Medication information extraction with linguistic pattern matching and semantic rules

Irena Spasić,1 Farzaneh Sarafraz,2 John A Keane,2 Goran Nenadić2

ABSTRACT
Objective This study presents a system developed for the 2009 i2b2 Challenge in Natural Language Processing for Clinical Data, whose aim was to automatically extract certain information about medications used by a patient from his/her medical report. The aim was to extract the following information for each medication: name, dosage, mode/route, frequency, duration and reason.

Design The system implements a rule-based methodology, which exploits typical morphological, lexical, syntactic and semantic features of the targeted information. These features were acquired from the training dataset and public resources such as the UMLS and relevant web pages. Information extracted by pattern matching was combined together using context-sensitive heuristic rules.

Measurements The system was applied to a set of 547 previously unseen discharge summaries, and the extracted information was evaluated against a manually prepared gold standard consisting of 251 documents. The overall ranking of the participating teams was obtained using the micro-averaged F-measure as the primary evaluation metric.

Results The implemented method achieved the micro-averaged F-measure of 81% (with 86% precision and 77% recall), which ranked this system third in the challenge. The significance tests revealed the system’s performance to be not significantly different from that of the second ranked system. Relative to other systems, this system achieved the best F-measure for the extraction of duration (53%) and reason (46%).

Conclusion Based on the F-measure, the performance achieved (81%) was in line with the initial agreement between human annotators (82%), indicating that such a system may greatly facilitate the process of extracting relevant information from medical records by providing a solid basis for a manual review process.

The 2009 i2b2 medication extraction challenge1 focused on the extraction of medication-related information including: medication name (m), dosage (do), mode (mo), frequency (f), duration (du) and reason (r) from discharge summaries. In other words, free-text medical records needed to be converted into a structured form by filling a template (a data structure with the predefined slots)2 with the relevant information extracted (slot fillers). For example, the following sentence: “In the past two months, she had been taking Ativan of 3–4 mg q.d. for anxiety.” should be converted automatically into a structured form as follows:

m="Ativan" || do="3–4 mg" || mo="p.m" || f="q. d." || du="two months" || r="for anxiety"

Note that only explicitly mentioned information was to be extracted with no attempt to map it to standardized terminology or to interpret it semantically.

METHODS
Documents are processed in three steps (see figure 1): linguistic preprocessing, dictionary and pattern matching, and template filling.

Linguistic preprocessing
The goal of linguistic preprocessing is to annotate a document with relevant lexicosyntactic information. It includes sentence splitting,3 part-of-speech (POS) tagging4 and shallow parsing.5 The output produced is an XML document in which XML tags are used to mark up sentences, POS categories of individual tokens (eg, nouns, verbs) and syntactic categories of word chunks (eg, noun phrases, verb phrases). We used the Penn Treebank tag set6 for the annotations used throughout this article (eg, NN, NP, PP).

Dictionary and pattern matching
Documents are analyzed with rules that exploit morphologic, lexical and syntactic properties of the targeted information. As medication names are pivotal for the given information extraction task, we describe their recognition in more detail. We also focus on the recognition of reason as it proved most difficult to model.

Our approach to medication name recognition is primarily dictionary based. We assembled a dictionary of medication names semi-automatically. Medical records were split into sections by matching the most frequent title keywords, based on whether the sections were classified as: diagnosis, medical history, social/family history, physical/laboratory examination, medication list or other.7 The content of medication list sections was analyzed, medication names extracted and added to a dictionary. Additional names were collected from relevant web pages. We shared the lexical resources assembled via the organizers.1 We also exploited the morphology of medication names. We compiled a list of typical affixes (eg, -cycline, -nazole, sulfa-), which were matched against individual tokens, for example matching the suffix -statin extracted atorvastatin, lovastatin, nystatin, etc. Medication names were further expanded to include their form, release, strength, etc. The following are examples of fully expanded medication names: atrovent inhaler, metoprolol succinate extended release, procadia XL, nitroglycerin 1/150, maalox plus extra strength, etc.

Two other dictionaries were assembled to recognize generic medication types: (1) nouns that refer
We applied a similar strategy to assemble relevant dictionaries and define patterns for other types of information. All rules were implemented as expressions in Mixup (My Information eXtraction and Understanding Package), a simple pattern-matching language. Matching Mixup expressions against text spans (ie, token sequences) produces a set of labels, a type of stand-off annotation that associates a span and its category (ie, the rule it matches). We used labels to encode POS tags (eg, NN, CD) or chunk parses (eg, NP) acquired during linguistic preprocessing. These labels were exploited by Mixup rules (eg, a cardinal number followed by a noun from a dictionary of units is labeled as a dosage), which produced an additional set of semantic labels (eg, do for dosage), illustrated here by XML tags: `<do><NP><CD>525</CD><NN>mg</NN></do>`.

Figure 1
The system architecture diagram.

Figure 1 The system architecture diagram.

to medications in general (eg, medication, medicine, drug) and (2) modifiers that imply medication type (eg, antidepressant, blood pressure, cardiovascular). Medication types were acquired from the training dataset by automatically searching for NPs with a head noun (the main noun that is modified by other elements in an NP) from the dictionary (1) and manually curating the modifiers extracted. We processed the UMLS terms with a head noun from the dictionary (1) in the same way. The two dictionaries were combined to recognize different classes of medications, for example, anti-inflammatory drugs, pain medicines, antihypertensive medications, cardiac meds, etc. A controlled list of modifiers prevented the extraction of false positives with similar lexicosyntactic properties, for example, admission medications, home meds, new medicines, recreational drugs, etc.

Recognition of the reason for medication followed an approach that explored nouns and adjectives frequently used to specify diseases and procedures. We compiled the dictionaries of reason-related words based on a subset of UMLS terms from the relevant semantic types: disease or syndrome, therapeutic or preventive procedure, etc. We selected approximately 150 nouns and/or affixes (eg, discomfort, deficiency, swelling, cough, hypore-, -pathy, -itis) and approximately 70 adjectives (eg, chronic, acute, abnormal, atypical, mild, severe, irregular) that can be used to identify a reason. Furthermore, an equivalent of the Latin phrase pro re nata (ie, PRN, P.R.N., as needed) is often followed by the reason, for example, aspirin 600 mg p.o. q4h PRN pain. We automatically extracted the right contexts of such expressions and used them to compile a dictionary of reason phrases as they occurred in the training dataset (eg, upset stomach, SOB, shortness of breath). Finally, a reason is identified either as an exact match on a reason phrase or as an NP that contains a reason-related noun or adjective.

In addition to morphological and lexical characterization of the reason candidates, we exploited their syntactic relation to the co-occurring medication. Medication is often followed by the reason specified as a PP with the preposition for, for example ‘... the patient was given cefuroxime and levofloxacin in the emergency department <PP>for a presumed community acquired pneumonia</PP>...’. Using this rule, we extracted examples such as trace edema, other etiology of her pneumonia, empiric treatment of urinary tract infection, deep vein thrombosis prophylaxis, etc.
contains a given expression is extracted as the reason. For example, in the following sentence:

‘She was restarted on <m>Aldactone</m> with <NP>effective gentle diuresis</NP>.’ Aldactone was recognized as a diuretic, after which the word diuresis from the list of indications was found, and the reason expanded to the NP that contains it, that is, effective gentle diuresis.

Single medication rule
We look for sentences with a single medication assuming that if a potential reason is found it is likely to correspond to the given medication. If no reason is found within the same sentence, we consider the predecessor sentence. If it contains a medication name, then we discard the sentence assuming that any reason mentioned is more likely to refer to the medication in that particular sentence rather than its successor. Otherwise, all reasons found are associated with the medication, for example:

‘Hematocrit checked at that time revealed <r> a significant drop in blood count</r> to 26. The patient was transfused two units of <m>packed red blood cells</m>.’

Anaphora resolution
Phrases such as the pain, this pain, her pain and his pain were often extracted as reasons. While in most cases they do represent a reason, they typically refer to more detailed preceding utterances. In such cases, we attempt to resolve the anaphora (ie, references to previous entities in the discourse). Whenever the/this/her/his pain is extracted, we look for a previously occurring NP that contains the word pain. If found, it is used to replace the reason. In the following example, nitroglycerin was originally associated with the pain:

‘The patient had <NP> recurrent chest pain</NP> which radiated to her right jaw. <r>The pain</r> was relieved with sublingual <m>nitroglycerin</m>.’

It is then replaced by the more informative NP recurrent chest pain found in the preceding sentence.

Deleting side effects
Side effects lexically and syntactically coincide with indications, which occasionally results in incorrectly labeling them as reasons. We applied a set of semantic rules to map medications to possible side effects, which can then be used to filter out some of the false positives suggested as reasons. For example, all NPs that contain a word with a prefix hypo- are labeled as potential reasons. Therefore, using the single medication rule, aspart would be incorrectly associated with the symptoms of hypoglycemia as a reason in the following sentence:

‘His next dose of <m> aspart</m> should be either halved or held as the patient easily becomes hypoglycemic and is unable to recognize <r> the symptoms of hypoglycemia</r> himself.’

However, knowing that hypoglycemia is a likely side-effect of aspart as well as other antidiabetic agents (eg, lantus, humulin, novolin) is used to remove the false positive.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Evaluation results for the three submitted runs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run 1</td>
</tr>
<tr>
<td></td>
<td>P</td>
</tr>
<tr>
<td>m</td>
<td>88.24</td>
</tr>
<tr>
<td>do</td>
<td>90.60</td>
</tr>
<tr>
<td>mo</td>
<td>87.76</td>
</tr>
<tr>
<td>f</td>
<td>88.17</td>
</tr>
<tr>
<td>du</td>
<td>59.81</td>
</tr>
<tr>
<td>r</td>
<td>51.63</td>
</tr>
<tr>
<td>X</td>
<td>85.66</td>
</tr>
</tbody>
</table>

X in the last row indicates a complete entry in the template, that is horizontal evaluation.
system achieved the highest F-measure for the extraction of duration (55%) and reason (46%). Due to the strict annotation guidelines many semantically correct reason examples were counted as errors. Conforming to the guidelines improved both precision (52% to 56%) and recall (42% to 44%) of reason extraction, and thus the F-measure (46% to 49%). Even though the best reason extraction results were achieved in run 1, the best overall performance was achieved in run 2. This implies that the single medication rule may increase the number of correctly recognized reason candidates, but does not necessarily associatively them with the correct medication, while semantic rules provide a good basis for associating medications and their reasons.

Figure 3 compares the performance against the training data (17 documents) and the test data (251 documents). Naturally better performance against the training data can be attributed partly to the medication name recognition module, as the training dataset was used as the main source to compile a dictionary. A failure to recognize a medication name (at least partially) would automatically result in a failure to extract the associated information. This consequently decreases the F-measure achieved for each slot individually as well as the overall F-measure. Figure 4 illustrates this point by comparing the F-measure achieved on the test data by projecting the results onto the recognized medication names only, in which we see consistent improvement across all slots when the corresponding medication name is extracted.

CONCLUSIONS

Machine learning approaches to information extraction may offer easier portability solutions, while rule-based information extraction systems tend to provide reliable results. However, they tend to rely on hand-crafted rules tailored for a specific domain and a task at hand, and thus are not readily re-usable. Nonetheless, most machine learning approaches are probabilistic in their nature, and as such require significant amounts of training data, which are typically expensive to obtain. For example, the first ranked system was machine learning based and trained on a subset of 145 manually annotated documents. On such a scale, the annotation process may be as laborious as the rule engineering. Given that the annotations were provided for 17 training documents only, we opted for a rule-based approach. We successfully demonstrated the potential of rapidly developing high-performing rule-based information extraction systems through semi-automatic analysis of the training data and re-use of domain knowledge from public resources. The performance of our rule-based system was not only comparable to that of the top ranked systems, but also proved superior in extracting relatively sparse information such as duration and reason. Given the short development timescale, we strongly believe that significant improvements are possible, and that performance with an F-measure well over 80% if not 90% seems realistic. The optimal compromise between performance and portability should be achieved by an appropriate combination of machine learning and rule-based approaches.

Funding IS was supported by the BBSRC/EP SRC grant ‘the Manchester Centre for Integrative Systems Biology’. GN and JAK were partially supported by the BBSRC grant ‘Mining Term Associations from Literature to Support Knowledge Discovery in Biology’. The project described was supported in part by the i2b2 initiative, Award Number U54LM008748 from the National Library of Medicine. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Library of Medicine or the National Institutes of Health.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES