Supplementary data

For questions about synthesis, contact gandour@vt.edu

General methods for synthesis	S2
Characterization data for 3ECb14	
Characterization data for 3ECb16	
Characterization data for 3ECb18	
Characterization data for 3ECb20	
Characterization data for 3ECb22	
Characterization data for 3CCb14	
Characterization data for 3CCb16	
Characterization data for 3CCb18	
Characterization data for 3CCb20	
Characterization data for 3CCb22	
Characterization data for 3EAm14	
Characterization data for 3EAm16	
Characterization data for 3CAm14	
Characterization data for 3CAm16	
Reference	

General methods for synthesis

Unless specified, solvents and reagents were used as received. Pentadecanoyl chloride and heptadecanoyl chloride were synthesized via a reaction of the corresponding carboxylic acid in refluxing thionyl chloride and a few drops of DMF for 24 h. The products were purified by bulbto-bulb distillation until a clear, colourless liquid was obtained. WeisocyanateTM was prepared as described previously.¹ Analytical thin layer chromatography was performed on aluminumcoated silica gel 60 Å and detected by dipping in a solution of 10% ethanolic phosphomolybdic acid reagent (20 wt % solution in ethanol) and then heated with a heat gun. The R_f for 3ECbn in hexane/THF (6:1, v/v) was 0.32–0.41. Flash column chromatography was carried out on silica gel (60 Å). The samples were introduced as concentrated solutions in hexane/THF (6:1, v/v). After eluting the solvent mixture (100 mL), fractions (25 mL) were collected. The flow rate (~64 mL/min) was controlled by compressed air. The product appeared in fractions 3 to 12. Solutions were concentrated by rotary evaporation. Melting points were determined in open capillary tubes at 1°C/min and uncorrected. NMR spectra of 3CCbn series were recorded at 400 and 100 MHz for ¹H and ¹³C, respectively, and reported in ppm. References in ¹H and ¹³C spectra were TMS and DMSO-d₆, respectively. NMR spectra of 3CAm14 and 3CAm16 were recorded at 500 and 125 MHz for ¹H and ¹³C, respectively, and reported in ppm. References in ¹H and ¹³C spectra were CD₃OD and DMSO- d_6 , respectively. IR spectra were recorded on neat samples with an FTIR equipped with a diamond ATR system, and reported in cm⁻¹. HRMS data were obtained on a dual-sector mass spectrometer in FAB mode with 2-nitrobenzylalcohol as the proton donor. Elemental analyses were performed by a commercial vendor.

Di-tert-butyl 4-(2-(tert-butoxycarbonyl)ethyl)-4-(3-

tetradecoxycarbonylamino)heptanedioate, 3ECb14

Following the general procedure described in the manuscript, tetradecan-1-ol (0.73 g, 3.40 mmol), WeisocyanateTM (1.42 g, 3.22 mmol) gave, after flash column chromatography with 6:1 hexane/EtOAc, a white solid (1.77 g, 84% yield); mp 54.3–54.9 °C; ¹H NMR (CDCl₃) δ 0.88 (t, 3H), 1.25 (m, 22H), 1.42 (s, 27H), 1.57 (broad p, 2H), 1.91 (t, 6H), 2.21 (t, 6H), 3.96 (broad t, 2H), 4.69 (broad s, 1H); ¹³C NMR (CDCl₃) δ 14.1, 22.7, 25.9, 28.08, 28.99, 29.35, 29.37, 29.58, 29.62, 29.67, 29.69, 29.72, 30.2, 31.9, 56.4, 64.6, 80.6, 154.6, 172.6; IR 3371, 2916, 1727, 1703, 1363, 1142, 1075; HRMS (FAB+) calcd for C₃₇H₆₉NO₈ (MH⁺) 656.5101, found 656.5105. Anal. Calcd. for C₃₇H₆₉NO₈: C, 67.75; H, 10.60; N, 2.14. Found: C, 67.75; H, 10.84; N, 2.27.

Di-tert-butyl 4-(2-(tert-butoxycarbonyl)ethyl)-4-(3-

hexadecoxycarbonylamino)heptanedioate, 3ECb16

Following the general procedure described in the manuscript, hexadecan-1-ol (0.789 g, 3.25 mmol) and WeisocyanateTM (1.44 g, 3.26 mmol) gave, after flash column chromatography with 6:1 hexane/EtOAc, a white solid (1.8781 g, 84%); mp 60.8–61.4 °C; ¹H NMR (CDCl₃) δ 0.89 (t, 3H), 1.27 (m, 26H), 1.45 (s, 27H), 1.59 (broad p, 2H), 1.92 (t, 3H), 2.23 (t, 3H), 3.99 (broad t, 2H), 4.70 (broad s, 1H); ¹³C NMR (CDCl₃) δ 14.1, 22.7, 25.9, 28.08, 28.99, 29.33, 29.37, 29.56, 29.62, 29.66, 29.70, 30.2, 31.9, 56.4, 64.6, 80.6, 154.6, 172.6; IR 3357, 2921, 1727, 1708, 1530, 1363, 1257, 1142; HRMS (FAB+) calcd for C₃₉H₇₃NO₈ (MH⁺) 684.5414, found 684.5427. Anal. Calcd for C₃₉H₇₃NO₈: C, 68.48; H, 10.76; N, 2.05. Found: C, 68.37; H, 10.83; N, 2.18.

Di-tert-butyl 4-(2-(tert-butoxycarbonyl)ethyl)-4-(3-

octadecoxycarbonylamino)heptanedioate, 3ECb18

Following the general procedure described in the manuscript, octadecan-1-ol (0.907 g, 3.35 mmol) and WeisocyanateTM (1.41 g, 3.20 mmol) gave, after flash column chromatography with 6:1 hexane/EtOAc, a white solid (1.80 g, 79%); mp 58.6–59.1 °C; ¹H NMR (CDCl₃) δ 0.88 (t, 3H), 1.26 (m, 30H), 1.44 (s, 27H), 1.58 (broad p, 2H), 1.91 (t, 3H), 2.22 (t, 3H), 3.98 (broad t, 2H), 4.70 (broad s, 1H); ¹³C NMR (CDCl₃) δ 14.1, 22.7, 25.9, 28.1, 28.99, 29.34, 29.36, 29.57, 29.61, 29.67, 29.71, 30.2, 31.9, 56.4, 64.6, 80.6, 154.6, 172.6; IR 3357, 2921, 1727, 1708, 1531, 1363, 1253, 1142; HRMS (FAB+) calcd for C₄₁H₇₇NO₈ (MH⁺) 712.5727, found 712.5710. Anal. Calcd for C₄₁H₇₇NO₈: C, 69.16; H, 10.90; N, 1.97. Found: C, 69.10; H, 11.10; N, 2.13.

Di-tert-butyl 4-(2-(tert-butoxycarbonyl)ethyl)-4-(3-

eicosadecoxycarbonylamino)heptanedioate, 3ECb20

Following the general procedure described in the manuscript, icosan-1-ol (1.02 g, 3.40 mmol) and WeisocyanateTM (1.51 g, 3.21 mmol) gave, after flash column chromatography with 6:1 hexane/EtOAc, a white solid (1.51 g, 63%); mp 59.0–59.6 °C; ¹H NMR (CDCl₃) δ 0.88 (t, 3H), 1.25 (m, 34H), 1.44 (s, 27H), 1.57 (broad p, 2H), 1.90 (t, 3H), 2.21 (t, 3H), 3.97 (broad t, 2H), 4.69 (broad s, 1H); ¹³C NMR (CDCl₃) δ 14.2, 22.8, 26.0, 28.2, 29.11, 29.46, 29.48, 29.69, 29.75, 29.83, 30.3, 32.0, 56.5, 64.7, 80.7, 154.7, 172.7; IR 3338, 2916, 1727, 1703, 1526, 1363, 1142; HRMS (FAB+) calcd for C₄₃H₈₁NO₈ (MH⁺) 740.6040, found 740.6021. Anal. Calcd for C₄₃H₈₁NO₈: C, 69.78; H, 11.03; N, 1.89. Found: C, 69.73; H, 11.27; N, 2.05.

Di-tert-butyl 4-(2-(tert-butoxycarbonyl)ethyl)-4-(3-

docosadecoxycarbonylamino)heptanedioate, 3ECb22

Following the general procedure described in the manuscript, docosan-1-ol (1.11 g, 3.39 mmol) and WeisocyanateTM (1.42 g, 3.22 mmol) gave, after flash column chromatography with 6:1 hexane/EtOAc, a white solid (1.70 g, 69%); mp 65.8–66.3 °C; ¹H NMR (CDCl₃) δ 0.88 (t, 3H), 1.25 (m, 38H), 1.44 (s, 27H), 1.59 (broad p, 2H), 1.90 (t, 3H), 2.21 (t, 3H), 3.98 (broad t, 2H), 4.69 (broad s, 1H); ¹³C NMR (CDCl₃) δ 14.3, 22.9, 26.1, 28.3, 29.17, 29.51, 29.54, 29.75, 29.80, 29.89, 30.3, 32.1, 56.5, 64.8, 80.8, 154.8, 172.8; IR 3338, 2916, 1727, 1703, 1531, 1464, 1363, 1142, HRMS (FAB+) calcd for C₄₅H₈₅NO₈ (MH⁺) 768.6353, found 768.6356; Anal. Calcd for C₄₅H₈₅NO₈: C, 70.36; H, 11.15; N, 1.82. Found: C, 70.33; H, 11.25; N, 1.89.

4-(2-Carboxyethyl)-4-(3-tetradecoxycarbonylamino)heptanedioic acid, 3CCb14

Following the general procedure described in the manuscript, 3ECb14 (3.42 g, 5.21 mmol) gave upon recrystallization from acetonitrile a white powder (1.96 g, 77%); mp 121.4–121.9 °C; ¹H NMR (DMSO- d_6) δ 0.80 (t, 3H), 1.19 (broad m, 22H), 1.43 (broad p, 2H), 1.65 (t, 6H), 2.05 (t, 6H), 3.81 (t, 2H), 6.62 (broad s, 1H), 11.98 (broad s, 3H); ¹³C NMR (DMSO- d_6) δ 13.9, 22.1, 25.3, 28.1, 28.68, 28.69, 28.96, 28.98, 29.02, 29.20, 31.3, 55.6, 63.1, 154.5, 174.3; IR 3429, 3165, 2916, 1725, 1678, 1570, 1237, 1090; HRMS (FAB+) calcd for C₂₅H₄₅NO₈ (MH⁺) 488.3223, found 488.3234 Anal. Calcd for C₂₅H₄₅NO₈: C, 61.58; H, 9.30; N, 2.87. Found: C, 61.58; H, 9.51; N, 2.84.

4-(2-Carboxyethyl)-4-(3-hexadecoxycarbonylamino)heptanedioic acid, 3CCb16

Following the general procedure described in the manuscript, 3ECb16 (4.11 g, 6.01 mmol) gave upon recrystallization from acetonitrile a white powder(2.79 g, 90%); mp 123.9–124.7 °C; ¹H NMR (DMSO- d_6) δ 0.85 (t, 3H), 1.23 (broad m, 26H), 1.50 (broad p, 2H), 1.76 (t, 6H), 2.10 (t, 6H), 3.88 (t, 2H), 6.72 (broad s, 1H), 11.98 (broad s, 3H); ¹³C NMR (DMSO- d_6) δ 13.9, 22.1, 25.4, 28.07, 28.70, 28.71, 28.98, 28.99, 29.03, 29.19, 31.3, 55.6, 63.1, 154.5, 174.3; IR 3429, 3156, 2916, 1723, 1675, 1521, 1234, 1090; HRMS (FAB+) calcd for C₂₇H₄₉NO₈ (MH⁺) 516.3536, found 516.3521. Anal. Calcd for C₂₇H₄₉NO₈: C, 62.89; H, 9.58; N, 2.72. Found: C, 62.67; H, 9.79; N, 2.76.

4-(2-Carboxyethyl)-4-(3-octadecoxycarbonylamino)heptanedioic acid, 3CCb18

Following the general procedure described in the manuscript, 3ECb18 (2.93 g, 4.11 mmol) gave upon recrystallization from acetonitrile as a white powder(1.68 g, 75%); mp 125.3–126.3 °C; ¹H NMR (DMSO- d_6) δ 0.85 (t, 3H), 1.23 (broad m, 30H), 1.50 (broad p, 2H), 1.76 (t, 6H), 2.10 (t, 6H), 3.88 (t, 2H), 6.71 (broad s, 1H), 12.05 (broad s, 3H); ¹³C NMR (DMSO- d_6) δ 13.9, 22.1, 25.4, 28.05, 28.69, 28.71, 29.02, 29.17, 31.3, 55.5, 63.1, 154.5, 174.3; IR 3431, 3159, 2918, 1725, 1677, 1523, 1236, 1030; HRMS (FAB+) calcd for C₂₉H₅₃NO₈ (MH⁺) 544.3849, found 544.3855. Anal. Calcd for C₂₉H₅₃NO₈: C, 64.06; H, 9.82; N, 2.58. Found: C, 64.02; H, 10.06; N, 2.54.

4-(2-Carboxyethyl)-4-(3-eicosadecoxycarbonylamino)heptanedioic acid, 3CCb20

Following the general procedure described in the manuscript, 3ECb20 (2.68 g, 3.62 mmol) gave upon recrystallization from MeOH/water a white powder (2.00 g, 96%); mp 124.1–124.8 °C; ¹H NMR (DMSO- d_6) δ 0.85 (t, 3H), 1.23 (broad m, 34H), 1.50 (broad p, 2H), 1.76 (t, 6H), 2.10 (t, 6H), 3.87 (t, 2H), 6.71 (broad s, 1H), 12.06 (broad s, 3H); ¹³C NMR (DMSO- d_6) δ 13.9, 22.1, 25.4, 28.06, 28.68, 28.71, 29.00, 29.17, 31.3, 55.6, 63.1, 154.5, 174.3; IR 3429, 3165, 2916, 1723, 1675, 1521, 1238, 1028; HRMS (FAB+) calcd for C₃₁H₅₇NO₈ (MH⁺) 572.4162, found 572.4153. Anal. Calcd for C₃₁H₅₇NO₈: C, 65.12; H, 10.05; N, 2.45. Found: C, 64.82; H, 10.16; N, 2.49.

4-(2-Carboxyethyl)-4-(3-docosadecoxycarbonylamino)heptanedioic acid, 3CCb22

Following the general procedure described in the manuscript, 3ECb22 (1.52 g, 1.98 mmol) gave upon recrystallization from MeOH/water a white powder (1.17, 86%); mp 125.9–126.6 °C; ¹H NMR (DMSO- d_6) δ 0.85 (t, 3H), 1.23 (broad m, 38H), 1.50 (broad p, 2H), 1.76 (t, 6H), 2.10 (t, 6H), 3.87 (t, 2H), 6.71 (broad s, 1H), 12.06 (broad s, 3H); ¹³C NMR (DMSO- d_6) δ 13.9, 22.1, 25.4, 28.07, 28.71, 28.74, 29.01, 29.18, 31.3, 55.6, 63.1, 154.5, 174.3; IR 3429, 3161, 2916, 1723, 1680, 1521, 1239, 1028; HRMS (FAB+) calcd for C₃₃H₆₁NO₈ (MH⁺) 600.4475, found 600.4476. Anal. Calcd for C₃₃H₆₁NO₈: C, 66.08; H, 10.25; N, 2.34. Found: C, 65.96; H, 10.49; N, 2.37.

Di*tert*-**butyl 4-(2***-tert*-**butoxycarbonyl-ethyl)-4-pentadecanoylaminoheptanedioate, 3EAm14** The general procedure described in the manuscript afforded a white solid (5.94 g, 76%) ; mp $66.4-67.2^{\circ}$ C; ¹H NMR (CDCl₃): δ 0.87 (t, 3H), 1.24–1.30 (bm, 22H), 1.43 (s, 27H), 1.58 (bm, 2H), 1.96 (m, 6H), 2.08 (t, 2H), 2.21 (m, 6H), 5.77 (s, 1 H); ¹³C NMR (CDCl₃) δ 14.2, 22.7, 25.9, 28.1, 29.39, 29.42, 29.44, 29.58, 29.71, 29.76, 29.89, 30.06, 37.7, 57.3, 80.7, 172.7, 173.0; IR 3362, 2918, 2851, 1718, 1708, 1676, 1536, 1149 cm⁻¹; HRMS: for C₃₇H₆₉NO₇ calcd 640.5152, found 640.5160. Anal. Calcd for C₃₇H₆₉NO₇: C, 69.44; H, 10.87; N, 2.19. Found: C, 69.42; H, 10.87; N, 2.21.

Di-tert-butyl 4-(2-tert-butoxycarbonylethyl)-4-heptadecanoylamino-heptanedioate, 3EAm16

The general procedure described in the manuscript afforded a yellow solid (7.47 g). During the recrystallization of the yellow solid in EtOH/water, a yellow solid formed. The clear, colourless liquid was decanted and left sitting at room temperature. The resulting white solid, 2.74 g, was removed via filtration. The filtrate was placed in a fridge overnight, which yielded a yellow solid (3.76 g). Additional material could possibly be attained from this yellow solid by further purification. The white solid was recrystallized again in EtOH/water, yielding white needles (2.02 g, 25%). This material was used in the subsequent formolysis reactions; mp 64.5–65.3°C; ¹H NMR (CDCl₃) δ 0.87 (t, 3H), 1.25–1.28 (bm, 26H), 1.43 (s, 27H), 1.96 (m, 6H), 2.09 (m, 2H), 2.21 (m, 6H), 5.78 (s, 1H); ¹³C NMR (CDCl₃) δ 14.2, 22.7, 25.9, 28,1, 29.37, 29.42, 29.57, 29.71, 29.75, 29.87, 30.0, 32.0, 37.7, 57.3, 80.7, 172.7, 173.0; IR 3381, 2915, 1729, 1727, 1712, 1671, 1529, 1146 cm⁻¹; HRMS: for C₃₉H₇₃NO₇ calcd 668.5465, found 668.5461. Anal. Calcd for C₃₉H₇₃NO₇: C, 70.12; H, 11.01; N, 2.10. Found: C, 69.77; H, 10.92; N, 2.09.

4-(2-Carboxyethyl)-4-pentadecanoylaminoheptanedioic acid, 3CAm14

The general procedure described in the manuscript afforded a white solid (0.42 g, 74%); mp 164.5–164.8°C; ¹H NMR (CD₃OD) δ 0.89 (t, 3H), 1.28–1.32 (bm, 22H), 1.58 (bm, 2H), 2.02 (m, 6H), 2.16 (m, 2H), 2.26 (m, 6H); ¹³C NMR (DMSO-*d*₆) δ 14.5, 22.7, 26.0, 28.6, 29.16, 29.28, 29.36, 29.54, 29.58, 29.61, 31.9, 36.4, 56.8, 172.6, 175.0; IR 3413, 3070, 2915, 2847, 1725, 1694, 1628, 1517, 1175 cm⁻¹; HRMS: for C₂₅H₄₅NO₇ calcd 472.3274, found 472.3247. Anal. Calcd for C₂₅H₄₅NO₇: C, 63.67; H, 9.62; N, 2.97. Found: C, 63.68; H, 9.67; N, 2.98.

4-(2-Carboxyethyl)-4-heptadecanoylaminoheptanedioic acid, 3CAm16

The general procedure described above afforded a white solid (0.57 g, 80%); mp 168.1–168.7 °C; ¹H NMR (CD₃OD) δ 0.89 (t, 3H), 1.28–1.32 (bm, 26H), 1.58 (bm, 2H), 2.01 (m, 6H), 2.16 (t, 2H), 2.26 (m, 6H); ¹³C NMR (DMSO-*d*₆) δ 14.5, 22.7, 26.0, 28.59, 29.16, 29.27, 29.36, 29.54, 29.61, 31.9, 36.4, 56.8, 172.6, 175.0; IR 3412, 3103, 2915, 1724, 1694, 1628, 1518, 1175 cm⁻¹; HRMS: calcd for C₂₇H₄₉NO₇ 500.3587, found 500.3583. Anal. Calcd for C₂₇H₄₉NO₇: C, 64.90; H, 9.88; N, 2.80. Found: C, 64.65; H, 9.71; N, 2.80.

Reference

1. Newkome GR, Weis CD, Childs BJ. Syntheses of $1 \rightarrow 3$ branched isocyanate monomers for dendritic construction. *Des Monomers Polym* 1998; **1**: 3–14.