≥13 mm, and therefore suggested to use this diameter as the breakpoint for tigecycline susceptibility. In contrast, we used two agar-based methods, Etest and the Kirby–Bauer disc diffusion method, to evaluate the activity of tigecycline against a collection of 82 multidrug-resistant Acinetobacter isolates from Israel belonging to various clones. We found significantly higher MICs (MIC50 16 mg/L) and resistant percentage (66%) compared with data obtained from vast numbers of Acinetobacter baumannii strains performed in previous studies in different regions of the world. We used an inhibition zone diameter of ≥19 mm as a breakpoint and found excellent correlation with an MIC ≤2 mg/L by Etest. Re-examining our data using the 13 mm breakpoint would have resulted in major error of classifying resistant isolates (MIC >2 by Etest) as susceptible in 44% of the isolates.

How can the discrepancy between study results be elucidated? It is possible that Acinetobacter isolates from various parts of the world have different underlying mechanisms of resistance and thus may exhibit different susceptibilities. In addition, it is possible that there is an intrinsic difference in susceptibility testing of A. baumannii to tigecycline when tested by agar-based methods versus broth-based methods with the former yielding higher MICs. Indeed, Thamlikitkul et al.1 mention in their letter that MICs of tigecycline were 4-fold higher when tested by Etest than by broth microdilution.

Until further data are available, these conflicting results and discrepancies between susceptibility testing methods leave us confused regarding the appropriate method and breakpoints that should be used when testing A. baumannii for tigecycline susceptibility.

Transparency declarations

None to declare.

References

Comment on: Can mass media campaigns change antimicrobial prescribing? A regional evaluation study

Samuel Coenen1,2*, Michiel Costers3 and Herman Goossens4,5

1Department of General Practice, University of Antwerp, Antwerp, Belgium; 2Scientific Research Foundation—Flanders, Brussels, Belgium; 3Belgian Antibiotic Policy Coordinating Committee, Federal Public Service for Health, Security of the Food Chain and Environment, Brussels, Belgium; 4Laboratory of Microbiology, University of Antwerp, Antwerp, Belgium and 5Laboratory of Microbiology, Leiden University Medical Center, Leiden, The Netherlands

Keywords: antibiotic use, public campaigns, prescribing behaviour, ambulatory care, Europe

*Correspondence address. Department of General Practice, University of Antwerp, Universiteitsplein 1, 2610 Antwerp,

Figure 1. Antibacterial use in ambulatory care in Belgium from July 1997 to June 2005. The arrow indicates the start of the public campaigns.
Sir,
Lambert et al.\(^1\) reported on the effect of two sequential mass media campaigns, providing information on the appropriate use of antimicrobials. We acknowledge that evaluating such campaigns can be problematic and that uncontrolled observations can be misleading. Nonetheless, as the authors state too, ensuring equivalence of the study groups in a controlled study can also be cumbersome. Given the evidence linking antibiotic use with resistance both at ecological\(^2\) and individual levels,\(^3\) and of the overuse of antimicrobials in many countries,\(^2,4\) we compared the results of their controlled study of a regional intervention with those of national public campaigns in two high consuming countries, France (www.antibiotiquespasautomatiques.com) and Belgium (www.red-antibiotica.org and www.antibiotics-info.be).\(^5,6\)

Before-and-after assessments showed a reduction in new antibacterial prescriptions per inhabitant over a 6 month period of 13\% (19\% in children aged under 15 years) 3 years after the start of public campaigns in France.\(^5\) In Belgium, the antibacterial use expressed in defined daily doses per 1000 inhabitants per day (DID) decreased by 6.5\% (\(P < 0.05\)) and 3.4\% (non-significant) after the first and second campaigns, respectively, yielding a saving/cost ratio of 5.54.\(^5,6\) The effect on the prescribing behaviour of ambulatory care physicians in Belgium might however be underestimated using DID as an outcome measure, because during these years, the content of an average pack increased (both by increase of strength and of pack size). After all, expressing antibacterial use in packages—a proxy for prescriptions—per 1000 inhabitants per day shows an average decrease of 6.9\% (SD = 2.0) for 5 years since the start of the Belgian public campaigns in the 2000–01 winter season (Figure 1).

As their effect in the Northeast of England, France and Belgium is similar, we believe one can be quite confident that public campaigns are (cost)effective interventions to improve antibacterial prescribing on both regional and national levels.

Transparency declarations

None to declare.

References

Correspondence

Belgium. Tel: +32-3-820-2525; Fax: +32-3-820-2526; E-mail: samuel.coenen@ua.ac.be

Sir,

Lambert et al.\(^1\) reported on the effect of two sequential mass media campaigns, providing information on the appropriate use of antimicrobials. We acknowledge that evaluating such campaigns can be problematic and that uncontrolled observations can be misleading. Nonetheless, as the authors state too, ensuring equivalence of the study groups in a controlled study can also be cumbersome. Given the evidence linking antibiotic use with resistance both at ecological\(^2\) and individual levels,\(^3\) and of the overuse of antimicrobials in many countries,\(^2,4\) we compared the results of their controlled study of a regional intervention with those of national public campaigns in two high consuming countries, France (www.antibiotiquespasautomatiques.com) and Belgium (www.red-antibiotica.org and www.antibiotics-info.be).\(^5,6\)

Before-and-after assessments showed a reduction in new antibacterial prescriptions per inhabitant over a 6 month period of 13\% (19\% in children aged under 15 years) 3 years after the start of public campaigns in France.\(^5\) In Belgium, the antibacterial use expressed in defined daily doses per 1000 inhabitants per day (DID) decreased by 6.5\% (\(P < 0.05\)) and 3.4\% (non-significant) after the first and second campaigns, respectively, yielding a saving/cost ratio of 5.54.\(^5,6\) The effect on the prescribing behaviour of ambulatory care physicians in Belgium might however be underestimated using DID as an outcome measure, because during these years, the content of an average pack increased (both by increase of strength and of pack size). After all, expressing antibacterial use in packages—a proxy for prescriptions—per 1000 inhabitants per day shows an average decrease of 6.9\% (SD = 2.0) for 5 years since the start of the Belgian public campaigns in the 2000–01 winter season (Figure 1).

As their effect in the Northeast of England, France and Belgium is similar, we believe one can be quite confident that public campaigns are (cost)effective interventions to improve antibacterial prescribing on both regional and national levels.

Transparency declarations

None to declare.

References

Correspondence

Belgium. Tel: +32-3-820-2525; Fax: +32-3-820-2526; E-mail: samuel.coenen@ua.ac.be

Sir,

Lambert et al.\(^1\) reported on the effect of two sequential mass media campaigns, providing information on the appropriate use of antimicrobials. We acknowledge that evaluating such campaigns can be problematic and that uncontrolled observations can be misleading. Nonetheless, as the authors state too, ensuring equivalence of the study groups in a controlled study can also be cumbersome. Given the evidence linking antibiotic use with resistance both at ecological\(^2\) and individual levels,\(^3\) and of the overuse of antimicrobials in many countries,\(^2,4\) we compared the results of their controlled study of a regional intervention with those of national public campaigns in two high consuming countries, France (www.antibiotiquespasautomatiques.com) and Belgium (www.red-antibiotica.org and www.antibiotics-info.be).\(^5,6\)

Before-and-after assessments showed a reduction in new antibacterial prescriptions per inhabitant over a 6 month period of 13\% (19\% in children aged under 15 years) 3 years after the start of public campaigns in France.\(^5\) In Belgium, the antibacterial use expressed in defined daily doses per 1000 inhabitants per day (DID) decreased by 6.5\% (\(P < 0.05\)) and 3.4\% (non-significant) after the first and second campaigns, respectively, yielding a saving/cost ratio of 5.54.\(^5,6\) The effect on the prescribing behaviour of ambulatory care physicians in Belgium might however be underestimated using DID as an outcome measure, because during these years, the content of an average pack increased (both by increase of strength and of pack size). After all, expressing antibacterial use in packages—a proxy for prescriptions—per 1000 inhabitants per day shows an average decrease of 6.9\% (SD = 2.0) for 5 years since the start of the Belgian public campaigns in the 2000–01 winter season (Figure 1).

As their effect in the Northeast of England, France and Belgium is similar, we believe one can be quite confident that public campaigns are (cost)effective interventions to improve antibacterial prescribing on both regional and national levels.

Transparency declarations

None to declare.

References