Supplemental Material

To accommodate a finding of significant group differences in parental education levels we conducted additional analyses on a subsample stratified for parental education. This was done to ensure that group differences in IQ scores did not result from variation in parental education. For this, we sequentially allocated cases from a randomized sequence of child identifiers to each stratum study group combination until no cases were left to maintain an approximately equal strata ratio within each study group (1). More specifically, this procedure included the following steps: First, we randomized the sequence of all participants. Second, we sequentially allocated each participant to its respective study group. Third, at each step during this re-allocation procedure, we checked for a strata imbalance in the respective study group (relative to the strata ratio in the original PP/non-GC group). If such an imbalance had occurred, the respective participant was not allocated but retained for creating another randomized participant sequence. The outlined procedure was iteratively repeated until no participant was left to resolve the strata imbalance. The remainder of participants was discarded.

Despite the loss of power, analyses of the stratified sample yielded highly similar results to those observed for the overall sample. As observed in the overall sample, ANOVA revealed significant differences in IQ scores between the three groups ($F_{2,148}=4.1$, $P=0.018$, $\eta^2=0.05$, Suppl. Figure 1). Again, post-hoc testing indicated lower IQ scores in the PP/GC group ($P=0.022$, $\eta^2=0.06$) and by trend also in the PP/non-GC group ($P=0.069$, $\eta^2=0.03$) compared to controls, whereas no differences were observed between PP/GC and PP/non-GC children ($P=0.53$).
Supplemental Figure 1: Mean IQ scores (± SD) for the PP group with sGC treatment (PP/GC), the PP group without sGC treatment (PP/non-GC), and controls within the subsample stratifies for parental education level, *, $P \leq 0.07$, **, $P \leq 0.01$.

References