Supplementary materials for

# Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt 

Sean P. Jungbluth ${ }^{1,2}$, Robert Bowers ${ }^{3, a}$, Huei-Ting Lin ${ }^{2}$, James P. Cowen ${ }^{2, \ddagger}$, and Michael S. Rappé ${ }^{1}$
${ }^{1}$ Hawaii Institute of Marine Biology, SOEST, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744
${ }^{2}$ Department of Oceanography, SOEST, University of Hawaii, 1000 Pope Rd., Honolulu, HI 96822
${ }^{3}$ NASA Astrobiology Institute, IfA, University of Hawaii, 2680 Woodlawn Drive Honolulu, HI 96822
${ }^{\text {a }}$ Current address: DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598
${ }^{\ddagger}$ Deceased [Hawaii, 7/27/2013]

## SUPPLEMENTARY METHODS

## Sample collection and preparation

Fluids were sampled using a deep sea pumping system or the GeoMICROBE instrumented sampling platform (Cowen et al., 2012; Lin et al., 2012; Jungbluth et al., 2013a). Borehole fluids were typically allowed to flush for an amount of time required for expulsion of at least three times the fluid delivery line volume. Because the first generation CORK observatory at borehole 1025C does not have a fluid delivery line, it was flushed for $\sim 70$ hours using a custom-designed borehole flushing system to clear the large void within the borehole casing (Jungbluth et al., 2014). Flushing was intended to clear $3 x$ the volume of the borehole casing, but fluid expulsion rates were lower than expected and indicate that only $1 x$ volume of the borehole casing was flushed.

Following flushing, fluids were collected in custom acid-washed 15 liter-volume Tedlar bags (Medium Volume Bag Samples; MVBS) or 60 liter-volume Tedlar bags protected by rigid boxes (Large Volume Water Samples; LVWS) (Table S1), with the exception that foil bags were used for MVBS samples SSF18-20. In addition, particulates were filtered in situ using either the GeoMICROBE sled or a fluid sampling system attached to the submersible (Table S1).

Seawater samples were collected in the vicinity of the boreholes in order to provide background controls (Table S1). Seawater was collected via a Niskin rosette from within the nepheloid layer (5-10 m above seafloor) and just above the nepheloid layer (~100 m above seafloor). In addition, in 2010 and 2011 a 5 L Niskin bottle was fitted to the ROV Jason II and used to collect seawater from a depth of approximately 2650 m in the vicinity of CORK U1301A. Also, seawater in the vicinity of borehole

1025C was sampled 35 meters above the seafloor using the LVWS bag sampler and deep sea pumping system. Sediment samples were collected from site U1363 located nearby during IODP expedition 327 (Expedition 327 Scientists, 2011a) and are described in detail elsewhere (Expedition 327 Scientists, 2011b; Jungbluth et al., 2013b).

In 2008, whole fluids were filtered shipboard onto 25 mm-diameter $0.1 \mu \mathrm{~m}$-pore sized polyethersulfone membrane filters (PES) (Pall Corporation, Port Washington, NY, USA) and stored in 0.5 ml of DNA lysis buffer [ 20 mM Tris-HCI, 2 mM EDTA, $1.2 \%$ Triton X-100, 2\% lysozyme (w/v), pH 8]. Samples filtered in situ via the GeoMICROBE were passed through 47 mm -diameter $0.2 \mu \mathrm{~m}$-pore sized PES membrane filters that were immediately processed and stored in 3 ml of DNA lysis buffer when retrieved shipboard. Whole fluid samples retrieved in 2009-2011 were filtered shipboard through $0.22 \mu \mathrm{~m}$-pore sized Sterivex-GP filter cartridges (Millipore Corporation, Billerica, MA, USA) and stored in 2 ml of DNA lysis buffer. In 2011, Steripak cartridge filters (Millipore Corp.) were used to filter fluids in situ, and subsequently stored in 25 ml of DNA lysis buffer when retrieved shipboard. In 2009, a 1.9 L sample of R/V Atlantis shipboard distilled water was filtered through a Sterivex-GP filter cartridge and stored in DNA lysis buffer as described above. All samples were stored shipboard at $-80^{\circ} \mathrm{C}$ until transportation back to the laboratory.

Aliquots (1 ml) of whole water from all raw borehole fluid samples collected between 2009-2011 were cryopreserved within hours of sample shipboard sample retrieval in a final solution of $10 \%$ glycerol ( $\mathrm{w} / \mathrm{v}$ ) and stored at $-80^{\circ} \mathrm{C}$ until further processing.

## Analytical methods for geochemistry

Basement fluid and sediment porewater geochemical methods are described in additional detail elsewhere (Expedition 327 Scientists, 2011c; Lin et al., 2015).

Major ions $\left(\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{K}^{+}, \mathrm{Na}+, \mathrm{Cl}^{-}, \mathrm{SO}_{4}{ }^{2-}\right.$ and $\left.\mathrm{Br}^{-}\right)$were analyzed by ion chromatography on a Dionex ICS-1100s (Sunnyvale, CA, USA). In addition, magnesium and calcium concentrations were also analyzed by EDTA (colorimetric) and EGTA (electrometric) titration (Grasshoff et al., 1999), or inductively coupled plasma optical emission spectroscopy (ICP-OES) (Lin et al., 2012). International Association for the Physical Sciences of the Oceans (IAPSO) standard seawater was used to standardize the methods. The reproducibility of Mg and Ca measurements were $\sim 0.5 \mathrm{mM}$ for all three methods.

Silicate, nitrate, nitrite, phosphate, dissolved sulfide and dissolved manganese concentrations were measured by colorimetry (Brewer and Spencer, 1971; Phillips et al., 1997; Grasshoff et al., 1999). Samples for silicate analysis were first diluted 100 times, reacted with acidic molybdenum and reduced with ascorbic acid. The detection limit was $\sim 0.5 \mu \mathrm{M}$. Nitrate analysis was performed with a flow injection analyzer. Sample nitrate was first reduced to nitrite with a Cu-Cd column and then analyzed as nitrite. The reduction efficiency of the Cu-Cd column was 99-100\%. The detection limit for nitrate analysis was $0.005 \mu \mathrm{M}$ and analytical uncertainty was $0.002 \mu \mathrm{M}$ using a 10 cm lightpath cuvette. The detection limit for both nitrite and phosphate was $0.05 \mu \mathrm{M}$ and the analytical uncertainty was $0.02 \mu \mathrm{M}$ using a 1 cm light-path cuvette. The detection limits
were $0.01 \mu \mathrm{M}$ and $0.5 \mu \mathrm{M}$ for dissolved sulfide and dissolved manganese, respectively, using a 1 cm light-path cuvette.

Ammonium concentrations were measured by a flow injection-fluorometric method (Jones, 1991). The detection limit was $\sim 2 \mu \mathrm{M}$ for ammonium in basement fluids and the analytical uncertainty is $0.5 \mu \mathrm{M}$. Ferrous iron was measured directly by a Ferrozine colorimetry method (Stookey, 1970; Gibbs, 1976). For total iron analysis, samples were first reduced with ascorbic acid and analyzed as ferrous iron. The detection limit for both ferrous iron and total iron was $0.1 \mu \mathrm{M}$.

Dissolved organic carbon (DOC) was measured by high-temperature combustion using a TOC-VCSH analyzer (Sharp et al., 2002a; Dickson et al., 2007) (Shimadzu Corp., Kyoto, Japan). Combustion temperature was set at $720^{\circ} \mathrm{C}$. Samples were acidified to $\mathrm{pH}<2$ within the syringe of the autosampler by adding $45 \mu \mathrm{~L}$ of 2 N HCl to 3 mL samples. Acid contamination was monitored throughout the analysis by analysis of low carbon deionized water. Samples were purged within the syringe for two minutes to remove inorganic carbon. Using a $50 \mu \mathrm{~L}$ volume, five to six injections were performed for each sample. The reproducibility between replicate injections was $<1 \mu \mathrm{M}$, or $<2 \%$ of a $40 \mu \mathrm{M}$ concentration level. Analytical reference materials (ARM) supplied by Drs. Wen-Hao Chen and Dennis Hansel (University of Miami, FL, USA) were used for control purposes. At least one ARM was measured every five samples. The average measured concentration of the ARM was $42 \pm 2 \mu \mathrm{M}(\mathrm{n}=44)$, which is within the reported value of $41 \sim 43 \mu \mathrm{M}$. The detection limit for DOC was $\sim 2 \mu \mathrm{M}$.

Total dissolved nitrogen (TDN) was measured with a chemiluminescence detector in-line with a Shimadzu TOC-VCSH analyzer (Sharp et al., 2002b). Analytical
reference materials used in DOC analysis were again used to monitor instrumental performance. The measured average value for the ARM nitrogen was $32.5 \pm 0.6 \mu \mathrm{M}$ ( $n=42$ ), which was within the range of the reported value of $32.3 \sim 33.7 \mu \mathrm{M}$. The detection limit of TDN was $\sim 0.5 \mu \mathrm{M}$. Analytical uncertainty was less than $0.6 \mu \mathrm{M}$ when sample concentration was lower than $40 \mu \mathrm{M}$ (seawater) and about $2 \mu \mathrm{M}$ when total nitrogen concentration was higher than $100 \mu \mathrm{M}$ (basement fluids).

Alkalinity was determined by acid titration. Acid $(0.1 \mathrm{~N} \mathrm{HCl})$ was standardized with $\mathrm{CO}_{2}$ certified reference materials (CRMs) purchased from the office of Andrew Dickson at Scripps Institution of Oceanography. Three to five aliquots of CRM were analyzed each day for acid concentration recalibration. An Orion 911600 Semi-micro pH electrode (ThermoFisher Scientific, Waltham, MA, USA) was used to measure the pH and electrode potential during the titration process. The Gran function plot method was used to evaluate titration end-points and calculate sample alkalinity (Dickson et al., 2007). The analytical reproducibility for alkalinity measurements was $<0.02 \mathrm{mM}$.

## Estimation of basement fluid end-member content

An analysis based on nitrate concentrations was one of two mechanisms used to estimate basement fluid end-member content in samples originating from boreholes. Fluid samples with undetectable nitrate concentration $(<0.005 \mu \mathrm{M})$ were collected from boreholes U1362A and U1362B, indicating that end-member basement fluids likely contain undetectable nitrate. Measurable nitrate in borehole U1301A fluid samples was likely from intruded seawater. Nitrate concentration was used to estimate the basement fluid end-member content in each sample using the following equation:

$$
\begin{equation*}
P=\left(C_{i_{\_} \text {sw }}-C_{i_{i} s m p}\right) /\left(C_{i_{\_} \text {sw }}-C_{i_{i} \text { bf }}\right) \times 100 \% \tag{SE1}
\end{equation*}
$$

where P is the percentage of the end-member basement fluid in the sample collected. $\mathrm{C}_{\mathrm{i}_{\mathrm{I}} \text { sw }}, \mathrm{C}_{\mathrm{i}_{\mathrm{I}} \text { smp }}$, and $\mathrm{C}_{\mathrm{i}_{\mathrm{i}} \text { bf }}$ represent the concentration of computed parameter: i (e.g. nitrate or calcium, described below) in background seawater, sample, and end-member basement fluid, respectively.

Calcium concentrations were used to estimate the amount of basement fluid in samples SSF16-18 and SSF20 because no nitrate measurements were performed. Calcium was chosen over magnesium because of the insensitivity of the methods used to measure magnesium at low concentrations. The calcium concentration of venting fluids at 1025C (34.2 mM; Wheat et al., 2004) was used as the basement fluid endmember value to compute the percentage of basement fluid content in sample SSF9. For borehole U1301A samples, a calcium concentration previously reported from downhole sampling was used ( 55.6 mM ; Wheat et al., 2010). Average calcium concentrations from borehole U1362A and U1362B samples with the lowest detectable nitrate were used as end-member values ( 54.1 mM and 55.5 mM , respectively).

## Inference of unmeasured geochemical parameters

A subset of fluid samples was not sampled for the complete suite of geochemical parameters; the methods used to infer values for the missing measurements are described here. Most of the samples used for molecular analysis were from one of six sampling bags collected in sequence within the same 1-2 hours of sampling from a
single borehole. While magnesium and calcium concentrations were measured from fluids taken from each of the six bags, other measurements were not made for samples SSF16-18 and SSF20. Statistically indistinguishable (Q test, confidence level=95\%) calcium concentrations were found between SSF17-18 and SSF20 and fluids collected in other bags from their same deployment series, suggesting that the chemical compositions of SSF17-18 and SSF20 are likely representable by the average values from fluid samples collected in other bags. However, the calcium concentration of SSF16 ( 53.3 mM ) is significantly different ( Q test, confidence level=95\%) than those from fluids collected in other bags from their same deployment series, $(55.5 \pm 0.3 \mathrm{mM}$, $n=7$ ), likely due to seawater intrusion during sampling. Sample SSF16 is estimated to contain $95 \%$ of end-member basement fluid; nitrate, ammonium, sodium, potassium, alkalinity and phosphate were estimated based on the contribution of end-member basement fluid and seawater using a rearrangement of equation (SE1):

$$
\begin{equation*}
C_{i_{i} s m p}=C_{i_{i} b f} \times P+C_{i_{\_} s w} \times(1-P) \tag{SE2}
\end{equation*}
$$

## DNA extraction

To recover environmental DNA, most membrane filter samples from subsurface fluids and seawater were thawed to room temperature and extracted using the PowerSoil DNA isolation kit (MOBIO Laboratories, Carlsbad, CA, USA) following the manufacturer's recommended protocol. However, instead of the PowerSoil DNA isolation kit, samples SSF11, SSF12, SSF21-22, SSF23-24 were extracted as follows: a $40 \mu$ l solution of $50 \mathrm{mg} \mathrm{ml}^{-1}$ lysozyme (Sigma-Aldrich, St. Louis, MO, USA) in DNA lysis
buffer was added to the Sterivex filters and rotated for 45 min at $37^{\circ} \mathrm{C}$. Proteinase K (Qiagen Corp., Valencia, CA, USA) was subsequently added to a final concentration of $>0.55 \mu \mathrm{AU}$, SDS (ThermoFisher Scientific) was added to a final concentration of $1 \%$, and the samples were rotated for an additional 2 h at $55^{\circ} \mathrm{C}$. Lysates were transferred to 30 ml Oak Ridge tubes using a sterile syringe. An additional 1 ml of lysis buffer was added to each of the filters for washing at $55^{\circ} \mathrm{C}$ for 15 min and pooled with the initial lysates. A 3 ml volume of phenol:chloroform:isoamyl alcohol (25:24:1; pH 8.0) was added and the mixtures vortexed for 30 sec and centrifuged for 5 min at $2500 \times \mathrm{g}$. The aqueous phase was subsequently transferred to new Oak Ridge tubes, 3 ml of chloroform:isoamyl alcohol (24:1) was added to each, the mixture was vortexed for 30 sec, and subsequently centrifuged for 5 min at $2500 \times \mathrm{g}$. The aqueous phase was concentrated for 20 min by spin dialysis using Amicon Ultracel-30K filters (Millipore Corp.) and centrifugation at $1000 \times \mathrm{g}$. Flow-throughs were decanted and the Amicon filters were spun again at 1000 xg for 20 min . A 1 ml volume of TE buffer [10mM Tris$\mathrm{HCl}(\mathrm{pH} 8.0), 1 \mathrm{mM}$ EDTA ( pH 8.0 )] was added to each of the Amicon filter membranes and spun at $1000 \times \mathrm{g}$ for $10 \mathrm{~min} ; \sim 700 \mu \mathrm{l}$ remained on each of the columns and was transferred to a new microcentrifuge tube. The filter columns were washed twice with $700 \mu \mathrm{l}$ of TE buffer and pooled with the initial DNA concentrate. Finally, the resulting nucleic acids were concentrated using a vacuum centrifuge and resuspended in $50 \mu \mathrm{l}$ of PCR-grade water.

After the transfer of lysates from the filter holders described above, the membrane filters were also manually excised and extracted using the PowerMax Soil DNA isolation kit (MOBIO Laboratories) following the manufacturer's specifications.

Environmental DNA from both extractions were pooled together and quantified via a Quant-iT ${ }^{\text {TM }}$ dsDNA Assay High Sensitivity Kit (Life Technologies, Carlsbad, CA, USA).

All sediment samples were thawed to room temperature and environmental DNA was extracted using the PowerMax Soil DNA isolation kit (MOBIO Laboratories) as described previously (Jungbluth et al., 2013b). A negative DNA extraction consisting of only kit reagents was processed in parallel to sediment sample extractions (Jungbluth et al., 2013b).

## SSU rRNA gene PCR amplification and Illumina sequencing

An Illumina sequencing approach (Caporaso et al., 2011; Caporaso et al., 2012) was used to characterize samples of borehole fluids, sediments, and seawater. Briefly, this approach involves the polymerase chain reaction (PCR)-mediated amplification of the V4 region of the small subunit ribosomal RNA (SSU rRNA) gene using oligonucleotide primers 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGACTACVSGGGTATCTAAT-3’) specific to Bacteria and Archaea and which are modified to include the Illumina flowcell adapter sequences (Bates et al., 2011).

Reverse primer 806R contained an additional 12-bp barcode, which was used to assign individual sequences to samples. The taxonomic coverage of primer pair 515/806 was assessed using PrimerProspector (Walters et al., 2011) with the SILVA SSURef NR99 version 115 database (Pruesse et al., 2007) and found to be nearly universal, as described previously (e.g. Bates et al., 2011; Walters et al., 2011). Each $25 \mu \mathrm{I}$ PCR reaction was prepared in 5Prime HotMasterMix (Eppendorf-5Prime Inc., Gaithersburg, MD, USA) and contained 0.5 U Taq DNA polymerase, $45 \mathrm{mM} \mathrm{KCl}, 2.5 \mathrm{mM} \mathrm{Mg}^{2+}, 200$
$\mu \mathrm{M}$ of each of the four deoxynucleoside triphosphates (dNTPs), 200 nM of both forward and reverse primer, and $2 \mu \mathrm{l}$ of genomic DNA template (equivalent to $1-20 \mathrm{ng}$ of environmental genomic DNA). PCR cycling conditions consisted of an initial denaturation step at $94^{\circ} \mathrm{C}$ for 3 min , followed by 35 cycles of $94^{\circ} \mathrm{C}$ denaturation for 45 sec, $50^{\circ} \mathrm{C}$ annealing for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ extension for 1.5 min , and a final extension step at $72^{\circ} \mathrm{C}$ for 10 min . Triplicate PCR reactions were pooled at equimolar concentrations and PCR cleanup was performed on the final pooled product using the UltraClean PCR clean up kit (MOBIO Laboratories). Sequencing was performed on an Illumina (San Diego, CA, USA) MiSeq sequencer (Instrument ID: M00517; run number: 41) at the University of Colorado BioFrontiers Institute.

## Sequence read-processing and read-pairing

Sequence quality was assessed using FastQC (version 0.10.1) and indicated an overall high-quality run was executed, although, notably, read quality across all bases decreased more rapidly for the reverse sequencing reaction. Figure S 2 provides an overview of the bioinformatic workflow used to process the resulting SSU rRNA Illumina sequencing reads. Demultiplexing of sequence data was performed using the QIIME pipeline (Caporaso et al., 2010) split_libraries_fastq.py script (version 1.7) with a maximum of 1.5 errors in the barcode, and the following quality-filtering parameters adapted from (Bokulich et al., 2013): r=3, $p=0.75, q=3$, and $n=0$. Forward reads (515F) were in higher abundance than reverse reads (806R) (Table S3). Sample metadata and the SSU rRNA sequence files used in this study have been submitted to the NCBI

BioSample and Sequence Read Archive databases and can be accessed using the BioProject identifier PRJNA266365.

Read pairing was performed using a variety of tools specialized to handle nongapped sequencing errors typical of the Illumina sequencing platform and parameter values selected to control for differences in the pairing methods (i.e. base quality within the overlapping region) (Table S3). Where possible, parameter values for the length of overlapping regions were kept low in order to increase the chance of successful pairing following truncation of low quality bases, which were relatively more abundant in the overlapping portion of the reads. All methods utilized default parameters unless otherwise noted. Pairing using USEARCH (version 7.0.959; Edgar, 2010) fastq_mergepairs script used parameters: fastq_truncqual=3, fastq_minovlen=5 and fastq_filter script with fastq_maxee parameters $=0.05,1.0$, and 5.0. Pairing using FLASH (version 1.2.7; Magoč and Salzberg, 2011) used parameters: $m=5$ and $x=0.25$. Pairing using PANDAseq (version 2.5; Masella et al., 2012) used parameters: $o=5$ and $t=0.25$. Pairing using merge_illumina_pairs script (Eren et al., 2013) used parameters: ignoreNs, o=5 or 48, min-qual-score $=3$, and $\mathrm{m} / \mathrm{o}=0.25$. Multiple overlap sizes and stringency requirements were used in association with the merge_illumina_pairs script due to high sensitivity of the pairing to the specific length of the overlapping region and the number of mismatches in the overlap. In contrast to the other methods used, the merge_illumina_pairs script performed superiorly when the parameter for length of the overlapping region was near the full overlap length expected ( $0=48$ ). A final quality check was implemented using the enforce-Q30-check (Minoche et al., 2011) in association with the merge_illumina_pairs script due to the quality score stripping
associated with this script. Read-pairing was attempted using four different tools (Table S3; Figure S2), but ultimately used the python script "merge-illumina-pairs" developed by Eren and colleagues (Eren et al., 2013) due to the relatively high numbers of reads successfully paired and a percentage of unique sequences retained - an index of read quality - that is consistent with the other methods tested (Table S4).

Paired-reads were demultiplexed using the QIIME pipeline (Caporaso et al., 2010) split_libraries_fastq.py script (version 1.7) with a maximum of 1.5 errors in the barcode, and the following quality-filtering parameters: $r=10, p=0.75, q=3$, and $n=0$. $A$ range of values for parameter r-maximum number of low bases before read truncation - were tested due to the expected increased sensitivity for this parameter to the longer read lengths, which is due to the relatively low Phred scores in the overlapping portion of the reads. Parameter value $r=10$ was ultimately selected because it represents a balance between complete sequence retention (all pairs obtained) and no sequences obtained. Sequences generated using the merge_illumina_pairs script (Eren et al., 2013) were not processed this way due to the lack of quality scores; instead the sequences passing the enforce-Q30-check (Minoche et al., 2011) were used in subsequent analyses.

Sequences longer than 254 bases constituted a minor portion of the paired-reads using all methods except for the merge_illumina_pairs script with length of the overlapping region equal to 5 . Queries against the NCBI non-redundant nucleotide database using BLAST (Altschul et al., 1990) revealed amplicons larger than 254 base pairs to have relatively few full-length sequence matches. In addition, expected fragment lengths were determined for the reconstructed SILVA SEED databases of

Archaea and Bacteria (Schloss, 2009), and a manually curated database of sequences >100 bp obtained from Juan de Fuca Ridge basement basalt (Cowen et al., 2003; Huber et al., 2006; Jungbluth et al., 2013a; Jungbluth et al., 2014; this study), sediment (Jungbluth et al., 2013b), and bottom seawater (Jungbluth et al., 2013a). Due to the relatively few numbers of reads expected and the incorrect read pairing observed, paired sequences longer than 254 bases were excluded from further analysis.

Chimeric sequences were first detected with USEARCH using the UCHIME (Edgar et al., 2011) de novo chimera function and excluded from further analysis. This method was followed by UCHIME chimera checking against the SILVA SEED reference database supplemented with the Juan de Fuca sequence database described above. Chimera-checked forward and paired reads were both used in further analyses.

## OTU clustering - UCLUST/UPARSE

The QIIME open reference picking script (pick_open_reference_otus.py) was used to perform uclustref (Edgar, 2010) and de novo clustering using the Greengenes v13.5 and SILVA v111 databases clustered at $97 \%$ or $99 \%$ OTU similarity. Clustering performed using the USEARCH package involved sequence de-replication, abundance sorting, and clustering using UPARSE (Edgar, 2013). UPARSE clustering with reverse reads required 64-bit USEARCH (version 7.0.1090). Re-screening for chimeric OTUs was disabled using the command -parse_break -999 because chimera screening was already performed. Following clustering, reads were mapped onto OTU clusters using the -usearch_global script and a $97 \%$ sequence identity threshold.

## OTU clustering - Average linkage

Average linkage clustering using mothur (Schloss et al., 2009) was also used (Kozich et al., 2013). Briefly, reads were aligned against the SILVA SEED database supplemented with the Juan de Fuca sequence database described above, given temporary (i.e. for clustering only) taxonomic assignment using the SILVA SEED Bacteria and Archaea databases combined, and finally clustered using the cluster.split command with taxonomic splitting at the Order level using a hard 0.1 genetic distance cutoff and the average-neighbor clustering algorithm.

## OTU clustering - Distribution-based

Distribution-based clustering (Preheim et al., 2013) was also performed, using scripts associated with the software and in similar fashion to the protocol listed in the associated manual (https://github.com/spacocha/Distribution-based-clustering). USEARCH progressive clustering beginning at 98\% sequence similarity level and iterating each single percentage down to $90 \%$ was used to generate a full fasta and sequence by library matrix to be used for downstream analysis. Sequences were aligned with mothur (Schloss et al., 2009) using the SILVA SEED database supplemented with the Juan de Fuca sequence database described above, and distance matrices were generated using FastTree (Price et al., 2010) with default options. Clustering was performed in parallel using the distribution_clustering.pl script with parameters: $a=0, p=0.0005$, and a range of distance parameters $(d=0.1,0.05,0.03$, 0.01 ) to assess differential OTU clustering that will result. Evaluation of the clustering results using the evaluate_parallel_results.pl script was not attempted; results were
evaluated using custom shell scripts to check for the criteria described in evaluate_parallel_results.pl. Final files were produced using the scripts included within clean_up_parallel_ultra.csh, which included custom perl and shell scripts and additional sequence alignment using mothur (Schloss et al., 2009) and the SILVA SEED database supplemented with the Juan de Fuca sequence database described above.

## OTU clustering - Unique sequence clusters

All paired and unpaired reads were also analyzed using $100 \%$ cluster identities (Tikhonov et al., 2015). Unique sequence community matrices and fasta files were generated using perl scripts fasta2unique_table4.pl and OTU2lib_count_trans1.pl associated with the distribution-based clustering pipeline (Preheim et al., 2013).

## Taxonomic assignment

Paired unique reads from the merge-illumina-pairs script (Eren et al., 2013) were selected for classification and further analysis due to the longer sequence lengths and the relatively high numbers of reads retained post processing. Sequences were aligned and taxonomy was assigned via the SINA aligner v1.2.11 (Pruesse et al., 2012) using the non-redundant SSURef_115 database pre-clustered with UCLUST at a 99\% sequence similarity. Parameters used with the SINA tool included -lca-fields tax_slv to assign SILVA taxonomy and -search-min-sim 0.80 to expand searches for difficult-toclassify (i.e. divergent) sequences. Phylum names Marinimicrobia (SAR406), Aminicenantes (OP8), and Aerophobetes (BHI80-139) were adapted from Rinke et al.
(2013), while Bathyarchaeota (Miscellaneous Crenarcheotal Group; MCG) is from Meng et al. (2014).

Bathyarchaeota sequences identified by SILVA were further classified using the PhyloAssigner tool (Vergin et al., 2013), which includes pplacer (Matsen et al., 2010) and PhyML (Guindon et al., 2010), and used a manually curated Bathyarchaeota database that follows naming schemes described in Kubo et al. (2012). The Bathyarchaeota database was generated from sequences within the SILVA SSU Ref 99 version 115 base tree. The final tree was composed of 3160 sequences and included: (1) archaeal sequences that were visually selected to encompass all of the major archaeal lineages identified in the SILVA v115 database, (2) all non-chimeric unclassified archaeal sequences, (3) all sequences from groups Bathyarchaeota, C3, and THSCG, and (4) Chloroflexus aggregans (CP001337), Vibrio vulnificus (X76333), and Thermotoga maritime (M21774) as outgroups. Groups within the Bathyarchaeota were classified by transferring group names from the PhyML tree generated by Kubo and colleagues (2012) whenever monophyletic lineages were consistent between their analysis and the base tree generated in the present study. Two unique lineages of Bathyarchaeota that were recently recovered from Juan de Fuca ridge flank fluids (Jungbluth et al., 2013a) were added to the Bathyarchaeota base tree via the parsimony insertion tools in ARB (1301A08_240 and 1301A09_032 in Figure 6B). Two pairs previously recovered as discrete groups by Kubo and colleagues (2012) appear polyphyletic in the present analysis (MCG-11 and MCG-12, and MCG-15 and Group C3; Figure 6B). Results were plotted using $R$ package gplots with the heatmap. 2 and hclust
functions (Warnes et al. 2015). The Bathyarchaeota database used here is available on request.

## Statistical analysis of sample groupings

Statistical analyses were performed using unpaired forward reads rarefied to an even sampling depth across all samples ( $n=6108$ reads). Dissimilarity among community matrices and associated chemical metadata were explored using Mantel tests with 1000 replications performed in QIIME (version 1.8) using the scripts distance_matrix_from_mapping.py and compare_distance_matrices.py. Comparisons by sample type (seawater, sediment, subsurface fluids [SSF16 removed]) were also performed by using the compare_categories.py script in QIIME. Statistical tests included ANOSIM implemented through QIIME, and adonis, MRPP, PERMDISP, PERMANOVA, and db-RDA (with mixed and controls included) implemented through QIIME using the R package vegan (Oksanen et al., 2013). All analyses were based on 1000 permutations.

SSU rRNA gene sequencing of flow sorted single cells
A 1 ml cryopreserved aliquot of borehole U1362A fluid sample SSF19 was sent for single cell isolation and identification at the Bigelow Laboratory for Ocean Sciences Single Cell Genomics Center (http://scgc.bigelow.org) using fluorescent activated cell sorting in a 384-well plate. Briefly, cells were lysed, the genomic DNA was amplified using multiple displacement amplification as described previously (Swan et al., 2011), and the single cell whole genome amplified DNA was screened with bacterial (27F: 5'-

AGRGTTYGATYMTGGCTCAG-3'/907R_degen 5'-CCGTCAATTCMTTTRAGTTT-3') and archaeal (Arc_344F:5'-ACGGGGYGCAGCAGGCGCGA-3'/Arc_915R:5'-GTGCTCCCCCGCCAATTCCT-3') SSU rRNA gene primers. Paired-end Sanger sequences resulting from the sorted and genome-amplified single cells were assembled using default parameters in the Sequencher version 5.1 software package (Gene Codes Corp., Ann Arbor, MI, USA). A total of 74 paired reads and 9 unpaired reads representing the longer of the read pairs (unless quality score was less than $50 \%$ ) were aligned and given taxonomic identifications using the SINA online aligner and SILVA classifier tool (version 1.2.11; Pruesse et al., 2012) using minimum identity with query sequence: 0.6 , number of neighbors per query sequence: 1 , reject sequences below identity: $50 \%$, and default parameters. Manual inspection of sequences using BLAST queries (Altschul et al., 1990) revealed non-rRNA genes ( $\mathrm{n}=9$ ), which were removed from analysis.

## SSU rRNA gene cloning and sequencing

Small subunit rRNA genes were amplified from nucleic acids extracted from selected environmental samples (SSF11, SSF12, SSF21-22, SSF23-24) using universal primer pair 519F (5'-CAGCMGCCGCGGTAATWC-3') and 1406R (5'-

ACGGGCGGTGTGTRC-3') (Lane et al., 1985). The PCR amplification, cloning, and Sanger sequencing have been described previously (Jungbluth et al., 2013a).

Taxonomic identifications using SINA/SILVA were performed identically as described above except the parameter "reject sequences below identity" was changed to $70 \%$. All
non-redundant clone SSU rRNA gene sequences generated in this study have been deposited in GenBank under accession numbers KR072702-KR072893.

## Phylogenetic analysis

Ribosomal RNA gene sequences resulting from the amplified single cells and clone libraries were manually curated using Sequencher software (Gene Codes Corp.). Curated sequences were first aligned using the online SINA tool version 1.2.11 (Pruesse et al., 2012) before importing into the ARB software package (Ludwig et al., 2004), where the multiple species alignment was manually curated and sequences classified taxonomically using version SSURef_115 of the SILVA ARB database clustered to a 99\% level of similarity (Pruesse et al., 2007). Additional sequences that were highly similar to the SSU rRNA gene sequences obtained in this study were identified by BLAST search against the non-redundant nucleotide database (Altschul et al., 1990), and added to the ARB database. The nucleotide substitution model that best fit the near-full length sequence (>1200 nucleotide) alignment was determined using jModelTest version 2.1.1 (Darriba et al., 2012). Phylogenetic analyses were performed using near-full length sequences (>1200 nucleotides) with the RAxML maximum likelihood method using the GTR model of nucleotide substitution under the gammaand invariable- models of rate heterogeneity (Stamatakis et al., 2006). The tree with the highest log likelihood score was selected from performing 100 iterations of the RAxML method. Sequences of short length were added to the maximum likelihood-derived phylogeny using the parsimony insertion tool in ARB in the following order: (i) cloned and single cell amplicon SSU rRNA genes, (ii) sequences derived from Genbank, and
(iii) Illumina tag sequences. Bootstrap analysis of the near-full length sequence alignment (i.e. prior to addition of sequences via parsimony) was determined by RAxML using the rapid boostrap analysis algorithm (1000 bootstraps) implemented within ARB (Stamatakis et al., 2008). The tree was visualized using iTOL (Letunic and Bork, 2007; Letunic and Bork, 2011).

## Sample preparation for microscopy and fluorescence microscopy

Fluid samples for microscopy collected in 2011 were prepared in similar fashion to those collected in sampling years 2008-2010 and described previously (Jungbluth et al., 2013a). Briefly, 40 to 120 ml sub-samples were fixed with a final concentration of $3 \%$ of $0.2 \mu \mathrm{~m}$-filtered formaldehyde for 2 to 4 hours at $4^{\circ} \mathrm{C}$, and subsequently filtered through $0.2 \mu \mathrm{~m}$ pore-sized polycarbonate membranes (Whatman, Maidstone, United Kingdom). After air-drying, membranes were stored desiccated at $-80^{\circ} \mathrm{C}$ until microscopic analysis.

Filter sections were prepared for fluorescence microscopy using a mix of Citifluor/VectaShield/PBS/DAPI as described previously (Jungbluth et al., 2013a). Stained filter sections were inspected with a Leica DM5000B epifluorescence microscope (Leica Microsystems, Wetzlar, Germany) (samples: SSF1-2, SSF4, MIX1-4, SW1-5, SW9-11, SW14-15) or an Eclipse 90i (Nikon Corp., Tokyo, Japan) epifluorescence microscope (all other samples). Both microscopes were equipped with 100x objectives and filter sets appropriate for DAPI fluorescence.

## REFERENCES

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. J Mol Biol 215: 403-410. doi: 10.1016/S0022-2836(05)80360-2

Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011).
Examining the global distribution of dominant archaeal populations in soil. ISME $J$ 5: 908-917. doi: 10.1038/ismej.2010.171

Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R et al. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10: 57-59. doi: 10.1038/nmeth. 2276

Brewer P, Spencer D (1971). Colorimetric determination of manganese in anoxic waters. Limnol Oceanogr 16: 107-110. doi: 10.4319/lo.1971.16.1.0107

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336. doi: 10.1038/nmeth.f. 303

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6: 1621-1624. doi: 10.1038/ismej.2012.8

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et al. (2011). Global patterns of 16 S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108: 4516-4522. doi: 10.1073/pnas. 1000080107

Cowen JP, Copson DA, Jolly J, Hsieh C-C, Lin H-T, Glazer BT et al. (2012). Advanced instrument system for real-time and time-series microbial geochemical sampling
of the deep (basaltic) crustal biosphere. Deep-Sea Res Pt / 61: 43-56. doi:
10.1016/j.dsr.2011.11.004

Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappé MS et al. (2003). Fluids from aging ocean crust that support microbial life. Science 299: 120-123. doi: 10.1126/science. 1075653

Darriba D, Taboada GL, Doallo R, Posada D (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772. doi: 10.1038/nmeth. 2109

Dickson AG, Sabine CL, Christian JR (eds) (2007). Guide to best practices for ocean $\mathrm{CO}_{2}$ measurements, 191pp. (URL: http://cdiac.ornl.gov/oceans/Handbook_2007.html)

Edgar RC (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461. doi: 10.1093/bioinformatics/btq461

Edgar RC (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10: 996-998. doi: 10.1038/nmeth. 2604

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. doi: 10.1093/bioinformatics/btr381

Eren AM, Vineis JH, Morrison HG, Sogin ML (2013). A filtering method to generate high quality short reads using Illumina paired-end technology. PloS One 8: e66643. doi: 10.1371/journal.pone. 0066643

Expedition 327 Scientists (2011a). Expedition 327 summary. In: Fisher AT, Tsuji T, Petronotis K, Expedition 327 Scientists (eds). Proceedings of the Integrated

Ocean Drilling Program. Integrated Ocean Drilling Program Management International, Inc.: College Station, TX. pp 1-32. doi:
10.2204/iodp.proc.327.101.2011

Expedition 327 Scientists (2011c). Methods. In: Fisher AT, Tsuji T, Petronotis K, Expedition 327 Scientists (eds). Proceedings of the Integrated Ocean Drilling Program. Integrated Ocean Drilling Program Management International, Inc.: College Station, TX. pp 1-42. doi: 10.2204/iodp.proc.327.102.2011

Expedition 327 Scientists (2011b). Site U1363. In: Fisher AT, Tsuji T, Petronotis K, Expedition 327 Scientists (eds). Proceedings of the Integrated Ocean Drilling Program. Integrated Ocean Drilling Program Management International, Inc.: College Station, TX. pp 1-32. doi: 10.2204/iodp.proc.327.106.2011

Gibbs C (1976). Characterization and application of ferrozine iron reagent as a ferrous iron indicator. Anal Chem 48: 1197-1201. doi: 10.1021/ac50002a034

Grasshoff K, Kremling K, Ehrhardt M (eds) (1999) Methods of seawater analysis. Wiley: Weinheim. doi: 10.1002/9783527613984

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307-321. doi:
10.1093/sysbio/syq010

Huber JA, Johnson HP, Butterfield DA, Baross JA (2006). Microbial life in ridge flank crustal fluids. Environ Microbiol 8: 88-99. doi: 10.1111/j.1462-2920.2005.00872.x

Jones RD (1991). An improved fluorescence method for the determination of nanomolar concentrations of ammonium in natural-waters. Limnol Oceanogr 36: 814-819. doi: 10.4319/lo.1991.36.4.0814

Jungbluth SP, Grote J, Lin H-T, Cowen JP, Rappé MS (2013a). Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank. ISME J7: 161-172. doi: 10.1038/ismej.2012.73

Jungbluth SP, Johnson LGH, Cowen JP, Rappé MS (2013b). Data report: microbial diversity in sediment near Grizzly Bare Seamount from Holes U1363B and U1363G. In: Fisher AT, Tsuji T, Petronotis K, Expedition 327 Scientists (eds). Proceedings of the Integrated Ocean Drilling Program. Integrated Ocean Drilling Program Management International, Inc.: Tokyo. doi:
10.2204/iodp.proc.327.201.2013

Jungbluth SP, Lin H-T, Cowen JP, Glazer BT, Rappé MS (2014). Phylogenetic diversity of microorganisms in subseafloor crustal fluids from boreholes 1025C and 1026B along the Juan de Fuca Ridge flank. Front Microbiol 5: 119. doi: 10.2289/fmicb.2014.00119

Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79: 5112-5120. doi: 10.1128/AEM.01043-13

Kubo K, Lloyd KG, F. BJ, Amann R, Teske A, Knittel K (2012). Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in
marine sediments. ISME J 6: 1949-1965. doi: 10.1038/ismej.2012.37
Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985). Rapid determination of 16 ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82: 6955-6959. doi: 10.1073/pnas.82.20.6955

Letunic I, Bork P (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127-128. doi:
10.1093/bioinformatics/bt|529

Letunic I, Bork P (2011). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39: W475-478. doi:
10.1093/nar/gkr201

Lin H-T, Cowen JP, Olson EJ, Amend JP, Lilley MD (2012). Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks. Geochim Cosmochim Ac 85: 213-227. doi: 10.1016/j.gca.2012.02.017

Lin H-T, Hsieh C-C, Cowen JP, Rappé MS (2015). Data report: dissolved and particulate organic carbon in the deep sediments of Site U1363 near Grizzly Bare seamount. In: Fisher AT, Tsuji T, Petronotis K, Expedition 327 Scientists (eds). Proceedings of the Integrated Ocean Drilling Program. Integrated Ocean Drilling Program Management International, Inc.: Tokyo. doi:
10.2204/iodp.proc.327.202.2015

Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al. (2004). ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371. doi:
10.1093/nar/gkh293

Magoč T, Salzberg SL (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963. doi:
10.1093/bioinformatics/btr507

Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012). PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics 13: 31. doi: 10.1186/1471-2105-13-31

Matsen FA, Kodner RB, Armbrust EV (2010). pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11: 538. doi: 10.1186/1471-2105-11-538

Meng J, Xu J, Qin D, He Y, Xiao X, Wang F (2014). Genetic and functional properties of uncultivated MCG Archaea assessed by metagenome and gene expression analysis. ISME J 8: 650-659. doi: 10.1038/ismej.2013.174

Minoche AE, Dohm JC, Himmelbauer H (2011). Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol 12: R112. doi: 10.1186/gb-2011-12-11-r112

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB et al. (2013). vegan: Community Ecology Package. (URL: http://cran.rproject.org/web/packages/vegan/index.html)

Phillips BM, Anderson BS, Hunt JW (1997). Measurement and distribution of interstitial and overlying water ammonia and hydrogen sulfide in sediment toxicity tests. Mar Environ Res 44: 117-126. doi: 10.1016/S0141-1136(96)00087-6

Preheim SP, Perrotta AR, Martin-Platero AM, Gupta A, Alm EJ (2013). Distributionbased clustering: using ecology to refine the operational taxonomic unit. Appl Environ Microbiol 79: 6593-6603. doi: 10.1128/AEM.00342-13

Price MN, Dehal PS, Arkin AP (2010). FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5: e9490. doi:
10.1371/journal.pone. 0009490

Pruesse E, Peplies J, Glöckner FO (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829. doi:
10.1093/bioinformatics/bts252

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J et al. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188-7196. doi: 10.1093/nar/gkm864

Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F et al. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431-437. doi: 10.1038/nature12352

Schloss PD (2009). A high-throughput DNA sequence aligner for microbial ecology studies. PLoS One 4: e8230. doi: 10.1371/journal.pone. 0008230

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. doi: 10.1128/AEM.01541-09

Sharp JH, Carlson CA, Peltzer ET, Castle-Ward DM, Savidge KB, Rinker KR (2002a). Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Mar Chem 77: 239-253. doi: 10.1016/S0304-4203(02)00002-6

Sharp JH, Rinker KR, Savidge KB, Abell J, Yves Benaim J, Bronk DA et al. (2002b). A preliminary methods comparison for measurement of dissolved organic nitrogen in seawater. Mar Chem 78: 171-184. doi: 10.1016/S0304-4203(02)00020-8

Stamatakis A (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690. doi: 10.1093/bioinformatics/btl446

Stamatakis A, Hoover P, Rougemont J (2008). A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758-771. doi: 10.1080/10635150802429642

Stookey LL (1970). Ferrozine- a new spectrophotometric reagent for iron. Anal Chem 42: 779-781. doi: 10.1021/ac60289a016

Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D et al. (2011). Potential for chemolithoautrotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333: 1296-1300. doi: 10.1126/science. 1203690

Tikhonov M, Leach RW, Wingreen NS (2015). Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME $J$ 9: 68-80. doi:
10.1038/ismej. 2014.117

Vergin KL, Beszteri B, Monier A, Thrash JC, Temperton B, Treusch AH et al. (2013). High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series

Study site by phylogenetic placement of pyrosequences. ISME J 7: 1322-1332. doi: 10.1038/ismej. 2013.32

Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R (2011). PrimerProspector: de novo design and taxonomic analysis of barcoded PCR primers. Bioinformatics. doi: 10.1093/bioinformatics/btr087

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T et al. (2015). gplots: Various R Programming Tools for Plotting Data. (URL: http://cran.rproject.org/package=gplots)

Wheat CG, Jannasch HW, Fisher AT, Becker K, Sharkey J, Hulme S (2010). Subseafloor seawater-basalt-microbe reactions: continuous sampling of borehole fluids in a ridge flank environment. Geochem Geophy Geosys 11. doi: 10.1029/2010gc003057

Wheat CG, Jannasch HW, Kastner M, Plant JN, DeCarlo EH, Lebon G (2004). Venting formation fluids from deep-sea boreholes in a ridge flank setting: ODP Sites 1025 and 1026. Geochem Geophy Geosys 5. doi: 10.1029/2004GC000710

Figure S1. Borehole locations and characteristics of CORKs used to access basalthosted deep subseafloor crustal fluids along the Juan de Fuca Ridge flank. (A) Map of CORK observatory sampling sites on the Juan de Fuca Ridge flank in the Northeast Pacific Ocean. (B) Three-dimensional view of basement relief at boreholes 1026B, U1301A, U1362A, and U1362B (Expedition 327 Scientists, 2011a). (C) Schematic diagrams showing multiple generations of CORK observatory installed in boreholes on the Juan de Fuca Ridge flank. Borehole 1025C contains a first generation CORK, boreholes 1026B and U1301A contain second-generation CORKs, and boreholes U1362A and U1362B contain third-generation CORKs. The fluid sampling lines used in this study are indicated with dashed purple colored lines (Expedition 327 Scientists, 2011a).

Figure S2. Bioinformatic workflow used to process SSU rRNA gene Illumina tag sequencing reads. Forward, reverse, and paired reads were chimera checked prior to clustering and taxonomic classification with SILVA. Dashed lines highlight the schemes used to process unpaired and paired reads that were used for primary (nonexperimental) $\alpha$ - and $\beta$-diversity analyses.

Figure S3. Box-plot diagram representing 1000 replications of $\alpha$-diversity metrics. Colors of the bars correspond to the different clustering methods or unique read analysis, while percentages listed in the legend refer to the OTU similarity cutoff. DBC, distribution-based clustering; d, maximum genetic distance used to assess clusters; gg, greengenes; slv, silva.

Figure S4. Procrustes PCoA biplot of forward unique read clusters and (A) reverse unique read clusters, $(B)$ paired unique read clusters [merge-paired-reads; Eren et al. 2013], (C) forward read clusters [UCLUSTref with SILVA 99\% OTU database], (D) forward read clusters [UPARSE], (E) forward read clusters [mothur; 97\% OTUs], (F) forward read clusters [distribution-based clustering; d=0.1]. Green, subsurface fluids; yellow/brown, sediments; purple/blue, seawater and low-quality subsurface fluids. Clustering differences between samples are indicated using a single line with equal length parts red and white.

Figure S5. (A) Logarithmic best-fit model applied to scatterplot of all subsurface, mixed, and seawater samples with corresponding cell abundance and magnesium concentration data. (B) Linear best-fit model applied to scatterplot of all high-integrity subsurface samples with corresponding cell abundance and magnesium concentration data.

Figure S6. (A) Jackknifed $\beta$-diversity analysis of Bray-Curtis dissimiliarity indices using unique unpaired forward Illumina tag reads and rarefying to an even sequence depth (100 reads) across samples. Cluster stability is indicated using semi-transparent ovals encompassing opaque-colored sample midpoints. (B) Venn diagram of unique unpaired Illumina tag forward reads showing overlap in microbial communities from seawater, sediment, and subsurface fluids.

Figure S7. Taxonomic diversity and abundance of SSU rRNA gene clones from select samples of U1301A (SSF11, SSF12), U1362A (SSF21-22), and U1362B (SSF23-24) borehole fluids.

Table S1. Summary of samples used in this study

| Sample ID | Sample type | Location ${ }^{\text {a }}$ | Sample depth ${ }^{\text {a }}$ | Sample date | Collection method | Biological replicates ${ }^{\text {b }}$ | Technical replicates ${ }^{\text {c }}$ | Vol filtered (Liters) | Sanger sequence | $\begin{gathered} \text { Cells mi } \\ \left(\times 10^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSF1 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 30-Aug-09 | LVWS |  | A | 2.6 | $Y^{\text {c }}$ | $9.0^{\text {c }}$ |
| SSF2 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 30-Aug-09 | LVWS |  | A | 2.5 |  | $9.0^{\text {c }}$ |
| SSF3 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 19-Jun-10 | LVWS | A |  | 13.2 |  | 7.4 |
| SSF4 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 19-Jun-10 | LVWS | A |  | 11.2 | $Y^{\text {c }}$ | $15.3{ }^{\text {c }}$ |
| SSF5 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 20-Jun-10 | LVWS | B |  | 2.4 |  | 16.1 |
| SSF6 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 20-Jun-10 | LVWS | B |  | 5.3 |  | 4.0 |
| SSF7 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 23-Jun-10 | LVWS | C |  | 14.9 |  | 50.7 |
| SSF8 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 23-Jun-10 | LVWS | C |  | 3.2 |  | 30.5 |
| SSF9 | basalt-hosted | 1025C | $0-46 \mathrm{msb}$ | 27-Jun-10 | LVWS |  |  | 2.0 | $Y^{e}$ | n.d. |
| SSF10 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 30-Jun-10 | LVWS | D |  | 21.1 |  | 11.2 |
| SSF11 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 30-Jun-10 | LVWS | D |  | 29.2 | Y | 15.4 |
| SSF12 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 30-Jun-10 | in situ | D |  | ~120 | Y | n.d. |
| SSF13 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 04-Jul-11 | LVWS | E |  | 0.9 |  | n.d. |
| SSF14 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 04-Jul-11 | LVWS | E |  | 1.3 |  | n.d. |
| SSF15 | basalt-hosted | U1301A | $8-107 \mathrm{msb}$ | 04-Jul-11 | MVBS | E |  | 14.1 |  | 5.8 |
| SSF16 | basalt-hosted | U1362B | $29-117 \mathrm{msb}$ | 08-Jul-11 | LVWS | F |  | 9.4 |  | 21.8 |
| SSF17 | basalt-hosted | U1362B | $29-117 \mathrm{msb}$ | 08-Jul-11 | LVWS | F |  | 24.7 |  | 5.6 |
| SSF18 | basalt-hosted | U1362B | $29-117 \mathrm{msb}$ | 10-Jul-11 | MVBS | G |  | 14.4 |  | 2.6 |
| SSF23 | basalt-hosted | U1362B | $29-117 \mathrm{msb}$ | 10-Jul-11 | in situ | G | B | $\sim 70$ | Y | n.d. |
| SSF24 | basalt-hosted | U1362B | 29-117 msb | 10-Jul-11 | in situ | G | B | $\sim 70$ | Y | n.d. |
| SSF19 | basalt-hosted | U1362A | 193-292 msb | 12-Jul-11 | MVBS | H |  | 13.8 |  | 26.1 |
| SSF20 | basalt-hosted | U1362A | 193-292 msb | 12-Jul-11 | MVBS | H |  | 15.7 |  | 15.6 |
| SSF21 | basalt-hosted | U1362A | 193-292 msb | 12-Jul-11 | in situ | H | C | ~124 | Y | n.d. |
| SSF22 | basalt-hosted | U1362A | 193-292 msb | 12-Jul-11 | in situ | H | C | ~124 | Y | n.d. |
| MIX1 | mixed | U1301A | $8-107 \mathrm{msb}$ | 07-Aug-08 | GeoMicrobe |  |  | 10.0 |  | 67.6 |
| MIX2 | mixed | U1301A | $8-107 \mathrm{msb}$ | 07-Aug-08 | GeoMicrobe |  |  | 10.0 |  | 54.3 |
| MIX3 | mixed | U1301A | $8-107 \mathrm{msb}$ | 07-Aug-08 | LVWS | I |  | 3.0 |  | 99.6 |
| MIX4 | mixed | U1301A | $8-107 \mathrm{msb}$ | 07-Aug-08 | LVWS | 1 |  | 2.8 |  | 99.6 |
| MIX5 | mixed | 1026B | 0-48 msb | 31-Aug-09 | LVWS | J |  | 4.9 |  | 41.2 |
| MIX6 | mixed | 1026B | $0-48 \mathrm{msb}$ | 31-Aug-09 | LVWS | J |  | 4.8 |  | 41.2 |
| MIX7 | mixed | U1301B | 208-318 msb | 03-Sep-09 | LVWS | K |  | 5.0 |  | 36.8 |
| MIX8 | mixed | U1301B | $208-318 \mathrm{msb}$ | 03-Sep-09 | LVWS | K |  | 5.0 |  | 36.8 |
| MIX9 | mixed | U1301A | $8-107 \mathrm{msb}$ | 04-Sep-09 | LVWS | L |  | 4.2 |  | 63.8 |
| MIX10 | mixed | U1301A | $8-107 \mathrm{msb}$ | 04-Sep-09 | LVWS | L |  | 4.0 |  | 63.8 |
| MIX11 | mixed | U1301A | $8-107 \mathrm{msb}$ | 04-Sep-09 | LVWS | L |  | 4.3 |  | 63.8 |
| SW1 | seawater | near U1301A | 2644 m | 08-Aug-08 | CTD Niskin |  |  | 2.6 | $Y^{\text {c }}$ | $87.8^{\text {c }}$ |
| SW2 | seawater | near U1301A | 2515 m | 08-Aug-08 | CTD Niskin |  |  | 3.9 |  | 72.2 |
| SW3 | seawater | near U1301A | $\sim 2650$ m | 04-Sep-09 | CTD Niskin | M |  | 3.8 | $Y^{\text {c }}$ | $95.0{ }^{\text {c }}$ |
| SW4 | seawater | near U1301A | $\sim 2650$ m | 04-Sep-09 | CTD Niskin | M |  | 3.6 |  | $95.0{ }^{\text {c }}$ |
| SW5 | seawater | near U1301A | $\sim 2650$ m | 04-Sep-09 | CTD Niskin | M |  | 3.7 |  | $95.0^{\text {c }}$ |
| SW6 | seawater | near 1025C | 2571 m | 24-Jun-10 | LVWS | N |  | 4.0 |  | 22.0 |


| SW7 | seawater | near 1025C | 2571 m | 24-Jun-10 | LVWS | N | 4.3 |  | 22.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SW8 | seawater | near 1025C | 2571 m | 24-Jun-10 | LVWS | N | 9.0 |  | 22.0 |
| SW9 | seawater | near U1301A | 2648 m | 28-Jun-10 | CTD Niskin | 0 | 5.0 | $Y^{\text {c }}$ | $76.0^{\text {c }}$ |
| SW10 | seawater | near U1301A | 2648 m | 28-Jun-10 | CTD Niskin | 0 | 5.0 |  | $76.0{ }^{\text {c }}$ |
| SW11 | seawater | near U1301A | 2648 m | 28-Jun-10 | CTD Niskin | 0 | 5.0 |  | $76.0^{\text {c }}$ |
| SW12 | seawater | near U1301A | 2575 m | 28-Jun-10 | CTD Niskin | P | 5.0 |  | 84.2 |
| SW13 | seawater | near U1301A | 2575 m | 28-Jun-10 | CTD Niskin | P | 5.0 |  | 84.2 |
| SW14 | seawater | near U1301A | $\sim 2655 \mathrm{~m}$ | 29-Jun-10 | Jason Niskin |  | 4.9 | $Y^{\text {c }}$ | $88.6{ }^{\text {c }}$ |
| SW15 | seawater | near U1301A | $\sim 2655$ m | 30-Jun-10 | Jason Niskin |  | 4.9 |  | $88.6{ }^{\text {c }}$ |
| SW16 | seawater | near U1301A | 2661 m | 04-Jul-11 | Jason Niskin |  | 5.2 |  | 120.0 |
| SW17 | seawater | near U1301A | 2661 m | 07-Jul-11 | CTD Niskin | Q | 3.9 |  | 120.0 |
| SW18 | seawater | near U1301A | 2661 m | 07-Jul-11 | CTD Niskin | Q | 6.1 |  | 120.0 |
| SW19 | seawater | near U1301A | 2500 m | 07-Jul-11 | CTD Niskin | R | 4.5 |  | 61.8 |
| SW20 | seawater | near U1301A | 2500 m | 07-Jul-11 | CTD Niskin | R | 5.3 |  | 61.8 |
| SD1 | sediment | U1363F | $\sim 32 \mathrm{mbsf}$ | 03-Sep-10 | HPC |  | -- |  | n.d. |
| SD2 | sediment | U1363B | $\sim 38 \mathrm{mbsf}$ | 31-Aug-10 | XCB |  | -- | $Y^{d}$ | n.d. |
| SD3 | sediment | U1363F | $\sim 10 \mathrm{mbsf}$ | 03-Sep-10 | HPC |  | -- |  | n.d. |
| SD4 | sediment | U1363G | $\sim 2 \mathrm{mbsf}$ | 04-Sep-10 | HPC |  | -- | $Y^{\text {d }}$ | n.d. |
| SD5 | sediment | U1363G | $\sim 18 \mathrm{mbsf}$ | 04-Sep-10 | HPC |  | -- | $Y^{\text {d }}$ | n.d. |
| SD6 | sediment | U1363B | $\sim 2 \mathrm{mbsf}$ | 31-Aug-10 | HPC |  | -- | $Y^{\text {d }}$ | n.d. |
| SD7 | sediment | U1363D | $\sim 225 \mathrm{mbsf}$ | 02-Sep-10 | XCB |  | -- |  | n.d. |
| SD8 | sediment | U1363B | $\sim 45 \mathrm{mbsf}$ | 31-Aug-10 | ХСВ |  | -- |  | n.d. |
| SD9 | sediment | U1363B | $\sim 1 \mathrm{mbsf}$ | 31-Aug-10 | HPC |  | -- | $Y^{\text {d }}$ | n.d. |
| SD10 | sediment | U1363F | $\sim 25 \mathrm{mbsf}$ | 03-Sep-10 | HPC |  | -- |  | n.d. |
| SD11 | sediment | U1363D | $\sim 205 \mathrm{mbsf}$ | 02-Sep-10 | XCB |  | -- |  | n.d. |
| C1 | control | shipboard | -- | 25-Aug-09 | distilled water system |  | 1.9 |  | n.d. |
| C2 | control | -- | -- | -- | -- |  | -- | $Y^{d}$ | -- |

${ }^{\text {a }}$ For seawater samples, depth is meters below the sea surface; msb - meters subbasement, mbsf - meters below seafloor, samples collected from a single borehole during a single dive are considered biological replicates.
b'SSF1' and 'SSF2' were filtered from the same sampling bag onto separate membranes. Two amplicon libraries each were generated from U1362A and U1362B large volume in situ filtered samples.
${ }^{\text {c }}$ Jungbluth et al., 2013a
${ }^{\text {d }}$ Jungbluth et al., 2013b
${ }^{e}$ Jungbluth et al., 2014
--, not applicable; n.d. not determined
LVWS, large volume water sampler; MVBS, medium volume bag sampler; in situ, in situ filtration; GeoMicrobe, GeoMicrobe sled in situ filtration; CTDNiskin, CTD-Niskin rosette; JasonNiskon, ROV Jason I/ Niskin; HPC, hydraulic piston corer; XCB, extended piston corer

Table S2. Summary of basement fluid and seawater biogeochemistry and cellular abundances.

| Sequence Sample IDs | Location | pH | $\begin{aligned} & \mathrm{Ca}^{2+} \\ & (\mathrm{mM}) \end{aligned}$ | $\begin{aligned} & \mathrm{Mg}^{2+} \\ & (\mathrm{mM}) \end{aligned}$ | $\underset{(m M)}{K^{+}}$ | $\begin{aligned} & \mathrm{Na}^{+} \\ & (\mathrm{mM}) \end{aligned}$ | $\begin{gathered} C r \\ (m M) \end{gathered}$ | $\begin{gathered} \mathrm{Br} \\ (m M) \end{gathered}$ | $\begin{aligned} & \mathrm{SiO}_{2} \\ & (\mu \mathrm{M}) \end{aligned}$ | $\begin{aligned} & \mathrm{NH}_{4}^{+} \\ & (\mu M) \end{aligned}$ | $\begin{aligned} & \mathrm{PO}_{4}{ }^{2-} \\ & (\mu M) \end{aligned}$ | $\begin{aligned} & \mathrm{NO}_{2}^{-} \\ & (\mu M) \end{aligned}$ | $\mathrm{NO}_{3}{ }^{-}$ ( $\mu \mathrm{M}$ ) | $\begin{aligned} & \mathrm{SO}_{4}{ }^{2-} \\ & (\mathrm{mM}) \end{aligned}$ | $\begin{aligned} & F e_{a q} \\ & (\mu M) \end{aligned}$ | $\begin{aligned} & \mathrm{Mn}^{2+} \\ & (\mu M) \end{aligned}$ | $\begin{gathered} \text { Dissolved } \\ \mathrm{H}_{2} \mathrm{~S} \end{gathered}$ | $\begin{aligned} & D O C \\ & (\mu M) \end{aligned}$ | $\begin{aligned} & \text { TDN } \\ & (\mu M) \end{aligned}$ | Alkalinity (meq/L) | Basaltic fluid contentbased on [NO3] | Basaltic fluid contentbased on [Ca] | $\begin{gathered} \text { Cells m} r^{1} \\ \left(x \quad 10^{3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSF1, SSF2 | U1301A | 7.4 | 54.1 | 2.0 | 6.0 | 462.0 | 547 | 0.83 | 1150 | 102.0 | 0.10 | 0.00 | 0.61 | 17.2 | 1.1 | 4.1 | 0.17 | 13 | 102 | 0.42 | 98\% | 97\% | $9.0{ }^{\text {a }}$ |
| SSF3 | U1301A | 7.6 | 54.3 | 2.7 | 7.0 | 470.8 | 558 | 0.88 | 1154 | 102.0 | 0.10 | 0.00 | 0.90 | 18.2 | 0.7 | 0.8 | 0.00 | 9 | 104 | 0.48 | 98\% | 97\% | 7.4 |
| SSF4 | U1301A | 7.4 | 54.0 | 2.7 | 6.4 | 469.6 | 552 | 0.88 | 1153 | 102.0 | 0.10 | 0.00 | 0.90 | 18.0 | 0.5 | 0.8 | 0.00 | 15 | 102 | 0.48 | 98\% | 96\% | $15.3{ }^{\text {a }}$ |
| SSF5 | U1301A | 7.5 | 49.6 | 5.6 | 6.2 | 450.6 | 530 | 0.84 | 1051 | 91.0 | 0.22 | 0.00 | 2.69 | 17.9 | 0.5 | 0.8 | 0.00 | 26 | 102 | 0.57 | 93\% | 87\% | 16.1 |
| SSF6 | U1301A | 7.4 | 53.2 | 3.7 | 6.4 | 468.8 | 553 | 0.89 | 1126 | 99.0 | 0.20 | 0.00 | 1.76 | 18.3 | 0.5 | 1.5 | 0.00 | 14 | 100 | 0.53 | 96\% | 95\% | 4.0 |
| SSF7 | U1301A | 7.5 | 51.9 | 6.9 | 6.6 | 468.1 | 554 | 0.88 | 1060 | 92.0 | 0.43 | 0.06 | 3.18 | 19.0 | 0.2 | 4.1 | 0.00 | 12 | 103 | 0.65 | 92\% | 92\% | 50.7 |
| SSF8 | U1301A | 7.5 | 51.9 | 5.7 | 6.5 | 463.6 | 546 | 0.88 | 1088 | 95.0 | 0.48 | 0.06 | 2.91 | 18.5 | 0.3 | 3.6 | 0.00 | 16 | 100 | 0.62 | 93\% | 92\% | 30.5 |
| SSF9 | 1025 C | 7.9 | 30.4 | 28.9 | 9.4 | 468.7 | 539 | 0.85 | 590 | 43.0 | 0.05 | 0.00 | 6.40 | 26.2 | 0.1 | 0.8 | 0.00 | 22 | 49 | 0.88 | -- | 84\% | n.d. |
| SSF10 | U1301A | 7.3 | 51.9 | 4.0 | 6.3 | 474.8 | 566 | 0.91 | 1124 | 100.0 | 0.15 | 0.00 | 2.10 | 18.8 | 1.0 | 1.9 | 0.00 | 12 | 99 | 0.55 | 95\% | 92\% | 11.2 |
| SSF11 | U1301A | 7.3 | 51.9 | 3.9 | 6.0 | 469.1 | 557 | 0.89 | 1128 | 99.0 | 0.16 | 0.00 | 2.00 | 18.4 | 0.5 | 1.4 | 0.00 | 10 | 101 | 0.56 | 95\% | 92\% | 15.4 |
| SSF15 | U1301A | $7.4{ }^{\text {b }}$ | 55.3 | 1.9 | 6.4 | 459.0 | 551 | 0.91 | 1149 | 98.0 | 0.09 | 0.00 | 0.08 | 18.1 | 0.8 | n.d. | n.d. | 13 | 104 | 0.43 | 100\% | 99\% | 5.8 |
| SSF16 | U1362B | 7.3 | 53.3 | 4.0 | $6.6{ }^{\text {c }}$ | $462.4{ }^{\text {c }}$ | 548 | 0.84 | 1093 | $95.0{ }^{\text {c }}$ | $0.20^{\text {c }}$ | 0.00 | $2.00^{\text {c }}$ | 19.1 | 1.4 | n.d. | n.d. | 11 | 100 | 0.60 | -- | 95\% | 21.8 |
| SSF17 | U1362B | $7.3{ }^{\text {b }}$ | 55.4 | 2.2 | 6.4 | 462.6 | 549 | 0.88 | 1144 | 100.0 | 0.06 | 0.00 | $0.03{ }^{\text {b }}$ | 18.8 | 1.7 | n.d. | n.d. | 12 | 105 | 0.51 | -- | 100\% | 5.6 |
| SSF18 | U1362B | $7.3{ }^{\text {b }}$ | 55.4 | 2.5 | $6.4{ }^{\text {b }}$ | $462 .{ }^{\text {b }}$ | 547 | 0.85 | 1144 | $100.0^{\text {b }}$ | $0.06{ }^{\text {b }}$ | 0.00 | $0.03{ }^{\text {b }}$ | 18.6 | 1.3 | n.d. | n.d. | 12 | $104{ }^{\text {b }}$ | 0.48 | -- | 100\% | 2.6 |
| SSF19 | U1362A | $7.5{ }^{\text {b }}$ | 53.7 | 2.2 | 6.5 | 460.4 | 548 | 0.87 | 1071 | 98.0 | 0.12 | 0.00 | 0.03 | 18.8 | 2.4 | n.d. | n.d. | 15 | 102 | 0.59 | 100\% | 99\% | 26.1 |
| SSF20 | U1362A | $7.5{ }^{\text {b }}$ | 54.3 | 2.8 | $6.5{ }^{\text {b }}$ | $461.4^{\text {b }}$ | 544 | 0.81 | 1067 | 98.0 | $0.11^{\text {b }}$ | 0.00 | $0.03{ }^{\text {b }}$ | 18.7 | $1.9{ }^{\text {b }}$ | n.d. | n.d. | 16 | $103^{\text {b }}$ | 0.60 | -- | 100\% | 15.6 |
| MIX3, MIX4 | U1301A | 7.6 | 15.4 | 47.4 | 9.8 | 455.6 | 537 | 0.78 | 284 | 16.0 | 2.53 | 0.00 | 35.40 | 26.9 | 0.0 | n.d. | n.d. | n.d. | 45 | 2.27 | 10\% | 11\% | 99.6 |
| MIX5, MIX6 | 1026B | 7.7 | 10.2 | 54.6 | 10.0 | 461.7 | 538 | 0.78 | 177 | 0.1 | 2.74 | 0.00 | 41.40 | 27.8 | 0.3 | n.d. | n.d. | 40 | 43 | 2.39 | 0\% | 0\% | 41.2 |
| MIX7, MIX8 | U1301B | 7.6 | 10.5 | 52.4 | 10.1 | 463.8 | 539 | 0.79 | 181 | 0.1 | 2.85 | 0.00 | 41.40 | 27.8 | 0.0 | n.d. | n.d. | 39 | 42 | 2.38 | 0\% | 0\% | 36.8 |
| MIX9, MIX10, MIX11 | U1301A | 7.8 | 13.0 | 49.9 | 9.9 | 466.2 | 542 | 0.83 | 235 | 6.2 | 2.69 | 0.00 | 39.00 | 27.3 | 0.0 | n.d. | n.d. | 37 | 45 | 2.30 | 1\% | 6\% | 63.8 |
| SW1 | $\begin{gathered} \text { above } \\ \text { U1301A } \end{gathered}$ | 7.7 | 10.4 | 53.4 | 10.0 | 445.3 | 517 | 0.76 | 162 | 0.0 | 2.93 | 0.00 | 40.70 | 27.5 | 0.0 | n.d. | n.d. | n.d. | 40 | 2.56 | -- | -- | $87.8^{\text {a }}$ |
| SW3, SW4, SW5 | $\begin{aligned} & \text { above } \\ & \text { U1301A } \end{aligned}$ | 7.8 | 10.4 | 53.6 | 9.9 | 468.2 | 543 | 0.78 | 183 | 0.0 | 2.95 | 0.00 | 41.30 | 28.0 | 0.0 | n.d. | n.d. | 40 | 43 | 2.42 | -- | -- | $95.0^{\text {a }}$ |
| SW6, SW7, SW8 | above 1025C | 7.9 | 10.2 | 51.1 | 10.2 | 459.9 | 531 | 0.84 | 104 | 0.0 | 2.14 | 0.00 | 27.30 | 27.5 | 0.0 | 0.7 | n.d. | 48 | 32 | 2.39 | -- | -- | 22.0 |
| SW9, SW10, SW11 | above <br> U1301A | 7.8 | 10.5 | 53.3 | 10.5 | 473.6 | 545 | 0.84 | 174 | 0.0 | 2.80 | 0.00 | 40.30 | 28.2 | 0.0 | 0.0 | 0.00 | 40 | 44 | 2.46 | -- | -- | $76.0^{\text {a }}$ |
| SW12, SW13 | $\begin{gathered} \text { above } \\ \text { U1301A } \end{gathered}$ | 7.8 | 10.6 | 53.9 | 10.4 | 471.6 | 550 | 0.89 | 166 | 0.0 | 2.80 | 0.00 | 41.00 | 28.6 | 0.0 | 0.0 | 0.00 | 40 | 44 | 2.47 | -- | -- | 84.2 |
| SW17, SW18 | above <br> U1301A | 7.8 | 10.4 | 53.0 | 10.2 | 463.7 | 541 | 0.86 | 188 | 0.0 | 2.70 | 0.00 | 42.40 | 28.1 | 0.0 | 0.0 | 0.00 | 52 | 45 | 2.44 | -- | -- | 120.0 |
| SW19, SW20 | $\begin{aligned} & \text { above } \\ & \text { U1301A } \end{aligned}$ | 7.8 | 10.6 | 52.8 | 10.2 | 463.7 | 541 | 0.86 | 177 | 0.0 | 2.70 | 0.00 | 42.80 | 28.1 | 0.0 | 0.0 | 0.00 | 42 | 44 | 2.44 | -- | -- | 61.8 |
| SD1 | $\begin{aligned} & \text { U1363F } \\ & (\sim 32 \mathrm{~m}) \end{aligned}$ | 7.3 | 20.8 | 37.8 | 11.0 | 498.0 | 578 | 0.81 | 422 | 197.0 | 1.04 | 0.00 | 0.00 | 27.5 | 0.0 | 22.8 | -- | 192 | 197 | 1.63 | -- | -- | n.d. |
| SD2 | $\begin{gathered} \text { U1363B } \\ (\sim 38 \mathrm{~m}) \end{gathered}$ | 7.4 | 13.3 | 47.6 | 11.9 | 498.0 | 608 | 0.83 | 493 | 1897.0 | 13.80 | 0.00 | 0.00 | 25.1 | 18.1 | 37.3 | -- | 478 | 1897 | 5.79 | -- | -- | n.d. |
| SD3 | $\begin{aligned} & \text { U1363F } \\ & (\sim 10 \mathrm{~m}) \end{aligned}$ | 7.3 | 12.5 | 48.3 | 10.8 | 475.0 | 547 | 0.83 | 484 | 774.0 | 40.40 | 0.00 | 0.00 | 22.1 | 93.0 | 47.1 | -- | 862 | 774 | 10.34 | -- | -- | n.d. |


| SD4 | $\underset{(\sim 2 \mathrm{~m})}{\mathrm{U} 1363 \mathrm{G}}$ | 7.3 | 12.6 | 48.7 | 11.9 | 479.0 | 555 | 0.85 | 456 | 166.0 | 15.00 | 0.00 | 0.00 | 28.3 | 51.3 | 44.1 | -- | 336 | 166 | 3.76 | -- | -- | n.d. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SD5 | $\begin{aligned} & \text { U1363G } \\ & (\sim 18 \mathrm{~m}) \end{aligned}$ | 7.2 | 21.1 | 38.4 | 11.0 | 492.0 | 568 | 0.84 | 433 | 166.0 | 6.83 | 0.00 | 0.00 | 26.0 | 49.6 | 44.6 | -- | 294 | 166 | 3.29 | -- | -- | n.d. |
| SD6, SD9 | $\begin{gathered} \text { U1363B } \\ (\sim 1 \mathrm{~m}) \end{gathered}$ | 7.6 | 10.4 | 52.8 | 12.1 | 488.0 | 592 | 0.79 | 439 | 110.0 | 15.20 | 0.00 | 0.00 | 28.6 | 8.3 | 34.1 | -- | 403 | 110 | 4.23 | -- | -- | n.d. |
| SD7 | $\begin{aligned} & \text { U1363D } \\ & (\sim 225 \mathrm{~m}) \end{aligned}$ | 7.5 | 35.8 | 31.3 | 6.1 | 478.0 | 561 | 0.84 | 340 | 89.0 | 0.30 | 0.00 | 0.00 | 27.6 | 8.7 | 88.9 | -- | 103 | 89 | 1.25 | -- | -- | n.d. |
| SD8 | $\begin{gathered} \text { U1363B } \\ (\sim 45 \mathrm{~m}) \end{gathered}$ | 7.2 | 20.3 | 38.9 | 11.2 | 491.0 | 596 | 0.80 | 529 | 172.0 | 3.27 | 0.00 | 0.00 | 25.4 | 19.6 | 46.1 | -- | 349 | 172 | 2.47 | -- | -- | n.d. |
| SD10 | $\begin{aligned} & \text { U1363F } \\ & (\sim 25 \mathrm{~m}) \end{aligned}$ | 7.5 | 18.1 | 39.2 | 10.4 | 467.0 | 541 | 0.85 | 498 | 586.0 | 2.46 | 0.00 | 0.00 | 24.8 | 26.0 | 24.5 | -- | 613 | 586 | 3.01 | -- | -- | n.d. |
| SD11 | $\begin{aligned} & \text { U1363D } \\ & (\sim 205 \mathrm{~m}) \end{aligned}$ | 7.2 | 30.7 | 34.4 | 5.5 | 462.0 | 544 | 0.82 | 404 | 147.0 | 0.30 | 0.00 | 0.00 | 26.6 | 9.8 | 65.6 | -- | 122 | 147 | 1.51 | -- | -- | n.d. |

${ }^{\text {a Jungbluth et al., 2013a }}$
${ }^{\mathrm{b}}$ Averaged values of samples in other bags collected within an hour from the same hole.
${ }^{\text {c }}$ Calculated value based on basement fluid end-member and seawater mixing
n.d., not determined; --, not applicable

Table S3. Illumina read statistics

|  | Non-paired quality filtering |  | Read pairing and quality filtering ${ }^{\text {a }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Qiime default: forward (515F) read | Qiime default: reverse (806R) read | USEARCH |  |  | FLASH | Pandaseq | Eren merge-illumina-pairs |  |
|  |  |  | $e=5.0$ | $e=1.0$ | $e=0.05$ |  |  | $\begin{gathered} m / o=0.25, \\ o=48 \end{gathered}$ | $\begin{gathered} m / o=0.25, \\ o=5 \end{gathered}$ |
| Total reads (all read lengths) | 1734012 (100\%) | 1513711 (87.3\%) | $\begin{aligned} & 912101 \\ & (52.6 \%) \end{aligned}$ | $\begin{aligned} & 664404 \\ & (38.3 \%) \end{aligned}$ | $\begin{gathered} 35152 \\ (2.0 \%) \end{gathered}$ | $\begin{aligned} & 767046 \\ & (44.2 \%) \end{aligned}$ | $\begin{aligned} & 194913 \\ & (11.2 \%) \end{aligned}$ | $\begin{array}{r} 965443 \\ (55.7 \%) \end{array}$ | $\begin{aligned} & 56545 \\ & (3.2 \%) \end{aligned}$ |
| Mode read length (bp) | $\sim 150$ | $\sim 150$ | $\sim 250$ | $\sim 290$ |
| $\begin{aligned} & \text { Total paired-reads } \\ & \leq 254 \mathrm{bp} \end{aligned}$ | -- | -- | $\begin{aligned} & 849375 \\ & (49.0 \%) \end{aligned}$ | $\begin{aligned} & 609512 \\ & (35.2 \%) \end{aligned}$ | $\begin{gathered} 35132 \\ (2.0 \%) \end{gathered}$ | $\begin{aligned} & 758504 \\ & (43.7 \%) \end{aligned}$ | $\begin{array}{r} 193399 \\ (11.2 \%) \end{array}$ | $\begin{aligned} & 965443 \\ & (55.7 \%) \end{aligned}$ | $\begin{aligned} & 17405 \\ & (1.0 \%) \end{aligned}$ |
| UCHIME_denovo nonchimeras | 1723431 (99.4\%) | 1511248 (87.2\%) | $\begin{aligned} & 837419 \\ & (48.3 \%) \end{aligned}$ | $\begin{aligned} & 600094 \\ & (34.6 \%) \end{aligned}$ | $\begin{aligned} & 34270 \\ & (2.0 \%) \end{aligned}$ | $\begin{aligned} & 748440 \\ & (43.2 \%) \end{aligned}$ | $\begin{aligned} & 189437 \\ & (10.9 \%) \end{aligned}$ | $\begin{aligned} & 952375 \\ & (54.9 \%) \end{aligned}$ | n.p. |
| UCHIME_ref nonchimeras (total reads) | 1701960 (98.2\%) | 1490603 (86.0\%) | $\begin{aligned} & 804762 \\ & (46.4 \%) \end{aligned}$ | $\begin{aligned} & 577257 \\ & (33.3 \%) \end{aligned}$ | $\begin{gathered} 33189 \\ (1.9 \%) \end{gathered}$ | $\begin{array}{r} 720495 \\ (41.6 \%) \end{array}$ | $\begin{aligned} & 181747 \\ & (10.5 \%) \end{aligned}$ | $\begin{aligned} & 917211 \\ & (52.9 \%) \end{aligned}$ | n.p. |
| Ave reads per sample | 25029 | 21921 | 11835 | 8489 | 488 | 10596 | 2673 | 13488 | n.p. |
| Min reads per sample | 6108 | 5317 | 2832 | 1950 | 107 | 2584 | 711 | 3250 | n.p. |
| Max reads per sample | 43629 | 38261 | 19158 | 14083 | 864 | 17195 | 4575 | 23098 | n.p. |
| Standard deviation per sample | 9169 | 8080 | 4292 | 3165 | 196 | 3841 | 1020 | 4895 | n.p. |

${ }^{\text {a }} 1,734,012$ overlapping read pairs were used for pairing
${ }^{\text {b }}$ Expected merged-pair read length is $\sim 253-254$ bases excluding primers
n.p., not performed; --, not applicable

Table S4. Illumina sequence clustering statistics

|  |  | Non-paired quality filtering |  | Read pairing and quality filtering |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | QIIME default: forward (515F) read | QIIME default: reverse (806R) read | USEARCH ${ }^{\text {c }}$ |  |  | FLASH | Pandaseq | Eren merge-illumina-pairs |
|  |  | $e=5.0$ |  | $e=1.0$ | $e=0.05$ |  |  |  |
| Total Reads (no. of unique sequences; percentage) | Similarity/ <br> Cluster <br> Threshold |  | $\begin{aligned} & 1701960 \\ & \text { (335762; } \\ & 19.7 \%) \end{aligned}$ | $\begin{gathered} 1490603 \\ (1394851 ; \\ \text { (93.6\%) } \end{gathered}$ | $\begin{gathered} 804762 \\ (283058 ; \\ 35.2 \%) \end{gathered}$ | $\begin{gathered} 577257 \\ (180619 ; \\ 31.3 \%) \\ \hline-3 \end{gathered}$ | $\begin{array}{r} 33189 \\ (13045 ; \\ \text { 39.3\%) } \end{array}$ | $\begin{gathered} 720495 \\ (280670 ; \\ 39.0 \%) \end{gathered}$ | $\begin{aligned} & 181747 \\ & (74206 ; \\ & 40.8 \%) \end{aligned}$ | 917211 (303095; 33.0\%) |
| Unique read clusters |  | 77055 | 21956 | 44893 | 33226 | 2336 | 40753 | 11721 | 51239 |
| Uclustref + de novo (GreenGenes) ${ }^{\text {a }}$ | 0.03 | 15806 | 148819 | 9529 | 7389 | 1595 | 9528 | 4243 | 11693 |
| Uclustref + de novo (GreenGenes) ${ }^{\text {a }}$ | 0.01 | 16390 | 149505 | 10451 | 8300 | 1798 | 10284 | 4790 | 10552 |
| Uclustref + de novo (SILVA) ${ }^{\text {a }}$ | 0.03 | 15871 | 150403 | 9727 | 7716 | 1709 | 9664 | 4468 | 11411 |
| Uclustref + de novo (SILVA) ${ }^{a}$ | 0.01 | 16869 | 150735 | 10723 | 8527 | 1826 | 10523 | 4977 | 10320 |
| UPARSE |  | 21145 | 670280 | 11277 | 7336 | 1429 | 11571 | 4283 | 12463 |
| mothur | 0.03 | 23155 | n.p. | 10737 | 8043 | 1481 | 14610 | 5103 | 10923 |
|  | 0.01 | 50897 | n.p. | 23025 | 15963 | 1809 | 22344 | 6720 | 23001 |
| Distribution-based clustering | 0.01 | 37589 | n.p. | n.p. | n.p. | 1647 | n.p. | n.p. | 20879 |
|  | 0.03 | 18910 | n.p. | n.p. | n.p. | 1348 | n.p. | n.p. | 10539 |
|  | 0.05 | 15381 | n.p. | n.p. | n.p. | 1132 | n.p. | n.p. | 8167 |
|  | 0.1 | 12477 | n.p. | n.p. | n.p. | 877 | n.p. | n.p. | 5918 |

${ }^{\text {a }}$ Either GreenGenes or SILVA reference databases were used for UCLUST reference-based clustering
n.p., not performed

Table S5. Results of Mantel correlation tests

| Variable | All samples |  | Subsurface fluids |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $r$ statistic | $p$-value | $r$ statistic | $p$-value |
| pH | 0.412 | 0.001*** | 0.184 | 0.155 |
| Calcium | 0.548 | 0.001*** | 0.338 | 0.002** |
| Magnesium | 0.543 | 0.001*** | 0.318 | 0.002** |
| Potassium | 0.470 | 0.001*** | 0.246 | 0.063* |
| Sodium | -0.067 | 0.473 | 0.135 | 0.257 |
| Chloride | 0.154 | 0.129 | 0.073 | 0.540 |
| Bromide | 0.033 | 0.669 | 0.024 | 0.809 |
| Silicate | 0.559 | 0.001*** | 0.140 | 0.270 |
| Ammonium | 0.535 | 0.001*** | 0.314 | 0.004** |
| Phosphate | 0.513 | 0.001*** | 0.118 | 0.372 |
| Nitrite | 0.275 | 0.008** | 0.027 | 0.872 |
| Nitrate | 0.583 | 0.001*** | 0.436 | $0.001^{* * *}$ |
| Sulfate | 0.531 | 0.001*** | 0.311 | 0.006** |
| Dissolved Iron | 0.552 | $0.001^{* * *}$ | 0.467 | 0.001*** |
| DOC | 0.577 | 0.001*** | 0.179 | 0.152 |
| TDN | 0.558 | 0.001*** | 0.290 | 0.024* |
| Alkalinity | 0.488 | 0.001*** | 0.335 | 0.003** |

Significance values: ***, ( $p \leq 0.001$ ); **, ( $p \leq 0.01$ ); *, $(p \leq 0.1)$

Table S6. Results of PERMDISP statistical test after grouping samples by type ${ }^{1}$

|  | seawater | sediment | subsurface |
| :--- | :---: | :---: | :---: |
| seawater | -- | $0.091^{*}$ | $0.002^{* *}$ |
| sediment | $0.090^{*}$ | -- | $0.081^{*}$ |
| subsurface | $<0.001^{* * *}$ | $0.083^{*}$ | -- |

${ }^{1}$ Observed $p$-value below diagonal, permuted $p$-value above diagonal.

Figure S1


Figure S2


Figure S3


Figure S4


Figure S5
A)

B)



Figure S7


