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S0: Rationale for a secure and distributed data analysis platform 
 
National and international data protection laws impose restrictions on the processing of personal data. Relevant examples are the US Health Insurance Portability and Accountability Act of 1996 (HIPAA) [21] and the General Data Protection Regulation of the European Union (GDPR) [20]. To process data in compliance with these regulations, a legal basis is needed. In the field of medical research, this is usually an informed consent. However, under the current emerging global health threats, rapid access to large volumes of real-world data is needed, and obtaining informed consent from all relevant patients is not practical. Alternatively, an approach can be pursued that provides guarantees on the level of anonymity for the subjects, i.e., the patients whose data are being processed. However, as mentioned previously, this is also challenging as there is a trade-off between patients’ privacy and data utility. 

The trade-off challenge can be addressed on multiple levels. The Five Safes framework describes one approach to conceptualize relevant safeguards in data sharing infrastructures [1]. First, it must be assured that only safe projects are carried out, e.g., analyzes that respect patient privacy and which are appropriate from an ethical perspective. Second, it must be ensured that only safe people (e.g., trustworthy researchers according to some access policy models like [2]) are provided with access to data.  Third, safe data should be processed, which means that the risks of re-identification should be reduced to an acceptable minimum already on the input data-level. Fourth, safe settings should be used for sharing the data to reduce the likelihood that sensitive data is leaked during processing. Finally, safe outputs should be guaranteed (e.g., by ensuring that the output of analyses does not disclose sensitive personal information). In the European context, safeguards on all five levels are required to fulfill legal requirements for anonymous data processing and simultaneously provide high-quality results. In the US setting, HIPAA security rules cover infrastructure and access control (analogous to safe projects and safe people) and HIPAA privacy rules regulate data sharing and de-identification standards (similar to safe data and safe settings).

Both the approaches of the data-sharing initiatives (centralized vs. decentralized) and the approach proposed by SCOR address safe people and safe projects; e.g., by incorporating strong authentication and authorization as well as contractual agreements. On the remaining safes, however, there are significant differences. Decentralized and distributed approaches put a strong emphasis on safe data, in that they require that only anonymized data be contributed. Hence, additional technical safeguards that provide safe settings and safe outputs are less important. However, only a small set of analyzes can be implemented on anonymized data and only data obfuscation can be used to protect the output of local sites, which is known to decrease utility if true anonymity is required.

As a platform requirement, the safe projects and safe input dimensions must be addressed at the consortium level. Therefore, the SCOR consortium will put in place mechanisms to decide which research projects can be conducted on the SCOR platform based on legal, moral, and ethical considerations surrounding the use of the data. Subsequently, it will decide what data the participating institutions will have to contribute to the SCOR platform to reach the goals set by the selected projects, according to the data minimization principle. The safe people dimension must be addressed both at the consortium and platform levels. Indeed, the SCOR consortium is in charge of identifying who and how can access the data managed by the SCOR platform and the related analysis results, by awarding researchers different levels of privileges. On the other hand, the SCOR platform must provide access control functionalities that allow enforcing the access control policies set at the consortium level. Eventually, the safe settings and safe outputs dimensions must be addressed at the platform level. The SCOR platform must provide technological safeguards to minimize the risk of information leakage from unintended data disclosure and from the analysis results. 
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	Institutions
	Number of COVID-19 patients
positive (negative)
	EHR system
	Common Data Model / Ontology support
	Notes

	Scripps Research Translational Institute
 
	1,000 
	EPIC
	i2b2 / ACT
	General

	Mass General Brigham
 
	10,000
	EPIC
	i2b2 / ACT
	-

	University of Texas Health Science Center at Houston (UTHealth)
 
	104 (1756)
	Allscripts
	I2b2 / ACT, OMOP, 
PCORnet
	Outpatient

	Memorial Hermann TMC (teaching hospital of UTHealth) 
 
	340 (5737)
	Cerner
	-
	Inpatient & Outpatient

	Houston Methodist Hospital 
 
	1030 (9361) &
[bookmark: _gw0n3h1he8es]540  (10129)
	EPIC
	i2b2 / ACT
	Inpatient & Outpatient

	Baylor College of Medicine
	49 (1430)
	EPIC
	-
	General

	[bookmark: _vk04ymf5isq]University of Washington
 
	1,500 (30,000)
	Epic & Cerner
	OMOP
	Inpatient & outpatient

	Charité, Berlin 
 
	300
	Cerner
i.s.h.med
	i2b2 
	Inpatient & Outpatient

	Lausanne University Hospital 
 
	557
	Multiple systems
 
 
	i2b2
	Inpatient & Outpatient

	Geneva Univ Hospital
Oncology 
 
	46
	In-house
	i2b2
	-

	Fondazione IRCCS Policlinico San Matteo, Pavia
 
	1200
	-
	REDCap
Hopefully, i2b2 in the near future
	Pavia's COVID-19 Registry

	IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano
	900
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	nCoV-ICU registry
COVID-Network registry

	[bookmark: _kwx2sdiehu5s]Fondazione IRCCS ICS Maugeri Pavia,
 
	400
	-
	i2b2
	Pulmonary rehabilitation, cardiological rehabilitation

	ASST Pavia 
 
	1700
	-
	Hospital information system
	-

	Bar-Ilan University, Israel
[bookmark: _12kz09jm7yh0]& Leumit HealthCare System, Israel
 
	2,200 (22,000)
	-
	Leumit Health Care System, Israel
	Positive/negative/patient registry

	EPFL, Lausanne
 
	-
	-
	Provider of the SCOR information-sharing software solution (MedCo)
	-

	Kano-Emergency Operations Center, Nigeria
	348 (55)
	-
	-
	General
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In order for MedCo to generate interoperable exploratory queries and analytics (i.e., a query should run across the entire network), every site must have a consistent method of representing the data. We will support two major Common Data Models: i2b2 [3,4] ACT (developed on the open-source NIH-funded Informatics for Integrating Biology & the Bedside data warehousing platform, used at over 200 institutions worldwide) and OHDSI [5] OMOP (adopted by Observational Health Data Sciences and Informatics, a multi-stakeholder, interdisciplinary collaboratory). See Appendix S3 for a description of data models.

For the SCOR initiative, we first defined a minimal dataset that will allow researchers of the consortium to conduct COVID-19 research for the use cases discussed in this manuscript while minimizing initial ETL effort for sites. This minimal dataset is outlined in Appendix S4. The minimal dataset strategy also allows us to incrementally increase the content and type of data over time as required by analytic projects. 

i2b2 uses a flexible “ontology” system, which is used to develop hierarchies representing medical data at varying levels of granularity (e.g., an entry for Diabetes might have children nodes for Diabetes Mellitus and Diabetes Insipidus). Concepts do not necessarily reflect the underlying data, and the ontology elements must be mapped to a set of codes in each instantiated i2b2 database. (For example, a “COVID-19 positive test” concept could correspond to many local codes or even algorithmically derived codes.) Although this adds complexity, this level of indirection allows reusable data without multiple transformations [6]. 

The Accrual to Clinical Trials Network (ACT) [7] has already accomplished this ontology work at over 50 sites in the United States. They have developed a comprehensive ontology of nearly ten million data elements, covering many common EHR-oriented domains, and sites have mapped their local codes to these data elements. This covers a superset of the data we require for our minimum dataset (see Appendix S3), so our first wave will focus on i2b2-ACT. ACT sites will be immediately supported, and non-ACT i2b2 sites will implement a subset of the ACT ontology, corresponding to our minimum dataset. 

SCOR will next support sites that use OMOP, by leveraging existing work to run i2b2 on OMOP. Because of the similarities of OMOP to i2b2, it is possible to define an i2b2 ontology that redirects the system to query from OMOP tables [8].  Because a version of the ACT ontology already uses OMOP codes, we believe it will not be difficult to modify the ACT ontology to run against an OMOP warehouse. Because OMOP data are already mapped to standard codes, most installations will use this ontology without modification.

Sites who have not yet installed i2b2 or OMOP will need to convert a subset of their claims and EHR data to one of these CDMs to facilitate multi-site querying. The conversion will be performed in stages, where the first stage will focus on structured clinical data required by our minimal data set. The second stage will include the conversion of concepts from free-text clinical reports to relevant structured fields (e.g., lab test, procedure, and diagnosis codes) by leveraging natural language processing tools. Please refer to appendix S5 for more details in this respect.
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	Common data model (CDM)
	Explanation (excerpts from the CDM portals and the final CTSA Common Metric Operational Guideline[footnoteRef:1]) [1:  https://clic-ctsa.org/sites/default/files/Informatics%20Common%20Metric%20(ICM)%20OG%20-%20FINAL%20-%206.28.2018.pdf ] 


	OMOP[footnoteRef:2] [2:  https://www.ohdsi.org/wp-content/uploads/2014/07/OHDSI-Tutorial-PreFinal-mod.pdf ] 

	The Observational Health Data Sciences and Informatics (OHDSI) program is a multi-stakeholder, interdisciplinary collaborative to create open-source solutions that bring out the value of observational health data through large-scale analytics. OHDSI has established an international network of researchers and observational health databases with a central coordinating center housed at Columbia University.

	PCORnet CDM[footnoteRef:3] [3:  https://pcornet.org/wp-content/uploads/2019/09/PCORnet-Common-Data-Model-v51-2019_09_12.pdf ] 

	The National Patient-Centered Clinical Research Network (PCORNet) created the Common Data Model in 2014 for use among its participating networks. The CDM makes it easier for communities (in this case the PCORnet networks) to share information with each other by setting common definitions and organizing data.

	i2b2/ACT CDM[footnoteRef:4] [4:  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977612/] 

	i2b2 is an open-source clinical data warehousing and analytics research platform used at over 250 locations worldwide. i2b2 enables sharing, integration, standardization, and analysis of heterogeneous data from healthcare and research.
The Accrual to Clinical Trials (ACT) common data model is an information model specification on the i2b2 data model, and it provides a queryable definition of over one million data elements commonly found in EHRs. The ACT model is used by >50 locations in the US.

	TriNetX[footnoteRef:5] [5:  https://www.trinetx.com/ ] 

	TriNetX is a global health research network that connects healthcare organizations (including CTSAs), biopharma, and contract research organizations. The TriNetX platform enables cohort identification and hypothesis generation based on clinical data that can currently be sourced from a common data model (i2b2, OMOP, etc.), flat files, or via NLP of narrative documents.
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The initial dataset will cover essential COVID-19 related elements commonly available in structured data, including demographics, vitals, conditions, medications, and lab tests, with those specific to the use cases described herein taking a priority. We selected primarily codes available in billing systems to choose a common denominator (e.g., ICD-10). This was complicated somewhat by the international nature of this collaboration. We did define minimally important non-billing data: laboratories related to COVID-19, demographics, vital signs (not including inpatient continuous monitoring). Although this might not be available at all sites, it is important to include for meaningful research, and most sites with data warehouses offer this information (though not always mapped to a standard format). We only included in-hospital mortality and length of stay for outcomes because other desirable outcomes (ICU, intubation) are not reliably defined in a standard way. A future project phase will integrate these concepts. 
 
[bookmark: _oyvm1phwhnaq]S5. NLP Enrichment [first multilingual platform]
 
The second stage will include the conversion of concepts from free-text clinical reports to relevant structured fields (e.g., lab test, procedure, and diagnosis codes). Much of the detailed patient information that is required for clinical research could be embedded in clinical narratives, such as clinic notes or discharge summaries. For example, many COVID-19 studies require extracting signs and symptoms such as a history of fever, chills, and headache (e.g., at home), which are only available in clinical documents. Thus, natural language processing (NLP) tools are needed to extract such information to supplement structured data for COVID-19 research. In the current CDMs for observational studies (e.g., OMOP [9]), there are tables designed for storing textual data and outputs from NLP tools. We will leverage these efforts and further validate and extend such models. One particular challenge for utilizing textual data on the SCOR platform is that they are from different countries using different languages. To the best of our knowledge, there is so far no single NLP system that can handle multilingual clinical texts. Many systems have been developed for English text, including several general clinical NLP tools such as MetaMap [10], cTAKEs [11], and CLAMP [12], ProtFUS [13] and some tools are also available for languages such as French and Spanish. Nevertheless, more efforts are needed to develop NLP solutions for other languages such as German and Italian, which will be one of the contributions from SCOR.
[bookmark: _uaf7yw41lxwu]S6. Supported/envisioned privacy-preserving analytics
 
In the United States, the National Institutes of Health (NIH) has supported the effort to host the yearly iDASH (integrating Data for Analysis Anonymization, SHaring) [14] genomic privacy and security competition. In 2017, the secure genome task in the competition was to build a logistic regression model on encrypted data. While prior works adapted hybrid approaches with other cryptographic primitives [15] or interactive protocol between the data owner and the server [16], this challenge is to provide a non-interactive solution so that it enables us to securely outsourcing not only the data but the computation. Leveled homomorphic encryption schemes (e.g. BFV [17] and CKKS [18]) were used to efficiently build the logistic regression model [19–21]. In particular, the secure logistic regression model [20] takes advantage of the built-in homomorphic rounding operation to support floating-point arithmetic on encrypted data. The follow-up [22] showed a remarkable performance that it takes about 3.6 minutes to train a logistic regression model on encrypted data consisting of 1579 samples and 18 features. A similar study was done by Chen et al. [23] to apply the bootstrapping technique for refreshing noisy ciphertexts and supporting flooring operation at a time. 
 
Distributed regressions, including distributed logistic regression models and Cox proportional hazard regression models, have been previously developed and deployed to pSCANNER (patient-centered SCAlable National Network for Effectiveness Research). More recently, non-iterative distributed algorithms for binary [24] and time-to-event outcomes  [25] have been proposed and validated using real-world data in OHDSI settings, where only one-round of communication across hospitals is needed. Multi-party homomorphic encryption and additional privacy-enhancing technologies can be added to these algorithms.
[bookmark: _suxetrmta1f3]S7. Access control and accountability 
MedCo comes with fine-grained user-role management, which enables access control specification and enforcement (safe people). To use MedCo, new users need to be authorized by their home institutions, which will grant or refuse access depending on internal regulations. If the access is granted, the institutions will also assign them a role, corresponding to an authorization level that pertains to the kind of operations they are allowed to perform in MedCo. Indeed, while it is impossible for MedCo users to have direct access to the data stored in the platform, they could still infer them from the results of the queries they submit to the system. For this reason, MedCo limits the number of queries that a user is allowed to perform and modulates the richness and precision of the results depending on the authorization level linked to the user’s role (safe outputs) [26]. Role assignment is, therefore, a delicate task that must be carefully carried out, notably by granting different levels of privileges to users, depending on their trustworthiness. The institutions participating in MedCo must agree, in a joint manner, on how to perform this task.
 
Furthermore, MedCo supports auditing by maintaining a ledger of accesses that enables a constant tracking of who accessed which information. This ledger is managed on a private blockchain, thus requiring disproportionate effort for falsifications. The information contained in such a ledger can be used in the case that some event requires investigation. For example, it can be used to check whether a researcher abused her access rights by trying to run several targeted queries aimed at re-identifying or inferring sensitive attributes about a specific individual.
[bookmark: _uf8lcdv99o8b]S8. SCOR deployment plan

We plan to deploy the MedCo decentralized analytical platform in two phases, corresponding to the different sets of functionalities it will deliver.
 
In the first phase, the platform will provide what we refer to as the MedCo-Explore functionality, which can be used for secure cohort exploration and patient recruitment on claims data. The MedCo-Explore functionality enables the user to select a patient cohort by querying the system with a set of inclusion and exclusion clinical and/or genomic criteria of her choice and to obtain aggregated counts on the selected cohort. An example query is "How many COVID-19 patients included in the database are more than 50 years old, are male and have been treated with Chloroquine or Hydroxychloroquine?" Once the user has selected her criteria, the interface informs her of how many subjects comprise the matching population in the consortium. A possible answer to the example query is “219 in the consortium” where only the global count is returned. The type of answer each user can obtain depends on her role and the corresponding trust level. 
 
In the second phase, the platform will also provide the MedCo-Analysis functionality, which can be used for distributed and secure cohort analysis on claim data and clinical COVID-19 data. The MedCo-Analysis functionality enables the user to make sophisticated queries on selected cohorts. For example, the user can ask MedCo to provide the overall survival rates within the identified group of individuals for different types of treatment or other stratification factors (e.g., age, gender, initial diagnosis). In all cases, the user making such queries never has access to patient-level medical records. 
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[bookmark: _s3thsmkqqk0z]WP1 - Overall coordination
[bookmark: _pfvyco1sydy]WP2:  Infrastructure and deployment: 
Provisions the machines and the network resources needed at each site to interconnect all the nodes and enable the execution of the encrypted computations across the consortium network world-wide.
[bookmark: _re58y08vqtzf]WP3: data sets and interoperability: 
Defines the common data formats for coding the information from COVID-19 patients, so that they can be interoperable across the whole network. For this purpose, it relies on global standards such as OMOP and the minimum datasets defined by the World Health Organization (WHO). The first step consists in reaching interoperability on claims data.
[bookmark: _d0vz8gewzhff]WP4: clinical research protocols:
Defines the research protocols on COVID-19 data, to identify useful patterns and interdependencies, and to model the virus progression, the development of immune responses, and the effectiveness of several treatments depending on the patient's features.
[bookmark: _l8pbhad8e2t5]WP5: privacy-preserving analytics:
Adapts and customizes the privacy-conscious mechanisms (based on multi-party homomorphic encryption and additional privacy-enhancing technologies) that enable the execution of the research protocols on end-to-end protected data, in a way that individual data never leaves the premises or the control of the data owner.
[bookmark: _bdg4lpz431mw]WP6: Governance and ethics
Form a governance board to oversee ongoing research projects, develop ethics guidelines for the consortium, and keep track of authorized users and proceed as far as possible, for any inclusion, correction, alteration, or revocation. 
 
[image: ]
[bookmark: _xty78os67pyh]Figure 3. Deployment plan organization is broken down in six work packages
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