Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain

Benjamin A. Rogers, Hanna E. Sidjabat and David L. Paterson*

The University of Queensland, UQ Centre for Clinical Research, Herston, 4006, Brisbane, Australia

*Corresponding author. Tel: +61-7-33465434; Fax: +61-7-33465598; E-mail: d.paterson1@uq.edu.au

Escherichia coli sequence type 131 (ST131) is a worldwide pandemic clone, causing predominantly community-onset antimicrobial-resistant infection. Its pandemic spread was identified in 2008 by utilizing multilocus sequence typing (MLST) of CTX-M-15 extended-spectrum β-lactamase-producing E. coli from three continents. Subsequent research has confirmed the worldwide prevalence of ST131 harbouring a broad range of virulence and resistance genes on a transferable plasmid. A high prevalence of the clone (~30%–60%) has been identified amongst fluoroquinolone-resistant E. coli. In addition, it potentially harbours a variety of β-lactamase genes; most often, these include CTX-M family β-lactamases, and, less frequently, TEM, SHV and CMY β-lactamases. Our knowledge of ST131’s geographical distribution is incomplete. A broad distribution has been demonstrated amongst antimicrobial-resistant E. coli from human infection in Europe (particularly the UK), North America, Canada, Japan and Korea. High rates are suggested from limited data in Asia, the Middle East and Africa. The clone has also been detected in companion animals, non-companion animals and foods. The clinical spectrum of disease described is similar to that for other E. coli, with urinary tract infection predominant. This can range from cystitis to life-threatening sepsis. Infection occurs in humans of all ages. Therapy must be tailored to the antimicrobial resistance phenotype of the infecting isolate and the site of infection. Phenotypic detection of the ST131 clone is not possible and DNA-based techniques, including MLST and PCR, are described.

Keywords: β-lactamases, molecular epidemiology, bacterial infections

Introduction

Escherichia coli is a finely tuned, ubiquitous human pathogen. It is a common cause of urinary tract infection (UTI) and bacteremia in humans of all ages. In addition, it is a frequent cause of varied organ infections, ranging from the biliary system to the CNS. The spectrum of pathology can range from a spontaneously resolving cystitis to life-threatening sepsis syndrome. Not confined to the community, E. coli infection is also a common hospital-acquired pathogen.

Over the past five decades, we have witnessed increasing antimicrobial resistance in E. coli in the community setting. Initially, resistance was described to particular agents, such as ampicillin, trimethoprim, sulphur-based antimicrobials or tetracyclines. More recently, the horizon of resistance has broadened, with the emergence of broad resistance to large families of agents. In particular, plasmid-mediated extended-spectrum β-lactamases (ESBLs) have become prominent in community-onset E. coli infection. In addition to the resulting resistance to most β-lactam antibiotics, ESBL producers are frequently also resistant to aminoglycosides and fluoroquinolones.

There are a variety of reasons for the increased prevalence of antibiotic-resistant E. coli. E. coli is an organism known for its mobile genome and propensity to exchange genetic material. However, the dissemination of ‘clonal’ organisms harbouring resistance is also well documented. Clonal outbreaks of E. coli clinical infection previously described include ‘Clonal Group A’ (CGA) in North America and O15:K52:H1 in multiple nations. It is estimated that 10%–20% of all E. coli UTIs may be caused by a small set of clonal groups. In 2008, two research groups analysing the population biology of ESBL-producing E. coli almost simultaneously described ‘serogroup O25b, sequence type 131 (ST131)’ occurring in multiple countries on three continents. This previously unremarkable molecular clone harboured a CTX-M ESBL gene and a larger armamentarium of virulence genes. Since this discovery in 2008, research has retrospectively documented a ‘pandemic’ emergence amongst ESBL-producing and other antimicrobial-resistant clinical isolates in the middle of this decade. Previous to this, only sporadic isolates of this clone can be identified in multilocus sequence typing (MLST) databases and published series. The rapid and apparently boundless rise of the ST131 E. coli clone is the subject of this review.

Epidemiology

Human infection and colonization

Published research detailing the geographical distribution and antimicrobial resistance of human infection and colonization by E. coli ST131 are summarized in Table 1.

© The Author 2010. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org
Table 1. Geographical distribution and antimicrobial resistance of E. coli ST131 in humans

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Specific location</th>
<th>Date range of samples</th>
<th>Isolate source</th>
<th>Selection criteria used by study</th>
<th>Number of isolates</th>
<th>Percentage of isolates that were ST131 (%)</th>
<th>Percentage of ST131 that were community onset (%)</th>
<th>Percentage of ST131 that were fluoroquinolone resistant (%)</th>
<th>Percentage of ST131 that were SXT resistant (%)</th>
<th>Percentage of ST131 that harboured ESBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multinational1</td>
<td>Europe, Canada and Middle East</td>
<td>2000–06</td>
<td>laboratory collection</td>
<td>ESBL, CTX-M-15</td>
<td>43</td>
<td>42 (18)</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Multinational1</td>
<td>Europe, Asia and Canada</td>
<td>NS</td>
<td>clinical isolates and laboratory collection</td>
<td>ESBL, CTX-M-15</td>
<td>41</td>
<td>88 (36)</td>
<td>39</td>
<td>97</td>
<td>53</td>
<td>100</td>
</tr>
<tr>
<td>Multinational6</td>
<td>worldwide, excluding India/Pakistan and Bangladesh</td>
<td>2004–06</td>
<td>traveller returned from region; majority UTI</td>
<td>ESBL</td>
<td>84</td>
<td>19 (16)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Europe18</td>
<td></td>
<td>2003–06</td>
<td>community-acquired UTI</td>
<td>fluoroquinolone resistant</td>
<td>148</td>
<td>24 (35)</td>
<td>100</td>
<td>100</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Belgium18</td>
<td></td>
<td>2006–07</td>
<td>clinical isolates and UTI</td>
<td>ESBL, CTX-M-15</td>
<td>43</td>
<td>72 (31)</td>
<td>90</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Croatia19</td>
<td></td>
<td>2002–05</td>
<td>clinical isolates and laboratory collection</td>
<td>ESBL, CTX-M</td>
<td>12</td>
<td>42 (5)</td>
<td>NS</td>
<td>100</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>France23</td>
<td>Region</td>
<td>1994–2003</td>
<td>UTI</td>
<td>ESBL</td>
<td>128</td>
<td>6 (8)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>France22</td>
<td>Tenon</td>
<td>2002–03</td>
<td>UTI</td>
<td>non-ESBL + B2 phylotype 3GC resistant</td>
<td>129</td>
<td>3 (4)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0</td>
</tr>
<tr>
<td>France24</td>
<td>2005</td>
<td></td>
<td>community-onset UTI</td>
<td>ESBL</td>
<td>41</td>
<td>15 (6)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>France23</td>
<td>2006</td>
<td></td>
<td>UTI laboratory collection</td>
<td>ESBL</td>
<td>48</td>
<td>21 (10)</td>
<td>10</td>
<td>100</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>France26</td>
<td>Paris</td>
<td>2006</td>
<td>stool samples from healthy volunteers</td>
<td>none</td>
<td>100</td>
<td>7 (7)</td>
<td>100</td>
<td>57</td>
<td>NS</td>
<td>0</td>
</tr>
<tr>
<td>Ireland17</td>
<td></td>
<td>2003–07</td>
<td>majority UTI UTI and bacteraemia</td>
<td>ESBL, fluoroquinolone resistant</td>
<td>371</td>
<td><10</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Italy27</td>
<td>Rome</td>
<td>2006</td>
<td>UTI</td>
<td>ESBL</td>
<td>18</td>
<td>61 (11)</td>
<td>NS</td>
<td>100</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Northern Ireland16,109</td>
<td>Belfast</td>
<td>2004–06</td>
<td>stool samples from residents of LTCFs</td>
<td>ESBL + fluoroquinolone resistant</td>
<td>119</td>
<td>≥54 (≥64)</td>
<td>0</td>
<td>100</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Norway27</td>
<td></td>
<td>2003</td>
<td>clinical isolates</td>
<td>ESBL</td>
<td>45</td>
<td>20 (9)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Spain28</td>
<td>Madrid</td>
<td>2004–07</td>
<td>clinical isolates</td>
<td>ESBL, Amp-C</td>
<td>91</td>
<td>9 (8)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Spain20</td>
<td>Madrid</td>
<td>2006</td>
<td>clinical isolates</td>
<td>ESBL, CTX-M-15</td>
<td>121</td>
<td>6 (7)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0</td>
</tr>
<tr>
<td>Spain21</td>
<td>Lugo</td>
<td>2006–07</td>
<td>majority UTI</td>
<td>ESBL</td>
<td>105</td>
<td>22 (23)</td>
<td>NS</td>
<td>>96</td>
<td>>96</td>
<td>100</td>
</tr>
<tr>
<td>Spain21</td>
<td>Lugo</td>
<td>2007–08</td>
<td>majority UTI</td>
<td>ESBL</td>
<td>249</td>
<td>22 (54)</td>
<td><50</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Spain21</td>
<td>Madrid</td>
<td>2008</td>
<td>UTI</td>
<td>ESBL + fosfomycin resistant</td>
<td>26</td>
<td>92 (24)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>Turkey23</td>
<td>Izmir</td>
<td>2004–05</td>
<td>community-acquired UTI</td>
<td>ESBL</td>
<td>17</td>
<td>6 (1)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Turkey23</td>
<td></td>
<td>2006</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>10</td>
<td>20 (2)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>UK15</td>
<td></td>
<td>2001–05</td>
<td>bacteraemia</td>
<td>fluoroquinolone resistant</td>
<td>10</td>
<td>50 (5)</td>
<td>NS</td>
<td>100</td>
<td>NS</td>
<td>0</td>
</tr>
<tr>
<td>UK12,13</td>
<td></td>
<td>2003–04</td>
<td>clinical isolates</td>
<td>ESBL</td>
<td>287</td>
<td>≥65 (≥188)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>UK14</td>
<td>north-west England</td>
<td>2004–05</td>
<td>UTI and bacteraemia</td>
<td>Cefpodoxime resistant</td>
<td>88</td>
<td>59 (52)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>98</td>
</tr>
<tr>
<td>Country</td>
<td>Year to</td>
<td>Collection Method</td>
<td>ESBL</td>
<td>Fluoroquinolone Resistant</td>
<td>SXT Resistant</td>
<td>3GC Resistant</td>
<td>Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>2004–07</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>103</td>
<td>81 (84)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>2001–05</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>5</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>2000–07</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>67</td>
<td>31 (21)</td>
<td>62</td>
<td>100</td>
<td>67</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>2002–04</td>
<td>bacteriemia</td>
<td>UTI</td>
<td>199</td>
<td>23 (46)</td>
<td>100</td>
<td>96</td>
<td>46</td>
<td><2</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>2004–06</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>41</td>
<td>41 (17)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>2005–07</td>
<td>women with UTI</td>
<td>clinical isolates</td>
<td>353</td>
<td><1 (2)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>2006</td>
<td>women with UTI</td>
<td>clinical isolates</td>
<td>256</td>
<td><3</td>
<td>100</td>
<td>100</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>2003–05</td>
<td>bacteriuria in renal transplant recipients</td>
<td>varied resistance sought</td>
<td>209</td>
<td>46 (96)</td>
<td>57</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>2007</td>
<td>bacteriuria in renal transplant recipients</td>
<td>varied resistance sought</td>
<td>127</td>
<td>17 (54)*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>2007–08</td>
<td>laboratory isolates</td>
<td>ESBL</td>
<td>70</td>
<td>30 (21)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>2008</td>
<td>majority UTI</td>
<td>ESBL</td>
<td>30</td>
<td>53 (16)</td>
<td>NS</td>
<td>100</td>
<td>38</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>2004–06</td>
<td>bacteriuria in renal transplant recipients</td>
<td>varied resistance sought</td>
<td>31</td>
<td>61 (19)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cambodia</td>
<td>2004–05</td>
<td>UTI</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>30</td>
<td>27 (8)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
</tr>
<tr>
<td>China</td>
<td>1998–2000</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>12</td>
<td>≥17 (≥2)</td>
<td>NS</td>
<td>100</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>2002–03</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>142</td>
<td>19 (27)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>2003–07</td>
<td>clinical isolates</td>
<td>ESBL</td>
<td>128</td>
<td>≥30 (≥38)</td>
<td>NS</td>
<td>100</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>2006–07</td>
<td>community-onset UTI</td>
<td>ESBL</td>
<td>129</td>
<td>25 (32)</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>2005</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>21</td>
<td>≥33 (≥7)</td>
<td>NS</td>
<td>100</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>2007</td>
<td>Manila</td>
<td>clinical isolates</td>
<td>ESBL</td>
<td>15</td>
<td>7 (1)</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>1999</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>8</td>
<td>0</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>2007–08</td>
<td>Queensland</td>
<td>majority UTI</td>
<td>ESBL</td>
<td>582</td>
<td>35 (205)</td>
<td>NS</td>
<td>100</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Australia</td>
<td>2008–09</td>
<td>Queensland</td>
<td>clinical isolates</td>
<td>49</td>
<td>31 (15)</td>
<td>NS</td>
<td>47</td>
<td>NS</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Central African Republic</td>
<td>2004–06</td>
<td>laboratory collection</td>
<td>ESBL</td>
<td>10</td>
<td>50 (5)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

NS, not specified by the authors; UTI, urinary tract infection (or bacteriuria if not specified); ESBL, extended-spectrum β-lactamase; LTCFs, long-term care facilities; SXT, trimethoprim/ sulfamethoxazole; 3GC, third-generation cephalosporin.

*≥, < and > are used to estimate when the text does not give an exact number for the relevant isolate.

aEstimated at 17% of entire collection of E. coli isolates.
Europe

ST131 *E. coli* is widely disseminated amongst ‘antibiotic-resistant’ community and hospital-onset *E. coli* in the UK. Originally identified as the ‘CTX-M ESBL-producing UK epidemic strains A–E’, between 2003 and 2004, these strains have subsequently been confirmed as ST131. In one UK region, ST131 comprised 64% of community-acquired and 84% of hospital-acquired cefpodoxime-resistant *E. coli* infections. A UK national study of fluoroquinolone-resistant, non-ESBL-producing *E. coli* bacteremia isolates illustrates the rapid emergence of this strain, with isolates first identified only in 2004. High rates of asymptomatic carriage of fluoroquinolone-resistant ST131 strains have been demonstrated in Northern Ireland nursing home patients. In the Republic of Ireland, ST131 was also widely disseminated amongst CTX-M ESBL-producing *E. coli*. No data exist on ST131 among relatively ‘antibiotic-susceptible’ strains.

The epidemiology of the clone throughout mainland Europe is less well characterized. Current data suggest a heterogeneous distribution of infection and carriage, with prominence of the clone amongst antibiotic-resistant isolates. A collection of fluoroquinolone-resistant *E. coli* from eight European countries showed ST131 comprised 24% of this entire group. However, the number of isolates varied markedly between countries, with Spain and Italy most prominent. Spanish ESBL-producing *E. coli* data from 2004 revealed that 9% of isolates were ST131. A follow-up national study in Spain in 2006 demonstrated that 13% of ESBL-producing *E. coli* were ST131 and that they had a nationwide distribution. More recent data from a single region in Spain found that 22% of similar isolates from 2006–08 were ST131—50% originated from nursing home patients. A study of a single region in Italy found that 61% of isolates selected from a collection with fluoroquinolone resistance and harbouring ESBL genes were ST131. French data demonstrate the emergence of this clone primarily amongst resistant isolates. ST131 was first identified in France in 2001 and it rose to comprise 46% of ESBL-producing *E. coli* from 2006 to 2007 in one series. Nationwide data from community-onset ESBL-producing *E. coli* infections identified that 25% were ST131, although only 1 of 40 patients was felt to have ‘true community-acquired’ infection. Data on non-ESBL-producing *E. coli* from UTIs from 2002–03 revealed that only 3% were ST131, with the authors calculating an overall rate of 1.5% of UTIs caused by this clone. Similarly, carriage of ST131 without CTX-M ESBLs has been identified in 7% of healthy volunteer stools in France. In Norway, 20% of all national CTX-M-producing *E. coli* in 2003 were ST131. Belgian data from 2006 to 2007 demonstrate a high prevalence of ST131 in community-acquired ESBL-producing isolates. All of the CTX-M-15-carrying *E. coli* that were assayed, comprising 62% of all isolates, were ST131.

The epidemiology of other European nations can only be inferred from case reports and smaller studies. Primarily hospital-based outbreaks have been described in Croatia, Portugal, and Germany. The clone has also been identified in Austria, Germany, Hungary, Russia, Switzerland and Turkey.

Two studies comprising UTI isolates, with little antimicrobial resistance, from the years 2005–07, have demonstrated rates of ST131 in isolate collections of <3% and 1%. In contrast, in ambulatory patient isolates selected for fluoroquinolone or trimethoprim/sulfamethoxazole resistance from 2002 to 2004, ST131 comprised 23% of all isolates and 44% of fluoroquinolone-resistant isolates. Blood culture isolates of ESBL-producing *E. coli* from a single region in Canada mirror the UK experience, with emergence of the strain in 2003 and a rapid rise to comprise 41% of isolates from 2004 to 2007. An overall rise in the incidence of ESBL-producing *E. coli* bacteremia was also attributed to the emergence of the clone.

Recent data from North America suggest ST131 as ‘the major cause of significantly antimicrobial-resistant *E. coli* infections in the United States’. A geographically widespread selection of isolates primarily from bloodstream infections suggested that ST131 comprised 67%–69% of isolates resistant to fluoroquinolone or extended-spectrum cephalosporins. In this study, no susceptible samples were ST131. Recent studies from Chicago and Pittsburgh also identified high rates amongst resistant isolates. ST131 comprised 53% of CTX-M ESBL-producing *E. coli* in Chicago and 30% of ESBL-producing *E. coli* in Pittsburgh, with a range of accompanying ESBL genes. ST131 has also been identified in renal transplant recipients and haematology patients in Texas, both of which are groups with high background antimicrobial use.

A single report has identified ST131 in South America. The clone comprised 8% of 28 ESBL-producing *E. coli* hospital-associated isolates from Rio de Janeiro, Brazil.

Asia and the Middle East

ST131 has been frequently identified among antimicrobial-resistant isolates in Japan and Korea. A national survey in Japan identified the clone in 21% of ESBL-producing *E. coli* from 2002 to 2003. Interestingly, a greater genetic diversity within the clone and a greater variety of accompanying CTX-M ESBL genes was found in this region than elsewhere. The clone comprised 33%–63% of fluoroquinolone-resistant isolates from various Japanese regions. Amongst ciprofloxacin-resistant isolates causing community-onset infections in Korea, ST131 comprised 25% of isolates, only 19% of which harboured an ESBL gene.

In a small Cambodian sample, ST131 clones comprised 27% of community-onset UTIs due to ESBL-producing *E. coli* during 2004–05. Infrequent isolates have been detected among larger collections of clinical isolates in China and the Philippines. Faecal carriage was identified in a small number of hospital patients with ESBL-producing *E. coli* in stools in Lebanon. The epidemiology in other Asian countries has been inferred from studies of returned travellers, and from the high proportion of ESBL-producing *E. coli* ST131 isolates from India, Pakistan, Iran and Lebanon. Supporting these data, the SMART study showed remarkably high background rates of 79% ESBL production amongst *E. coli* isolated from intra-abdominal infections in India.

The Americas

The epidemiology of ST131 is well characterized in Canada, with low rates in susceptible *E. coli* and high rates in resistant isolates.

Australia

Two studies from a single region of Australia recently confirmed the presence of the ST131 clone in this country. In one study of
E. coli selected for fluoroquinolone or cephalosporin resistance, 31% of isolates were ST131; <50% were CTX-M producing. In a second study, 35% of fluoroquinolone-resistant isolates from a mix of hospital and community clinics were ST131.

Africa

Little data exist on the presence of ST131 in Africa. Two small samples have suggested high rates amongst ESBL-producing E. coli. In Cape Town, South Africa, 43% of 23 such isolates were ST131 and expressed either CTX-M-14 or CTX-M-15 enzymes. In the Central African Republic, 50% of CTX-M-15-producing E. coli were ST131. A high proportion of ST131 have also been identified in a small number of travel-related ESBL-producing E. coli infections from Africa.

Non-human carriage and infection

ST131 is represented amongst resistant isolates in companion and non-companion animals, although the extent is unclear thus far. A collection from eight European countries confirmed the presence of ST131, comprising 6% of ESBL-producing E. coli isolates recovered from companion animals. Australian data show a surprisingly low incidence amongst fluoroquinolone-resistant isolates from companion animals (7.2% were ST131) compared with humans (35% were ST131). Johnson et al. demonstrated intrahousehold sharing of the clone between domesticated animals; however, transmission from companion animals to humans has not been confirmed.

In non-companion animals, ST131 has been identified among ESBL-producing isolates in seagulls and rats, both of which have close contact with human populations. Two Spanish studies have suggested a low prevalence of the clone amongst poultry and pig farms in that nation. Mora et al. found that the clone comprised 1.5% of E. coli strains recovered from Spanish poultry between 2007 and 2009. Surprisingly, in this study, the prevalence amongst E. coli recovered from retail chicken meat was considerably higher, comprising 7% of strains. In addition, PFGE identified a cluster of poultry and human strains, all of which carried the CTX-M-9 gene and a similar virulence profile, suggesting recent crossover between human and avian hosts. The high similarity of an isolate from raw chicken and two human infections in the same geographical region in Canada was suggestive of transmission from foodstuff to humans. Although these links are tantalizing, there remains to be a solid molecular epidemiological connection between human infection and prior consumption of food containing ST131 E. coli.

Molecular epidemiological observations

Thus far, there are 48 entries of ST131 voluntarily submitted to the largest publicly accessible E. coli MLST database, with isolation dates ranging from 1992 to 2009. Notably, only a handful of other STs have a greater number of entries. This may equally reflect the current interest in ST131 and/or the ubiquity of this ST amongst E. coli. The majority of the isolates originate from human infection, primarily UTIs. In addition, ST131 E. coli from domesticated and farm animals, birds and food produce are also recorded in this database.

Utilizing the discriminating power of PFGE to analyse MLST-defined ST131 isolates has given considerable insight into the origin of the clone. Collections from focal outbreaks and those selected for suspected clonality have confirmed genetic similarity in excess of 85% on PGFE. In contrast, collections with less selected samples from human or animal origin have shown ST131 isolates with considerable diversity (<65% similarity by PFGE), at times unrelated by traditional definitions. Even in such broad collections, small groups of identical or very closely related isolates are identified, often at distant locations. This pattern likely reflects the dual phenomenon of recent divergence of the clone from a common ancestor together with ongoing transmission of the clone. Clinical reports support this hypothesis. There is convincing description of direct transmission between humans and between animals, and, in contrast, of surprising diversity amongst isolates from closely associated patient groups. The ancestry and significance of occasional widely divergent or unrelated ST131 isolates remains unclear.

Elucidating the worldwide distribution, transmission and reservoirs of ST131 is of importance in understanding the potential mechanisms of its dissemination and control. To date, this epidemiology has not been clearly defined. Since the initial descriptions in 2008, research has focused on identifying this strain in particular groups or collections selected for antimicrobial resistance phenotype or epidemiological clustering. There have been fewer opportunities to study this strain in unselected collections of pathogenic and non-pathogenic isolates.

Reservoirs of ST131

Potential reservoirs of ST131, including food or water sources, and travel from nations with a high prevalence of the clone have been proposed as explanations for the rapid emergence of the clone on multiple continents. To date, reservoirs have been detected only at a local level, with high carriage and infection rates in nursing-home residents in several nations. Investigations have only found sporadic isolates of ST131 amongst commercial animals and food sources, although studies are limited. The potential spread of ST131 after introduction from international travellers has only been demonstrated indirectly. Pitout et al. found the highest proportion of ST131 clones amongst travellers with ESBL-producing infections in those returning from the Indian subcontinent and the Middle East. Freeman et al. demonstrated a strong relationship between travel to India and community-onset CTX-M-15-producing E. coli infection in New Zealand. Countries implicated in these reports, such as India and Pakistan, have known high rates of ESBL-producing E. coli infection, but no data on the prevalence of the ST131 clone as yet.

Antibiotic resistance

The ST131 ‘pandemic’ was initially described amongst E. coli harbouring the CTX-M-15 ESBL gene on a relatively homogenous plasmid. Subsequent investigation identified a high incidence of the clone amongst fluoroquinolone-resistant
non-ESBL-producing isolates and a low incidence amongst collections of susceptible E. coli isolates. With further work, many authors have now confirmed surprising diversity amongst key transferable resistance elements, including ESBL genes, fluoroquinolone resistance genes and the plasmid scaffold harbouring them. This diversity amongst a ‘clonal’ E. coli offers insight into the evolution of the clone and its resistance. Lee et al. suggested the acquisition of transferable resistance elements as independent events from ST131 dissemination. However, the timing and sequence of resistance acquisition remains unclear. Potential explanations offered include the spread of ciprofloxacin-resistant isolates, which then acquire a CTX-M gene, or, possibly, the simultaneous spread of clonal organisms and genes.

ESBL and AmpC enzymes

Resistance to β-lactam antibiotics in ST131 can be mediated by β-lactam-hydrolysing enzymes from three Ambler classes (A, C and D) and five distinct families. Among the ESBLs, CTX-M is the most prevalent in ST131, while SHV and TEM have been infrequently detected. Of the AmpC β-lactamases, CMY has been most frequently reported. Carriage of the genes encoding these β-lactamases is usually on a large plasmid (64–160 kb), which frequently carries genes encoding additional non-extended-spectrum β-lactamases, blaTEM-1 and blaOXA-1, and the aminoglycoside-modifying enzyme AAC(6′)-Ib-cr.

CTX-M-15, the enzyme most closely associated with ST131, was first identified in India in 1999. It is now the most widely distributed CTX-M worldwide. The enzyme is responsible for resistance to the penicillins, cephalosporins (excluding the cephapemys) and monobactams. CTX-M takes its name from the enzyme’s propensity to confer a higher level of resistance to cefotaxime than to cefazidime (the M refers to its discovery in Munich). Other CTX-M-type β-lactamases reported in association with the clone include CTX-M-2, CTX-M-3, CTX-M-9, CTX-M-14, CTX-M-27, CTX-M-32 and CTX-M-61. A chromosomal rather than plasmid location of CTX-M-15 amongst ST131 isolates had also been reported and could potentially be a contributing factor in the clonal spread of CTX-M-15-producing ST131 E. coli. The SHV and TEM variants described in ST131 include SHV-12, SHV-5, SHV-7, TEM-24 and TEM-116. Among the ESBLs, CTX-M includes SHV-12, SHV-5, SHV-7, TEM-24 and TEM-116. Greater clonal complexity among plasmids encoding CTX-M-15 is now apparent, with the multireplicons FIA, FIB and FII having been described in CTX-M-15-carrying plasmids of ST131 E. coli. In a Norwegian study of 23 ST131 strains, the CTX-M-15 gene was related to IncFII, FIB and FIA (87%, 44% and 42%, respectively).

The full sequences of two CTX-M-15-carrying plasmids of representative ST131 E. coli have been characterized and demonstrated extensive resistance gene profiles. The plasmid of one isolate, pEK99 (strain A: 117536 bp), a fusion of type FII and
Table 2. ESBL, AmpC and aminoglycoside-modifying enzyme genes carried by E. coli ST131

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of ST131 with extended-spectrum phenotype</th>
<th>CTX-M-3 % (n)</th>
<th>CTX-M-14 % (n)</th>
<th>CTX-M-15 % (n)</th>
<th>Other CTX-M genes % (n)</th>
<th>Other extended-spectrum genes % (n)</th>
<th>% of ST131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple continents</td>
<td>70</td>
<td>99 (69)</td>
<td>50 (4)</td>
<td>CTX-M-1 = 1 (1)</td>
<td>untyped CTX-M = 25 (2)</td>
<td>CMY-2 = 25 (2)</td>
<td>100b</td>
</tr>
<tr>
<td>Australia</td>
<td>8</td>
<td>75 (6)</td>
<td>13 (1)</td>
<td>CTX-M-27 = 13 (1)</td>
<td>CTX-M-27 = 13 (1)</td>
<td>CTX-M-2 = <1 (1), CTX-M-61 = <1 (1)</td>
<td>75b</td>
</tr>
<tr>
<td>Belgium</td>
<td>31</td>
<td>11 (15)</td>
<td>87 (117)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambodia</td>
<td>8</td>
<td>100 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>134</td>
<td>11 (15)</td>
<td>87 (117)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central African Republic</td>
<td>5</td>
<td>100 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>5</td>
<td>100 (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>21 (7)</td>
<td>85 (28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India/Pakistan/Bangladesh</td>
<td>19</td>
<td>100 (19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>11</td>
<td>0</td>
<td>91 (10)</td>
<td></td>
<td>SHV-12 = 9 (1)</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Japan</td>
<td>27</td>
<td>74 (20)</td>
<td>67 (4)</td>
<td>CTX-M-2 = 11 (3), CTX-M-35 = 15 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>6</td>
<td>17 (1)</td>
<td>89 (8)</td>
<td>CTX-M-1 = 11 (1)</td>
<td>CTX-M-22 = 17 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>9</td>
<td>89 (8)</td>
<td>66 (54)</td>
<td>CTX-M-9 = 9 (7), CTX-M-10 = 2 (1), CTX-M-32 = 4 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>82c</td>
<td>10 (8)</td>
<td>66 (54)</td>
<td></td>
<td>CMY-2 = 2 (3), c-AmpC = 5 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>3</td>
<td>33 (1)</td>
<td>66 (3)</td>
<td></td>
<td>SHV-5 or -7 = 8 (3)</td>
<td></td>
<td>63b</td>
</tr>
<tr>
<td>UK</td>
<td>272</td>
<td>19 (52)</td>
<td>81 (220)</td>
<td></td>
<td>SHV-5 or -7 = 8 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>37</td>
<td>14 (5)</td>
<td>78 (29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c-AmpC, chromosomal AmpC gene.
a Isolates selected for CTX-M-15 genotype by researcher.
b Data only available on a selection of isolates from this country.
c One isolate contained CTX-M-14 and CTX-M-15.
Detection of O25b-ST131

The three major characteristics of O25b-ST131 E. coli are its serogroup (O25b), its phylogenetic group (B2) and its ST (ST131). Each of these characteristics has been used to aid detection. Of note, a variety of molecular techniques have been used to determine clonality in previously described clones. The ST131 'pandemic' is amongst the first examples where MLST has been the defining technique in describing a pandemic clone. This technique for detecting ST131 has been used to determine clonality in previously described PFGE groups, and has confirmed a much broader clonality than originally suspected. This increased resolution does complicate comparison of the scope of ST131 to previous outbreaks, however.

MLST

MLST first delineated the pandemic clone and remains the 'gold standard' for identification. This requires the sequencing of pre-specified regions of highly conserved housekeeping genes, allowing comparison of nucleotide sequences with publically accessible databases. Hitherto, two separate schemas for sequencing and classification are available. Achtman et al. defined and continue to maintain the database most frequently utilized in ST131 studies (http://mlst.ucc.ie/mlst/dbs/Ecoli). This scheme is based on the alleles of seven housekeeping genes: adk (adenylate kinase); fumC (fumarate hydratase); gryB (DNA gyrase); icd (isocitrate dehydrogenase); mdh (malate dehydrogenase); purA (adenylosuccinate synthetase); and recA (ATP/GTP binding motif). An alternate E. coli MLST scheme also using seven housekeeping genes, operated by Michigan State University, USA (http://www.shigatox.net/ecmlst), has also been used. All but one of the housekeeping genes used in this scheme differ from the method proposed by Achtman et al.

PCR-based rapid detection methods

Rapid detection methods have been developed to overcome the labour intensity of MLST. Rapid detection of ST131 using a single-nucleotide polymorphism (SNP) method based on only two housekeeping genes from the Achtman MLST schema (mdh and gryB) has been developed. The O25b variants showed the SNP on C288T and C525T for mdh; and on C621T, C729T and T735C for gryB. This method has shown 100% sensitivity. When verified on a broader sample, it is likely that this method can be used as an alternative option to full MLST.

PCR-based methods to detect the phylogenetic and O25 type, followed by the confirmation of selected samples using MLST, have also been used. This technique for detecting the O2 serotype O25b is based on a method originally used to type important E. coli causing septicemia. This O25b typing uses the specific primers rb1bis.f (5'-ATACCGACGACGGCGATC TG-3') and rb2O25b.r (5'-TGCTATTATGCGCCGACG-3'). A more accurate duplex PCR-based method to detect this clone was developed by the same group. This duplex PCR-based detection method for O25b-ST131 uses allele-specific PCR for the pabB gene unique to phylogenetic group B2 subgroup I isolates of O type 25b. The duplex PCR has been successfully used as a rapid screening method for O25b-ST131 E. coli in many countries.

A PCR method on a real-time platform has recently been described. This assay utilizes amplicon melt curve analysis of two regions of the pabB gene. A third amplicon based on the group 1 CTX-M gene can be used to simultaneously detect the presence of bla

Replicative sequence PCR

A semi-automated repetitive sequence-based PCR typing technique (DiversiLab, bioMerieux) has been found to reliably identify the pandemic clone. Although >95% similarity to a known ST131 strain was used to define presumed ST131 by DiversiLab in a Canadian study, other authors have shown that ST131 strains may have similarities as low as 92%.

PFGE

PFGE has been used to determine relationships amongst the ST131 complex, rather than to identify the clone in broader collections. The similarity of ST131 on PFGE depends on the origin of the collection. The majority of ST131 strains have similarities of >80% by PFGE, corresponding to differences of four to six bands. However, a minority of isolates show quite a diverse PFGE pattern. For example, the similarities of ST131 E. coli from the UK, Chicago and Japan were only 73%, 67% and 70%, respectively.

Virulence

E. coli ST131 is primarily an extraintestinal pathogenic E. coli (ExPEC) harbouring virulence genes required for successful pathogenic invasion of a human or animal host. These virulence genes allow the clone to do the following: to attach; to avoid and/or subvert host defence mechanisms within extraintestinal sites; to scavenge limiting nutrients, such as iron, from the host; and to incite a noxious host inflammatory response, cumulatively leading to extraintestinal diseases. The putative virulence genes possessed by ExPEC can be classified into at least five categories based on their function: adhesins; toxins; protectins and/or subvert host defence mechanisms within extraintestinal sites; to scavenge limiting nutrients, such as iron, from the host; and to incite a noxious host inflammatory response, cumulatively leading to extraintestinal diseases. The putative virulence genes possessed by ExPEC can be classified into at least five categories based on their function: adhesins; toxins; protectins (capsule synthesis); siderophores; and other additional virulence genes. There are 10 commonly described virulence genes in ST131 E. coli. They include iha and fimH (encoding the adhesin-siderophore receptor and type I fimbiae, respectively), sat (secreted autotransporter, a type of toxin), kpsM (encoding protectin II, involved in group II capsular polysaccharide synthesis), fyuA and iutA (encoding siderophores involved in synthesis and uptake of ferric yersiniabactin and aerobactin, respectively), usp...
as aspA (pathogenicity island marker). In addition to aspA, Canadian O25b-ST131 E. coli isolates possessed the P fimbriae subunit F10 allele (98%). Unlike the other typical ExPEC E. coli, including CGA and O15:K52:H1 E. coli, O25b-ST131 E. coli did not possess typical fimbriae and pilus tip adhesion molecules for pyelonephritis, such as those encoded by the papA allele, the P fimbriae structural subunit F16 allele and the papG II allele. In Korean isolates, however, the papG III allele was identified in all ST131 studied. The sat gene was present in 95–100% of O25b-ST131 E. coli.

A clinical report of septic shock and empyematosus pyelonephritis, in a previously healthy individual with CTX-M-15-producing ST131, described the presence of these 10 virulence genes plus afa and daa (central region of Dr antigen-specific fimbriae, associated with binding and invasion in the mammalian urinary tract). These latter two virulence genes occurred in ~20% of ST131 isolates tested. The ibeA gene, encoding an invasion determinant associated with neonatal meningitis, has been detected in 34% of non-ESBL-producing ST131 E. coli blood culture isolates from north-west Spain. This gene has only been infrequently reported in other collections.

The ST131 clone has also been identified amongst adherent-invasive E. coli (AIEC) from intestinal and extraintestinal disease. This pathovar, distinguished from other ExPEC strains by a unique phenotype of adhesion and invasion properties, is associated with inflammatory bowel disease. The intestinal AIEC phenotype ST131 carried multiple virulence genes infrequently described in the clone, including papC, hlyA and cnf1.

Clément et al. demonstrated in vitro and in vivo virulence of the ST131 clone. Biofilm formation identified in vitro is a potential contributor to the long-term persistence of the clone in various environments and its resistance to host immune defences. High virulence in a ‘mouse lethality’ model of extraintestinal virulence was speculated to be due to unspecified virulence genes harboured by the clone.

Human infection

The spectrum of clinical infection caused by the ST131 clone appears broadly similar to that of other E. coli. UTI, representing the most common site of human infection with E. coli, is predominant. Description ranges from uncomplicated cystitis to severe infection complicated by bacteraemia, renal abscess and emphysematosus pyelonephritis. Pitout et al. identified a propensity for urinary sepsis above other sites of infection when comparing ST131 and non-ST131 E. coli bacteraemia. Johnson et al., studying urinary tract origin isolates, found no clear correlation between ST131 and any particular clinical syndrome of renal tract infection.

Other sites of infection have included the respiratory tract, ascitic fluid, intra-abdominal abscess, bones/joints and bacteremia without a clinically apparent focus. ST131 has also been reported as a prominent cause of E. coli neonatal sepsis. An exception to the usual spectrum of E. coli infection has been the description of E. coli ST131 pyomyositis amongst patients with haematological malignancy.

Two reports illustrate direct transmission or the sharing of an identical ST131 clone between humans. Transmission of ST131 E. coli from an elderly father with pyelonephritis to his adult daughter after brief contact caused her to suffer a similar illness. Similarly, an identical isolate was recovered from an osteoarticulate infection in a young child and a faecal sample from her mother.

Treatment

As mentioned above, the ST131 clone can harbour a diverse range of antimicrobial resistance mechanisms. Few descriptions of infections with the clone include details of antimicrobial therapy. Isolates harbouring CTX-M genes have been successfully treated with carbapenem alone or in combination with amikacin. For the clinician, even with identification and susceptibilities of a pathogenic E. coli, the ST of the isolate is unlikely to be known. Hence, comment on therapy is based on the commonly encountered antibiotic resistance phenotypes of ST131, which would be expected to respond in a similar manner to other STs with the same antimicrobial phenotype.

Non-ESBL-producing, fluoroquinolone-resistant isolates

Fluoroquinolone resistance is a hallmark of ST131 in many series. Although not harbouring an ESBL gene, such clones frequently carry resistance to other antibiotics. Among UTI isolates, the incidence of co-resistance to trimethoprim/sulfamethoxazole was 42% in Canada, 47% in Korea and 70% in a European collection (including other STs). Carriage of non-extended-spectrum β-lactamase enzymes confers resistance to narrow-spectrum β-lactams, with ampicillin resistance rates ranging from 90% to 94%. Fortunately, almost all isolates not producing ESBLs or AmpC remain susceptible to the third-generation cephalosporins, such as ceftriaxone and cefotaxime. In severe infection with a strain not producing ESBLs or AmpC, these would be potentially reliable treatment options. Oral therapy with an agent such as amoxicillin/clavulanate or trimethoprim/sulfamethoxazole, if susceptibility is confirmed, could also be used in less severe infection, such as uncomplicated UTI.

ESBL-producing isolates

Parenteral therapy

Using older breakpoints, ESBL-producing E. coli isolates may test within the susceptible MIC range to some third-generation cephalosporins. In this circumstance, many regions’ laboratory
standards suggest reporting resistance to these agents due to uncertainty about their efficacy in this setting. Concern arises from studies suggesting poorer outcomes with third- and fourth-generation cephalosporin therapy against ESBL producers. Some authors suggest that β-lactam/β-lactamase inhibitor combinations may be effective where in vitro susceptibility of the isolate is demonstrated. The parenteral combination piperacillin/tazobactam has been used for UTIs and other infections, including bacteraemia, skin infection and pneumonia, although published experience is limited.

Amongst ST131 clones, including those not producing ESBLs, concurrent aminoglycoside resistance is frequent. Reported rates of gentamicin resistance range from 44% amongst non-ESBL-producing isolates in Korea to 86% resistance in CTX-M ESBL-producing isolates. Amikacin resistance is less well characterized, but also present at high rates amongst ESBL-producing isolates. Even in the setting of in vitro susceptibility, uncertainty remains about therapeutic efficacy in severe infections, such as bloodstream infection.

Carbapenems are the treatment of choice in serious ESBL-producing infection. Several studies demonstrate successful therapy of UTI and non-urinary tract serious infection with meropenem or imipenem/cilastatin. Ertapenem, a newer narrower spectrum agent, has a limited body of experience that also suggests successful therapy in ESBL-producing E. coli infection. There is a report of the emergence of carbapenem resistance in E. coli whilst on ertapenem therapy.

Tigecycline is a glycyclcline derived from minocycline with good in vitro activity against ESBL-producing E. coli. There is some uncertainty about its potential drug concentrations achieved in the urinary tract. However, a case report has documented successful outcomes in UTI caused by ESBL-producing E. coli and other highly resistant Enterobacteriaceae. Temocillin, a derivative of ticarcillin with stability to β-lactamase hydrolysis and in vitro activity against the majority of ESBL-producing Enterobacteriaceae, is a potential therapeutic option in this setting. There is limited published experience in the treatment of a variety of ESBL-producing infections.

Oral therapy

The oral combination amoxicillin/clavulanate has been used effectively in uncomplicated ESBL-producing E. coli cystitis when in vitro susceptibility is confirmed. Of note, ESBL strains co-producing the non-extended-spectrum β-lactamase OXA-1 may be resistant to β-lactamase inhibitor combinations.

Fosfomycin is an oral antimicrobial that inhibits cell wall biosynthesis. It has been used for the treatment of ESBL-producing E. coli cystitis with a high success rate. Of concern, a recent report demonstrates a rapid rise in resistance rates amongst ESBL-producing ST131 clones to 22% in Spain, which is closely tied to increasing use of fosfomycin.

Nitrofurantoin is a synthetic nitrofuran antimicrobial with a long history of use in uncomplicated UTI. No papers directly describe the susceptibility of ST131 isolates. Amongst a European collection of fluoroquinolone-resistant non-ESBL-producing isolates, including ST131, 86% were susceptible to this agent. Amongst Spanish ESBL-producing E. coli, 87% were susceptible. It must be noted that nitrofurantoin is only useful in cystitis and not in renal infection per se.

Conclusions

Emerging from ‘molecular obscurity’ in the first decade of this century, ST131 E. coli is now a worldwide pathogen causing potentially severe antimicrobial-resistant infections. Disseminating in conjunction with this clone is resistance to many low-cost and easily available antimicrobials commonly used to treat E. coli infection. Due to the rapid evolution of this worldwide pandemic, relatively little is known about this foe.

Molecular epidemiological study is increasingly describing the clone’s widespread but heterogeneous distribution amongst humans and animals. The vast majority of these data emanate from the developed world. Little is known about the distribution of ST131 in many parts of the developing world, areas suspected to have high rates of infection and which have even been postulated as reservoirs of the pathogen. These areas, in addition, have a population particularly vulnerable to morbidity and mortality from resistant infection due to the limited healthcare resources available.

Two key elements required for potential control on a broader scale as a public health measure require fuller elucidation. The first is a deeper understanding of the genetics of the ST131 clone, including greater insight into why ST131 has become so finely tuned to acquire both resistance and virulence, and to rapidly diseminate on a vast scale. Research in this area should also increase our understanding of the risk of horizontal transmission of mobile resistance elements amongst ST131, between varying E. coli clones and, potentially, to other Enterobacteriaceae. The second element is knowledge of the dynamics of transmission and dissemination of ST131 on a population basis. We have little firm information on many of the classical descriptors of communicable disease control: reservoirs; mode of transmission; incubation period; period of communicability; susceptibility; and methods of control.

Given the rapid spread of the ST131 clone and its demonstrated ability to cause severe infection in otherwise healthy individuals, consideration must be given to the planning of public health measures to attempt to control infection. A parallel could be drawn to community-associated methicillin-resistant Staphylococcus aureus. In order to successfully plan and execute interventions, we will need further information on key aspects of this pathogen and the dynamics of transmission.

Funding

B. A. R. receives funding via a post-graduate research scholarship from The University of Queensland.

Transparency declarations

D. L. P. has previously received research funding from Merck and AstraZeneca and has been a consultant to Merck, AstraZeneca, Johnson and Johnson, Cubist and Leo Pharmaceuticals. Both other authors: none to declare.

References

Review

