all these reasons, the presence of PMQR in reptiles should be seen as a public health concern.

Acknowledgements
Some of these data were presented in a poster (no. 2881) at the European Congress of Clinical Microbiology and Infectious Diseases, Vienna, 2010.

We thank the NRL-Salm staff for their helpful assistance. We also thank L. Martínez Martínez, L. Poiré, M. Wang, L. Cavaco, D. Aysaroglu and A. Carattoli, for control strains, and F. Aarestrup, D. Mevius and, especially, K. Veldman and L. Cavaco, for the organization of the ‘PMQR’ EURL-AR project.

Funding
This study was funded by the Federal Institute for Risk Assessment, BfR (BfR-46-001; 45-005).

Transparency declarations
None to declare.

Supplementary data
Table S1 and Figure S1 are available as Supplementary data at JAC Online (http://jac.oxfordjournals.org/).

References
solutions (10 or 20 g/L, prepared by dissolving the standard powder doses of 1 or 2 g in 100 mL of water for injection) at room temperature (preparation time ~10 min), and then cooled and maintained at 4 °C in a standard home refrigerator for up to 4 weeks. Every week, three new pumps of each concentration were sampled for testing of stability under storage, and then brought to and maintained at room temperature for an additional 24 h (as would be the case if used to treat a patient), and resampled. Temocillin was assayed by a previously validated HPLC method. Data were analysed by two-way ANOVA (time, concentration and interaction parameters were all statistically significant at P < 0.001) and linear regression. Each relevant data pair was analysed independently by two-way ANOVA followed by Bonferroni post-tests. A limit of stability of 90% was taken, as in our previous studies.

The results are presented in Table 1. At 4 °C, temocillin proved >90% stable for ≥4 weeks. No significant differences were observed between the pumps or the two concentrations tested. Likewise, temocillin remained on average >90% stable for ≥24 h at room temperature after being removed from the refrigerator. Only a minimally faster degradation was seen for the 20 g/L compared with the 10 g/L concentration when using the Intermate® pump, but these differences did not cause the 90% threshold to be reached (except for one replicate after 4 weeks at 4 °C and 24 h at room temperature, but for the 10 g/L concentration only).

In conclusion, temocillin was shown to remain stable in elastomeric devices commonly used for OPAT when stored (up to 4 weeks) and handled as for home-based therapy. By application of a principle of precaution, we would, however, recommend to users: (i) not to store the pumps for >3 weeks at 4 °C; (ii) to install a temperature-monitoring device in the refrigerator where the pumps are stored; and (iii) to strictly limit the storage to 24 h once out of the refrigerator. OPAT with temocillin performed under these conditions may be both helpful and safe for CF patients when Bcc infection is suspected or proven.

Table 1. Temocillin stability in elastomeric devices

<table>
<thead>
<tr>
<th>Storage conditions</th>
<th>Pump</th>
<th>Initial temocillin concentration (g/L)</th>
<th>0 week</th>
<th>1 week</th>
<th>2 weeks</th>
<th>3 weeks</th>
<th>4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°C</td>
<td>Easypump®</td>
<td>10</td>
<td>100 ± 1.6</td>
<td>98.7 ± 1.1</td>
<td>98.5 ± 0.8</td>
<td>96.2 ± 0.9</td>
<td>95.5 ± 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>100 ± 1.0</td>
<td>99.4 ± 0.7</td>
<td>98.3 ± 0.3</td>
<td>96.2 ± 0.6</td>
<td>95.5 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>Intermate®</td>
<td>10</td>
<td>100 ± 1.0</td>
<td>99.6 ± 0.4</td>
<td>97.1 ± 0.7</td>
<td>94.5 ± 0.8</td>
<td>94.8 ± 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>100 ± 3.1</td>
<td>97.7 ± 0.3</td>
<td>95.0 ± 0.2</td>
<td>93.1 ± 0.1</td>
<td>94.1 ± 0.4</td>
</tr>
<tr>
<td>4°C + 24 h at room temp</td>
<td>Easypump®</td>
<td>10</td>
<td>96.4 ± 1.7C</td>
<td>98.1 ± 0.8</td>
<td>97.1 ± 1.2</td>
<td>94.9 ± 0.2</td>
<td>91.1 ± 0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20B</td>
<td>98.5 ± 1.2C,D</td>
<td>98.5 ± 0.6D</td>
<td>96.3 ± 0.4</td>
<td>94.8 ± 0.3D</td>
<td>91.0 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>Intermate®</td>
<td>10B</td>
<td>97.1 ± 1.8</td>
<td>97.8 ± 0.4</td>
<td>98.6 ± 0.5</td>
<td>95.1 ± 0.9</td>
<td>91.5 ± 1.6+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20A,D</td>
<td>96.2 ± 0.5D</td>
<td>95.6 ± 1.7D</td>
<td>96.3 ± 0.3</td>
<td>92.6 ± 1.0D</td>
<td>92.0 ± 1.1</td>
</tr>
</tbody>
</table>

All values are means ± SD (n = 3); only relevant pairwise comparisons (between brand at the same concentrations and storage conditions, among a brand between concentrations, and between storage conditions) were made by two-way ANOVA taking all values in a row. The capital letters A or B indicate rows between which the difference was significant (P < 0.05). The Bonferroni post-test was then used to analyse the corresponding pairs in each column, and pairs with significant differences (P < 0.05) are marked by the capital letters C or D.

Funding

No specific funding was received for this study.

Transparency declarations

S.C. was an employee of Eumedica S.A. N.C.’s salary was paid by the Université catholique de Louvain (pursuant to a contract between the Université catholique de Louvain and Eumedica to support this salary). P.M.T. is an unpaid advisor to Eumedica S.A.

References