Noncanonical RNAs From Transcripts of the Drosophila muscleblind Gene

JONATHAN M. HOUSELEY*, ZAIDA GARCIA-CASADO*, MAYA PASCUAL, NURIA PARICIO, KEVIN M. C. O’DELL, DARREN G. MONCKTON, AND RUBEN D. ARTERO

From the Department of Genetics, University of Valencia, Doctor Moliner 50, 46100 Burjasot, Valencia, Spain (Garcia-Casado, Pascual, Paricio, and Artero); and Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College Complex, 56 Dumbarton Road, Glasgow G11 6NU, UK (Houseley, O’Dell, and Monckton). Jonathan M. Houseley is now at The Wellcome Trust Centre for Cell Biology, Michael Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK; and Zaida Garcia-Casado is now at the Department of Haematology, Hospital Universitario La Fe, Valencia, Spain.

Address correspondence to R. D. Artero at the address above, or e-mail: ruben.artero@uv.es.

*These authors contributed equally to this work.

Abstract

It has become increasingly evident that eukaryotic cells produce RNA molecules from coding genes with constitutions other than those of typically spliced mRNA transcripts. Here we describe new cDNAs from the Drosophila melanogaster muscleblind (mbl) locus that identify two such atypical RNA molecules: RNAs containing an incomplete exon 2 tandem repetition (mblE2E2#) or having exons with a different order compared to the corresponding genomic DNA (mblE2E3#E2; exon scrambling). The existence of exon duplications and rearrangements in the genomic locus that might explain such cDNAs was ruled out by genomic Southern blotting and in silico analysis of the Drosophila genome sequence. The incomplete exon 2 tandem repetition was confirmed by sequencing reverse transcriptase-polymerase chain reaction (RT-PCR) products, rapid amplification of cDNA ends, and detection of a band consistent with cDNA sizes in total RNA northern blots. RT-PCRs with exon-specific primers downstream of exon 2 were unable to amplify products other than those expected from canonical mbl isoforms, thus indicating that no other exons were efficiently spliced downstream of exon 2. Moreover, mblE2E2# transcripts seem to be poorly polyadenylated, if at all, and behave aberrantly in a polyacrylamide gel electrophoresis (PAGE) mobility assay. Taken together, lack of polyadenylation, lack of downstream splicing events, small size of mblE2E2#, and PAGE behavior all suggest that these noncanonical transcripts may be circular RNAs. The functional implications for these noncanonical transcripts are unclear. A developmental expression profile of mblE2E2# revealed an almost constant expression except during early embryogenesis and early adulthood. The protein putatively encoded is unlikely to be functional because an in-frame stop codon occurs almost immediately after the splice site. Such noncanonical transcripts have previously been observed in vertebrates, and these data provide the first experimental evidence for similar phenomena in invertebrates.

Transcript heterogeneity is a feature of many genes and one that serves in many cases to facilitate additional functionality. Several mechanisms, which occur at both the DNA and RNA levels, have been shown to contribute to this heterogeneity, all of which involve either the rearrangement of sequences within a genome or the use of alternative signals in contiguous RNA. However, the basic requirement to maintain the linear order of gene sequences in RNA transcripts has been challenged in recent years by the description of noncanonical RNA molecules. Some of these molecules differ from canonical mRNAs in having tandem duplications of one or more exons in the context of a typical mRNA in the absence of duplications or rearrangements in the DNA. Such exon repetition events have been proposed to constitute a new pathway for transcript heterogeneity and not to arise from trans-splicing as previously assumed (Rigatti et al. 2004). Through serendipity, only a small number of human and rat genes have been found to contain this specific pattern of repetition, the best-studied examples being the rat COT and Sa genes (Caudevilla et al. 1998; Frantz et al. 1999; Rigatti et al. 2004). Exon repetition has been shown to be allele specific, thus suggesting that it is a cis-acting property of the allele rather than a by-product of the splicing machinery (Rigatti et al. 2004). The detection of a larger protein product from the COT gene suggests that in some cases the repetition might have a biological role (Caudevilla et al. 1998).

The linear layout of genomic sequences is also altered in transcripts showing exon scrambling, in which exons are
Materials and Methods

cDNA Isolation and Characterization

A 12- to 24-h embryonic cDNA library from an isogenic second chromosome stock dlp in brw (Brown and Kafatos 1988) was screened using a 0.6-kb HindIII genomic fragment, containing most of the mbl exon 2, by following standard procedures adapted to the use of nonradioactive probes (Ausubel et al. 1992; Roche Molecular Biochemicals, Mannheim, Germany). Six cDNAs were isolated, and their ends were manually sequenced with the use of Sequenase (United States Biochemical, Cleveland, OH). Sequence analyses were performed with programs from the GCG bioinformatics package (Genetics Computer Group, University of Wisconsin).

Reverse Transcriptase-Polymerase Chain Reaction Amplification and Rapid Amplification of cDNA Ends

Total RNA from Oregon-R wild-type strain was prepared by the guanidinium isothiocyanate method (TriReagent, Sigma, St. Louis, MO), and contaminating genomic DNA was eliminated by incubating with RNase-free DNaseI for 15 min at 37°C. cDNA was made from 1 μg RNA using the AMV reverse transcriptase (RT) kit (Roche Molecular Biochemicals) following the manufacturer’s recommendations for oligo(dT)-primed synthesis. Of the 20 μl cDNA synthesis mixture, 2 μl was directly used for polymerase chain reaction (PCR) amplification. Primers used for PCR amplification were as follows: B, 5’-CCCGAGGGCTTTGTAATCC-3’; A, 5’-GCTGATAGGCTGCTAT-3’; E3, 5’-TTCCCCTCAGGGGCTTCTTCTT-3’; E4, 5’-GACGCGGTTTTATCTACGCT-3’; and E5a, 5’-ACGCCTGCACTTCGACTG. For the primer combination A and B, cycling conditions were denaturation for 30 s at 94°C, annealing for 30 s at 55°C, and extension for 1 min at 72°C. Thirty amplification cycles were performed in a total volume of 20 μl. For all other primer combinations, the annealing temperature was 50°C.

For rapid amplification of cDNA ends (3’ RACE), RNA isolated as above was reverse transcribed from ADAPTdT (5’-CGAGGAGGATGACGAGGAAGCAGCCTTTTTTTTTTTTTTTT-3’) using SuperScript II (Invitrogen, Carlsbad, CA) and amplified using mblF2 (5’-CTATAAACCCTAAGATCTATGGCC-C3’) and X45 (5’-CGAGGAGGAGATGGTCGACGG-3’), with 35 cycles of 94°C for 45 s, 60°C for 45 s, and 72°C for 3 min. Products were gel purified and cloned into pGEM T-Easy (Promega, Madison, WI) for sequencing. Existence of rearranged exon 2 was assessed in developmentally staged cDNA reverse transcribed from random hexamers with SuperScript II using primers mblF5 (5’-GGATTCGCGCTGGATTCCTGGG-3’) and mblXR (5’-GCTTGTCGCTGGCTAGCTG-3’); PCR conditions were as above, except the extension time was reduced to 1 min.

Northern Blot Analysis

RNA samples (1 μg total Oregon-R RNA or 200 ng poly(A)+ RNA isolated with a Dynabeads® mRNA Direct™ kit) were denatured at 85°C for 10 min in 0.2% sodium dodecyl sulfate,
snap chilled, and separated through a 1.5% tris-acetate EDTA agarose gel with 20 mM guanidine thiocyanate and 200 ng/ml ethidium bromide. The RNA was transferred onto a nylon membrane in 20°C standard saline citrate and hybridized with digoxigenin-11-dUTP-labeled antisense riboprobes to mbl and rp49 at 68°C in EasyHyb (Roche Molecular Biochemicals).

For PAGE analysis of mblE2E2, 10 lg total Oregon-R RNA and 1 lg New England Biolabs (Beverly, MA) 50-bp ladder were separated in 4%–8% polyacrylamide/7 M urea gels containing 1/2 tris-borate-EDTA. Gels were briefly stained with approximately 150 ng/ml ethidium bromide and imaged before transfer overnight to HyBond N+ membrane in 0.5× TBE at 8 V. Blots were probed with 32P-labeled, random-primed probes according to standard protocols.

Results

Isolation of Noncanonical cDNA Clones From the mbl Locus

The alternative use of the 11 exons described in the mbl transcription unit gives rise to four transcript isoforms (Figure 1A; Begemann et al. 1997; Garcia-Casado Z, unpublished observations). To further characterize the alternative splicing of the gene, an additional embryonic cDNA library was screened with a genomic probe containing most of exon 2, which includes the putative start codon of the Mbl protein (see Materials and Methods). Surprisingly, all six cDNAs isolated were small, ranging in size from 0.9 to 1.2 kb, and showed an unusual structure. Restriction analysis and sequencing of cDNA ends revealed that clones 2.3, 2.4, and 2.8 represent transcripts with an incomplete exon 2 tandem repetition (mblE2E2 transcripts), while clone 2.6 represents an example of exon scrambling (mblE2E3’ E2’). Oligo(A) tracts are indicated by a vertical line, and the coding region is shaded. Unknown sequence in mblE2E3’ E2’ is represented with a dotted line. The figure is drawn to scale.

Figure 1. Schematic representation of the canonical and atypical mRNA isoforms expressed by the Drosophila mbl gene and of the primers used in the PCR amplifications. (A) Normal transcripts of the mbl isoforms A, B, C, and D are illustrated, with indication of the exon combination used in each case. Primer names and approximate locations are given. Shaded areas denote coding regions. (B) Representation of the exonic structure of cDNA clones isolated in this work. Clones 2.3, 2.4, and 2.8 represent transcripts with an incomplete exon 2 tandem repetition (mblE2E2’ transcripts), while clone 2.6 represents an example of exon scrambling (mblE2E3’ E2’). Oligo(A) tracts are indicated by a vertical line, and the coding region is shaded. Unknown sequence in mblE2E3’ E2’ is represented with a dotted line. The figure is drawn to scale.
mbi Transcripts With Duplicated Exons Exist In Vivo

A number of possibilities might explain the isolation of atypical cDNA clones from the mbi locus, most notably the existence of a duplicated and rearranged extra copy of the gene, a possible trans-splicing event that would result in exon repetition and exon scrambling, and the artificial joining of partial cDNAs. Homology searches of the *Drosophila* genome sequence for near-exact matches of exon 2 returned a single hit, thus indicating that no extra copies of exon 2 exist. This result was confirmed by genomic Southern blot analysis, which detected only a single copy of exon 2 in the genome of *Drosophila* strains Oregon-R and Canton-S (data not shown). Intermolecular splicing of two mbi pre-mRNAs is also an unlikely explanation because trans-splicing of intact genes has been reported very rarely (Horiuchi et al. 2003). If exon repetition and scrambling resulted from a trans-splicing event, it is likely that this would generate two products: a long mRNA having a duplicated exon 2 and a short mRNA lacking that exon and having exon 1 directly joined to exon 3 (or exon 4). No cDNAs corresponding to the short transcript have been isolated. Trans-splicing, in addition, would require the use of cryptic splice sites inside exons 2 and 3 in order to explain structures such as mbiE2E2 and mbiE2E3E2' and would include the remaining exonic sequences to the end of the transcript.

Noncanonical mbi transcripts were detected in vivo at several developmental stages by RT-PCR and 3' RACE. PCR primers in exon 2 that are oriented outward gave a strong product from cDNA but not from genomic DNA, confirming the absence of this arrangement at the DNA level and indicating that the exon 2 repetition takes place during primary mbi transcript maturation. The PCR product was purified and sequenced, confirming the repeated structure found in cDNAs 2.3, 2.4, and 2.8 as well as the use of genuine donor and acceptor splice sites (Figure 2A,B,D). Similarly, 3' RACE with an oligo(dT) primer gave a product whose sequence also confirms both the exon 2 repetition and the use of correct splice sites (Figure 2C). Like cDNAs 2.3, 2.4, and 2.8, the 3' end of the RACE product is an interrupted adenine-rich region of exon 2 that presumably binds the oligo(dT) cDNA synthesis primer. Transcripts with the structure mbiE2E2' could encode a small protein with a partial Cys3His zinc finger motif (Figure 2E). However, the presence of an in-frame stop codon near the splice site makes it unlikely that a functional protein is actually translated.

Noncanonical Transcripts From the mbi Locus Are Abundant but Poorly Polyadenylated

The abundance of noncanonical mbi transcripts, such as mbiE2E2', was investigated by northern blot hybridization of total RNA using an antisense mbiA probe. Unexpectedly, although no known mbi transcript isoforms were observed in this blot, a strong signal was detected at approximately 0.65 kb, which indicates that noncanonical mbi transcripts are very common (Figure 3A). Northern blot analysis of poly(A)+ RNA under similar conditions, in contrast, detected a faint band around 0.65 kb, while canonical mbi transcripts such as mbiA, mbiB, and mbiC were clearly detected (Figure 3B). The difference in intensity of the 0.65-kb band in total and poly(A)+ RNA demonstrates that this product is poorly polyadenylated. Densitometric analysis of the poly(A)+ RNA northern revealed that the 0.65-kb species comprises less than 10% of the total polyadenylated mbi transcript pool (data not shown). Conversely, the absence of a detectable signal from the known transcripts in total RNA (even after overexposing the 0.65-kb band) suggests that the 0.65 kb is present at steady-state levels at least 10-fold those of the canonical transcripts.

The developmental expression profile of mbiE2E2', as an example of noncanonical RNA, was generated using RT-PCR amplification of developmentally staged cDNAs. To specifically amplify cDNA sequences containing a repetition of exon 2, we used the same approach described in Figure 2A, that is, primers oriented outward from within exon 2 so that a product should be amplified from cDNA but not from the genomic DNA. This experiment showed the expression of mbiE2E2' at approximately constant levels, except that no early embryonic and early adulthood expression was detected (Figure 3C).

mbiE2E2' Transcripts Do Not Include Downstream Exonic Sequences

In order to detect genuine or aberrant splicing of exon 2 sequences to downstream exons in noncanonical transcripts, the B primer was used in combination with exon E3-, E4-, and E5a-specific primers in RT-PCR amplifications. In these experiments, the B oligonucleotide could prime DNA synthesis from annealing sites located either in E2, thus detecting canonical splice events, or in E2', which would detect additional splicing events downstream of E2' (note that because the exon 2 repetition is incomplete, the product size arising from both possibilities would be different; see Figure 2B). In these experiments, only the amplification product from canonical transcripts was detected (Figure 4A), indicating that no additional known exonic sequences are spliced 3' to exon 2 sequences in noncanonical transcripts.

mbiE2E2' Represents Two RNA Populations

To assess whether mbiE2E2' transcripts are in fact circular, total *Drosophila* RNA was separated through various percentages of denaturing polyacrylamide gel (Figure 4B). The mobility of linear RNA species in polyacrylamide is invariant with gel percentage relative to linear DNA molecular weight markers; however, circular species are strongly retarded by increasing acrylamide concentration. Two species are highlighted by the mbi probe: a faster migrating species that is the correct size for mbi exon 2 and a slower migrating species that fails to leave the wells in the 6% polyacrylamide (and in 8%, data not shown). The migration of the faster species is invariant with gel percentage compared to the DNA ladder and an rp49 mRNA control, showing that this species is linear. The slower species migrates differently in the 4% and 6% gels, and the separation between this species and the apparently smaller rRNA is dramatically decreased in the 4% relative to the 6% acrylamide; the opposite would be expected if
this band represented a high–molecular weight linear species. We also note the sharpness of the \textit{mbl} band compared to the blurry \textit{rp49} signal, which is consistent with \textit{mblE2E2}' being poorly polyadenylated. In summary, the aberrant behavior of this species in various gel concentrations strongly suggests it is the circular species detected by RT-PCR.

Discussion

In this paper, we describe new noncanonical transcripts from the \textit{mbl} locus characterized by an incomplete repetition of exon 2 and scrambling of exons 2 and 3. We demonstrate that these transcripts are small and abundant, show some degree of developmental regulation, are poorly polyadenylated, and are strongly retarded in high-percentage acrylamide gels. Moreover, we show that no additional exonic sequences are spliced 3’ to the duplicated exon 2. Taken together, the properties of these RNA molecules are consistent with a circular RNA, as similarly proposed for the \textit{ets-1}, \textit{Sry}, or cytochrome \textit{P450 2C24} gene transcripts (Capel et al. 1993; Cocquerelle et al. 1993; Zaphiropoulos 1996). Circular RNAs seem rather stable molecules due to the absence of exonuclease-sensitive

Figure 2. RT-PCR analysis for the occurrence of the exon 2 repetition in vivo and the protein potentially encoded. (A) Schematic representation of an \textit{mblE2E2}' transcript. The presence or absence of exon 2 repetition in \textit{mbl} mRNA was evaluated by RT-PCR amplification with primers A and B. Because both primers face outward, they are unable to amplify any product unless the exon 2 is repeated. The coding region is shaded. \textit{E2}' denotes an exon 2 from its acceptor site to the oligo(A) tract. (B) Agarose gel electrophoresis of the RT-PCR products generated with the use of the primer combination A and B. Template RNA was isolated from various developmental stages: lane 1, embryos; lane 2, larvae; lane 3, pupae; and lane 4, adults. Molecular weight marker is number VI (Roche Molecular Biochemicals). (C) 3’RACE analysis of \textit{mbl} transcripts. A 35-cycle PCR was performed with primers \textit{mblF2} and \textit{X45} on ADAPT-dT–primed cDNA from third-instar larval (lane 1) and adult (lane 2) total RNA. One major product is visible at approximately 550 bp. Molecular weight marker is a 1-kb ladder. (D) Sequencing of amplification product shown in (B) established that it represents an exon 2 duplication in which an exon 2 joined at its donor splice site with another exon 2 at its acceptor splice site. The alignment shows the almost perfect match between the computationally duplicated exon 2 sequence (E2E2') and the actual sequence (B-A). The splice site is indicated with an arrow, and the oligo(A) tracts are underlined. (E) Transcript of the type \textit{mblE2E2}' could potentially encode a very small protein with a partial zinc finger (conserved cysteines marked with an asterisk) and a microsomal transport signal (underlined).
Figure 3. Noncanonical mbl transcripts are developmentally regulated and seem to lack a poly(A) tail. (A) Northern blot analysis of mbl in third-instar larval total RNA. Total RNA (1 μg) was separated on a 1.5% guanidine thiocyanate agarose gel and probed with DIG-labeled antisense mbl-A RNA. rRNA is ribosomal RNA visualized by ethidium bromide staining as a loading control. Only one RNA isoform of approximately 650 nt is visible. No signal from known mbl transcripts was visible on prolonged exposure. Independent extractions are loaded in each lane. (B) Northern blot analysis of mbl in third-instar larval mRNA. Poly(A)⁺ RNA (200 ng) was separated on a 1.5% guanidine thiocyanate agarose gel and probed with DIG-labeled antisense mbl-A RNA followed by antisense rp49 RNA as a loading control. Independent extractions were used in each lane. Note the faint signal of noncanonical mbl transcripts compared to (A). (C) RT-PCR amplification of mblE2E2⁺ at the indicated developmental stages. The amplification product from genomic DNA is shown in the right lane and is larger than the cDNA product for rp49 because the primers span an intron. 5’ and 3’ ends (Cocquerelle et al. 1993). Therefore, even low levels of RNA processing into noncanonical transcripts might lead to the observed accumulation in the Drosophila cells (Figure 3).

In a number of cases, exon scrambling and exon skipping have been shown to be reciprocal events, thus suggesting a mechanistic relationship (Zaphiropoulos 1996, 1997). However, the study of other gene transcripts such as MLL (Caldas et al. 1998) and our own results with mbl transcripts do not support a correlation. In particular, all mbl transcript isoforms described to date contain exon 2, which also harbors the start codon of the encoded protein, making it unlikely that an exon 2–skipping event was the origin of the noncanonical transcripts we describe. Large introns adjacent to the exons that are scrambled, as well as the presence of other structural characteristics in the pre-mRNA such as large inverted repeats that would facilitate or stabilize the formation of an intermediary stem-loop, have been proposed to influence exon scrambling (Capel et al. 1993; Cocquerelle et al. 1992). Both requirements are fulfilled in mbl primary transcripts: First, the introns between exons 2 and 3 and between exons 3 and 4 are approximately 15 and 60 kb long, respectively, which is relatively large for a Drosophila gene. Second, the intrinsic sequence between exons 2 and 3 contains the non-LTR retrotransposon jockey J-1 immediately upstream of exon 2, while another non-LTR retrotransposon, an F element, is found downstream of exon 3. The presence of partially homologous sequences between both elements could facilitate the hairpin formation in primary transcripts, which is an intermediary potentially implicated in the mechanism of exon scrambling.

Exon 2 of mbl transcripts contains a number of oligo(A) tracts upstream of the start codon. In a recent study, the molecular basis for the allele-specific exon repetition event associated with the Su gene (Rigatti et al. 2004) was concluded to involve cis-acting elements. Among the potentially involved sequences were six single nucleotide polymorphisms and a difference of five nucleotides in the length of an oligo(A) tract. It is thus tempting to propose that tracts of oligo(A) may participate in the processing or regulation of noncanonical transcripts.

Evidence presented herein indicates unusual features of the processing of mbl/primary transcripts, possibly leading to the generation of circular RNA molecules. A basic question about this phenomenon is whether it is unique to mbl or a general occurrence to Drosophila genes. Recent computational searches identified 245 genes in mammals, and five Drosophila genes, showing nonlinear exon splicing, which include exon repetition and exon-scrambling events (Dixon et al. 2005). Interestingly, the same exon 2 repetition event we describe was found in four expressed sequence tags from the mbl gene, thus providing independent confirmation of our results. Additionally, nonlinear exon splicing was identified in another four Drosophila genes: capulet, G protein γ30A, centaurin gamma1A, and CG32306. These observations suggest that the exon repetition and exon-scrambling phenomena is not limited to mbl but is nonetheless limited to a relatively small subset of specific genes. However, it should be considered that the libraries employed to date to search for such transcripts effectively select against circular (poorly polyadenylated) transcripts, and nonlinear exon splicing is thus likely to be more common than currently appreciated (Dixon et al. 2005).

The splicing mechanism yielding circular RNAs may simply represent errors in the normal splicing process, although a possible role of the scrambled transcripts as a feedback regulator of alternative pre-mRNA splicing cannot be
Figure 4. Noncanonical transcripts lack exonic sequences downstream of exon 2 and behave as circular molecules. (A) The result of RT-PCR amplification from 0- to 24-h embryonic total RNA using primer B in combination with primers E3 (lane 1), E4 (lane 2), and E5a (lane 3) is shown. The sizes of the amplification product, if a canonical cDNA transcript isoform was used as template, are 735 bp, 523 bp, and 812 bp, respectively. In all lanes, the size of the amplification product is very close to the expected size, thus indicating that no additional exonic sequences downstream of E2’ exist. Lane 4 includes molecular weight marker VI (Roche Molecular Biochemicals). (B) PAGE analysis of mblE2E2’

Denaturing polyacrylamide gel analysis of Drosophila total RNA. Total RNA (10 μg) was separated on 4% and 6% polyacrylamide gels, along with a linear DNA marker. Gels were stained with ethidium bromide prior to transfer, and membranes were probed sequentially with mbl 3’ RACE product and rp49 as marked. Arrows indicate material remaining in wells. The major signal in the ethidium bromide–stained total RNA represents rRNAs. As discussed in the text, we interpret the blury rp49 signal as heterogeneity in poly(A) tail length, while the sharp mbl band is consistent with a poorly polyadenylated transcript.

excluded. This is especially tempting in the case of Mbl, which itself is involved in the regulation of alternative splicing (Ho et al. 2004). Whatever the answer, occasional errors may have profound impact in cells, such as mutations generated during DNA replication or oncogene transduction by retrovirus, and potential applications can be derived from them.

Acknowledgments

The authors thank the Dynamic Mutation Group and the Drosophila Fly Neurobiology Groups of the University of Glasgow for helpful discussions throughout the course of this work. This work was financially supported in part from research grants SAF2003-03536 (Spanish Ministry of Science and Technology) and GV2004-B-164 (Valencian Community research agency CCEyD) to R.A. and by awards from the Lister Institute and the Wellcome Trust to D.G.M. R.A. was supported by a contract from the Ramon y Cajal program of the Ministerio de Educacion y Ciencia.

References

Received August 30, 2005
Accepted March 28, 2006

Corresponding Editor: Ross MacIntyre