine secretion by anti-CD3-stimulated-purified CD4 T cells (BALB/c mice) only in the presence of antigen-presenting cells (14). However, Colombi et al. (19) have shown that melatonin increases IFN-γ production by C57BL6 mice splenocytes. Melatonin suppressed the T_n2 immune response in rats infected with Trypanosoma cruzi (26). Information on the role of melatonin on regulation of IL-12 secretion by murine macrophages is limited. Only one publication by Majewska et al. showed that melatonin inhibited the T_n1-dependent immune response by suppressing the production of IFN-γ and IL-12 by cells in the lymph node of CBA mice (20).

The experiments showing that melatonin induces T_n2 response (also possible class switch to IgG1) were performed using BALB/c mice, e.g. mouse strain that produces more T_n2 cytokines. Therefore, we checked how suppressed melatonin synthesis influences the antibody production in BALB/c and also in C57BL6 mice. CD4 cells from C57BL/6 as well as CBA/J mice produce more T_n1 cytokines (27). We obtained similar results with both strains of mice. Similarly, Lopes et al. (28) showed that melatonin influence on the granuloma-circadian rhythm in mice (C57B1/6 and Swiss) was not strain specific. Strain differences in the formation of 6-sulphatoxymelatonin from melatonin were also not obtained in the mouse strains C3H/He, C57BL/6 and BALB/c (29).

Jimenez-Caliani et al. (30) showed that melatonin acts differently on female and male MRL-lpr mice. These mice develop an autoimmune disease spontaneously. Administration of melatonin in drinking water for 1 month reduced symptoms of disease in females and enhanced in males, e.g. in females decreased pro-inflammatory cytokines (IL-2, IL-6, IFN-γ and TNF-γ, IL-1β), increased anti-inflammatory cytokine IL-10 in serum, decreased titers of auto-antibody and improved the histological pattern. The effect of melatonin on males was just the opposite (30). Authors assume that different cytokine pattern and antibody isotypes depend on sex hormones, i.e. estrogen and testosterone. Testosterone and estrogen differently affect T_n1 and T_n2 cytokine release following trauma-hemorrhage (31). Testosterone suppressed both IgG anti-dsDNA antibody and total IgG production in PBMC from systemic lupus erythematosus patients due to
reduced IL-6 production in monocytes (32, 33). On the contrary, estrogen induces normal murine CD5+ B cells to produce auto-antibody (34). Elevations in the levels of estrogen can promote the survival and activation of high-affinity autoreactive B cells in systemic lupus erythematosus (35). On the other hand, melatonin inhibits testosterone secretion in the rat (36).

To exclude the influence of estrogen and testosterone, experiments were performed with females and males. No major differences were obtained on antibody secretion and numbers of various immune system cells. Therefore, it could be concluded that obtained effect of suppressed melatonin synthesis on antibody production is due to melatonin.

The quantity of specific antibodies in the blood was dependent on the time of immunization. We compared the amount of specific antibodies in the sera of mice immunized with TD antigen and kept at normal lighting conditions. Higher level of antibodies was found when the immunizations were performed in the evening as compared with the morning ones.

The production of antibodies could be influenced by another hormone—corticosterone. Contrary to melatonin, the peak of corticosterone occurs in rodents at the transition between day and night (37, 38) and reaches the maximum around 4 p.m. (39–42). The influence of corticosterone on antibody production is controversial (suppression or enhancement of antibody production might occur). This could be explained due to different experimental conditions and/or animal strains. Removal of corticosteroids via adrenalectomy (mice have very small amounts of serum corticosterone) results in higher SRBC-induced antibody production in A/J female mice (43). When the adrenalectomized BALB/c mice were treated with corticosterone, the antibody response was significantly suppressed (44). Melatonin administration antagonized the depression of antibody production induced by corticosterone in vivo (45). However, Stanulis et al. (46, 47) showed that corticosterone treatment did not influence the Ti (antigen TNP-Ficol) antibody production in B6C3F1 mice but enhanced the T-dependent antibody response to SRBC. The same authors showed that corticosterone could produce a shift toward a T2-predominant response, thus increasing TD antibody production (46).

The amount of lymphocytes in human blood depends on the circadian time with the maximum at 22–23 o'clock (48). The amount of monocytes/macrophages in the peritoneal cavity depends also on circadian time. The numbers of those cells increased significantly during the night (V. Černýsov, I. Girkontaite, unpublished results). The increased number of antigen-presenting cells could be linked to a better immune response.

In summary, the quantity of antibody in the sera of mice immunized with TD antigen depends on the amount of melatonin during daytime of immunization (e.g. decreasing or increasing the melatonin level or suppressed synthesis of melatonin). As higher antibody production was obtained during evening immunization, we could recommend performing the rodent immunization in the late afternoon/evening. It is expected that the titer of antibodies in other species, including humans, also depends on the time of immunization; however, this needs further investigation.
Influence of melatonin on antibody production

30 Jimenez-Caliani, A. J., Jimenez-Jorge, S., Molinero, P. et al. 2006. Sex-dependent effect of melatonin on systemic erythematous lupus developed in M/Mp-FasIpr mice: it ameliorates the disease course in females, whereas it exacerbates it in males. Endocrinology 147:1717.
Influence of melatonin on antibody production

49 Drazen, D. L. and Nelson, R. J. 2001. Melatonin receptor subtype MT2 (Mel 1b) and not m1 (Mel 1a) is associated with melatonin-induced enhancement of cell-mediated and humoral immunity. Neuroendocrinology 74:178.

