with indistinguishable resistance plasmids and indicates a transfer of such strains from animal to meat products, e.g. during slaughtering.

The characterization and comparison of plasmids in this study support the theory of epidemic spread of plasmids being the primary mechanism for dissemination of β-lactamase genes and the existence of a gene reservoir in food products, especially imported food products, that potentially can be transferred via the food chain to humans.

Acknowledgements

We thank Patrice Nordmann for providing strain TK-3 and Berith Kummerfeldt for excellent help.

Funding

This work was supported by grant 274-05-0117 from the Danish Research Agency.

Transparency declarations

None to declare.

References

Journal of Antimicrobial Chemotherapy
doi:10.1093/jac/dkp163
Advance Access publication 9 May 2009

ME1036, a novel carbapenem, with enhanced activity against clinical isolates causing bacteraemic community-acquired pneumonia

Ian Morrissey1*, Don Biek2 and Regina Janes1

1Quotient Bioresearch Limited, Microbiology, Newmarket Road, Fordham, Cambridgeshire CB7 5WW, UK; 2Cerexa, Inc., 2100 Franklin St., Oakland, CA 94612, USA

Keywords: Streptococcus pneumoniae, MRSA, respiratory, susceptibility

*Corresponding author. Tel: +44-1638-722960; Fax: +44-1638-724200; E-mail: ian.morrissey@quotientbioresearch.com

Sir,

ME1036 is a novel investigational parenteral carbapenem with potent in vitro activity against many Gram-positive and Gram-negative pathogens, and improved activity over existing carbapenems against Haemophilus influenzae, Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Streptococcus agalactiae and Streptococcus pneumoniae.1–3 ME1036 is active against resistant isolates of many species, including extended-spectrum β-lactam (ESBL)-producing Enterobacteriaceae, β-lactamase-produces H. influenzae,1 methicillin-resistant S. aureus (MRSA),2,3 and penicillin-resistant S. pneumoniae.4

A recent study confirmed the excellent in vitro activity of ME1036 against multidrug-resistant clones of S. pneumoniae involved in severe invasive disease and indicated a potential role for ME1036 in the treatment of hospitalized patients with severe respiratory tract infections.5 In this current study, we evaluated the activity of ME1036 and comparators against clinical blood culture isolates from patients with bacteraemic community-acquired pneumonia (CAP) requiring hospitalization. These same isolates had previously been used to investigate the activity of cefaroline.6

The following isolates from various worldwide locations between 2000 and 2006 were investigated: 1007 S. pneumoniae, 119 H. influenzae, 164 S. aureus, 38 S. pyogenes and 9 Moraxella catarrhalis. MICs were determined using CLSI broth microdilution methodology.7,8 Susceptibility categories were determined for most antimicrobials using CLSI breakpoints.8,9 Tigecycline susceptibilities were categorized using US Food and Drug Administration (FDA)-approved breakpoints,10 which, amongst the isolates included in this study, are available for susceptible or non-susceptible S. aureus only.

Summary MIC data for ME1036 are shown in Table 1. Like meropenem, ME1036 activity was not affected by the presence of β-lactamase in H. influenzae or M. catarrhalis (meropenem MIC90 0.12 mg/L for β-lactamase-positive and β-lactamase-negative H. influenzae, and 0.06 mg/L for β-lactamase-positive M. catarrhalis). ME1036 retained activity against MRSA, unlike meropenem (MIC90 128 mg/L) and other β-lactam antibiotics tested (ceftriaxone MIC90 ≥256 mg/L, cepfepime MIC90 ≥128 mg/L and amoxicillin/clavulanate MIC90 ≥32 mg/L). Against MRSA, ME1036 demonstrated MIC results similar to those shown by linezolid (both having MIC90 values of 2 mg/L), but both were less potent than tigecycline (MIC90 = 0.5 mg/L). ME1036 was the most active agent of those tested against pneumococci, with 90% of penicillin-susceptible isolates having an MIC of ≤0.008 mg/L. The MIC90 of ME1036 was 0.06 mg/L against penicillin-resistant pneumococci. All S. pyogenes were highly susceptible to ME1036.

These data show that ME1036 is an enhanced-spectrum β-lactam with excellent activity against CAP isolates causing serious invasive infections, including MRSA and other β-lactam-resistant strains. The results of the present study confirm and extend previous findings for ME1036 as reported by others.1–4 ME1036 exhibits a spectrum of in vitro activity that suggests it has the potential to be a useful addition to the treatment options for serious hospitalized CAP patients.
Table 1. Summary MIC data for ME1036

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>MIC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
</tr>
<tr>
<td>β-Lactamase-negative H. influenzae (n=94)</td>
<td><0.008</td>
</tr>
<tr>
<td>β-Lactamase-positive H. influenzae (n=25)</td>
<td><0.008</td>
</tr>
<tr>
<td>β-Lactamase-positive M. catarrhalis (n=9)</td>
<td><0.008</td>
</tr>
<tr>
<td>Methicillin-resistant S. aureus (n=28)</td>
<td>0.12</td>
</tr>
<tr>
<td>Methicillin-susceptible S. aureus (n=136)</td>
<td><0.008</td>
</tr>
<tr>
<td>Penicillin-susceptible S. pneumoniae (n=762)</td>
<td><0.008</td>
</tr>
<tr>
<td>Penicillin-intermediate S. pneumoniae (n=97)</td>
<td><0.008</td>
</tr>
<tr>
<td>Penicillin-resistant S. pneumoniae (n=148)</td>
<td><0.008</td>
</tr>
<tr>
<td>S. pyogenes (n=38)</td>
<td>≤0.008</td>
</tr>
</tbody>
</table>

Acknowledgements

These data were presented in part at the Eighteenth European Congress of Clinical Microbiology and Infectious Diseases, Barcelona, Spain, 2008 (Abstract O487).

We are grateful to Jonathan Curry for his technical assistance.

Funding

This study was funded by a grant from Forest Laboratories Inc., New York, NY, USA.

Transparency declarations

I. M. has accepted grants, speaking invitations and conference invitations from most major pharmaceutical companies in recent years. D. B. is an employee of Cerexa, a wholly-owned subsidiary of Forest Laboratories Inc, and holds stock options in Forest Laboratories Inc. R. J.: none to declare.

References

Boropinic acid, a novel inhibitor of Helicobacter pylori stomach colonization

Eliette Touati1, Valérie Michel1, Marta Correia1,2, Luigi Menghini3, Salvatore Genovese3, Massimo Curini4 and Francesco Epifano1*.

1Unité de Pathogenèse de Helicobacter, Institut Pasteur, 28 Rue du Dr Roux, 75724 Paris cedex 15, France; 2Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; 3Dipartimento di Scienze del Farmaco, Università ‘G. D’Annunzio’, Via dei Vestini 31, 66013 Chieti Scalo, Italy; 4Dipartimento di Chimica e Tecnologia del Farmaco, Sezione di Chimica Organica, Università degli Studi di Perugia, Via del Liceo, 06123 Perugia, Italy

Keywords: H. pylori, chemotherapy, prenyloxycinnamic acid

*Corresponding author. Tel: +39-0871355465; Fax: +39-08713554912; E-mail: fepifano@unich.it