The Genetics of Cream Coat Color in Dogs

SHEILA M. SCHMUTZ AND TOM G. BERRYERE

From the Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada S7N 5A8.

Address correspondence to S. M. Schmutz at the address above, or e-mail: sheila.schmutz@usask.ca.

Abstract

Cream dogs of several breeds require a genotype of e/e at MC1R based on 27 individuals in this study. All Akita, Caucasian Mountain Dogs, German Shepherd Dogs, Miniature Schnauzer, and Puli with this genotype are cream, suggesting they are fixed at a second locus which causes the phaeomelanin pigmentation caused by this genotype to be diluted or pale. Conversely, although all Chinese Shar-Pei and Poodles that were cream had an e/e genotype at MC1R, not all dogs with this genotype are cream. Today, many Golden Retrievers and Labrador Retrievers with an e/e genotype are cream instead of the traditional yellow to golden color seen in the past. The second gene in these breeds must have multiple alleles, only one of which causes phaeomelanin pigment to be diluted or pale. Tyrosinase (TYR) and solute carrier family 45, member 2 (SLC45A2) have been shown to cause cream coat color in other species and were therefore investigated in dogs as candidate genes for this second locus. Although polymorphisms were detected in cDNA sequence from TYR and SLC45A2, no polymorphism was consistently associated with cream dogs or cosegregated with cream coat color in any of the families used in this study. A microsatellite was detected in a published BAC sequence (GenBank no. AAEX01017083) in intron 2 and was used to map SLC45A2 to CFA4.

Materials and Methods

Dogs and Families

Cheek brush DNA samples (Epicentre, Madison, WI) from 11 dog families that segregated for cream coat color were
Table 1. Primers and the fragment of the dog *SLC45A2* gene amplified

<table>
<thead>
<tr>
<th>Fragment detected</th>
<th>Direction</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon 1 SNP</td>
<td>Forward</td>
<td>ATGCCAACCTTGATCC TGGTGGAG CTAGGAGAGACAATC CTGTC</td>
</tr>
<tr>
<td>Exon 1 SNP</td>
<td>Reverse</td>
<td>CGACACCTTGCTTCTGT GCTC</td>
</tr>
<tr>
<td>Intron 2 microsatellite</td>
<td>Forward</td>
<td>GTTAAATTGAGGTCA TGAGGG</td>
</tr>
<tr>
<td>Intron 2 microsatellite</td>
<td>Reverse</td>
<td>AGGG</td>
</tr>
<tr>
<td>cDNA (5’ UTR–Exon 2)</td>
<td>Forward</td>
<td>GACCATCTCTGTTT GCCAGT</td>
</tr>
<tr>
<td>cDNA (5’ UTR–Exon 2)</td>
<td>Reverse</td>
<td>GCACCTTTGGAGG</td>
</tr>
<tr>
<td>cDNA (exons 2–5)</td>
<td>Forward</td>
<td>TTTTG</td>
</tr>
<tr>
<td>cDNA (exons 2–5)</td>
<td>Reverse</td>
<td>CTGCTCAG</td>
</tr>
<tr>
<td>cDNA (exons 5–3’ UTR)</td>
<td>Forward</td>
<td>GATGGGACAGTGTCT</td>
</tr>
<tr>
<td>cDNA (Exon 5–3’ UTR)</td>
<td>Reverse</td>
<td>CTGCTCAG</td>
</tr>
</tbody>
</table>

obtained from dog breeders and owners and used for genotyping. These included Akita (1), Caucasian Mountain Dog (1), Chinese Shar-Pei (2), Golden Retriever (1), Labrador Retriever (1), Poodle (3), and Puli (2) families. Photographs were also supplied to document coat color. Additional dog families were used for linkage mapping. In addition, 27 were also available through the course of our collection of cream- to white-colored individual dogs of several breeds. Photographs of various coat color studies.

We used cDNA prepared from skin biopsies, tail dockings, and surgeries collected from previous coat color studies (Schmutz et al. 2002, 2003) and placed in liquid nitrogen or RNAlater (Ambion Inc., Austin, TX) within 20 min of collection to obtain RNA sequence of *TYR* and *SLC45A2*.

Polymorphism Detection

MC1R genotypes were obtained from all dogs in the study using the PCR–RFLP tests to detect the E^m, E^e, and e alleles reported previously (Schmutz et al. 2003).

A *TYR* polymorphism was detected as previously reported (Schmidt and Schmutz 2002). Microsatellite alleles of *FH2312* were detected after polyacrylamide electrophoresis (Mellersh et al. 2000).

In order to study the cosegregation of these dilute phenotypes in these dog families, we tried to identify polymorphisms to use as markers in cosegregation analysis. *SLC45A2* dog sequence was obtained using primers (Table 1) that were initially designed from a dog BAC sequence (GenBank no. AAEX01017083) identified by using a blast search of human *SLC45A2* sequence (GenBank no. NM_01618). The PCR for exons 1 and 2 of *SLC45A2* consisted of 15 μl which contained 50–100 ng of DNA template, 1.5 μl of 10× PCR buffer (Invitrogen Co., Carlsbad, CA), 1–3 mM MgCl₂ (Invitrogen), 0.2 mM dNTP (Invitrogen), 0.5 U *Taq* DNA polymerase (Invitrogen), 0.66 pmol of each primer, and 9.6 μl of ddH₂O. The reaction began with an initial 4-min denaturation step at 94 °C; followed by 35 cycles of 50 s at 94 °C, 50 s at 57 °C, and 50 s at 72 °C; and finished with a final 4-min extension step at 72 °C.

Two polymorphisms were identified in *SLC45A2*. A single-nucleotide polymorphism (SNP) (150G>A) (GenBank no. DQ118774) was identified in exon 1 of *SLC45A2* that did not alter the amino acid. A natural Adel cut site occurs at this SNP. The A allele cuts into 226- and 248-bp fragments. The G allele cuts into 93, 115, and 226-bp fragments that can be resolved on 2% agarose gel.

A microsatellite in intron 2 of *SLC45A2* was identified in the BAC sequence (GenBank no. AAEX01017083). In order to detect this microsatellite, the forward primer was end-labeled in a 10-μl reaction consisting of 2.0 μl of forward primer, 5.0 μl dH₂O, 1.0 μl of 10× polynucleotide kinase (PNK) buffer, 1 μl ATP³², and 1 μl of PNK (New England BioLabs Inc., Beverly, MA). This reaction was then incubated at 37 °C for 30 min. The PCR protocol was the same as for the exon 1 SNP with the exception of the annealing temperature being 55 °C. The alleles were differentiated on a 6% polyacrylamide gel and visualized on autoradiograph film. Seven alleles were identified among the 35 dogs genotyped for the microsatellite in intron 2. The alleles ranged in size from 220 to 296 bp.

Results and Discussion

In the Akita (Figure 1), Caucasian Mountain Dog, both Chinese Shar-Pei, all three Poodle, and both Puli families, the cream-colored pups had an e/e genotype at *MC1R*, as shown in Figure 2 (Supplemental Table 1). In addition, we also found that 17 individual dogs that were cream to white from rare breeds, in which cream is one of several coat colors, all had an e/e genotype at *MC1R*. These included 3 Cardigan Welsh Corgi, 3 Chinese Shar-Pei, 5 German Shepherd Dogs, 2 Great Pyrenees, and 3 Miniature Schnauzer. Furthermore white dogs of other breeds where this is the only color, such as American Eskimo Dog (6), Samoyed (3), and West Highland White Terrier (1), also genotyped as e/e at *MC1R*. In
both the Golden Retriever and yellow Labrador Retriever families, although all individuals had an e/e genotype at $MC1R$, some pups were golden/yellow and others were cream (Figure 2, bottom right).

In all the families studied, cream coat color fit an autosomal recessive inheritance pattern among the dogs with e/e $MC1R$ genotype. This e/e genotype alone does not cause cream in all dogs of all breeds, and so we assumed that some other gene, which varied in some breeds, must interact to cause cream instead of yellow or red.

TYR

We obtained the complete coding sequence of TYR (GenBank no. AY336053) from a cream Poodle, an albino Lhasa Apso, and 2 albino Doberman Pinschers as well as a blue Doberman Pinscher and black-and-white Large Munsterlanders as controls. Although several SNPs were detected ($780A>T$, $882A>G$, $1223G>A$ which caused an arginine to be replaced by a glutamine, $1312C>T$ which caused a lysine to be replaced by a phenylalanine), none were consistent

Figure 2. Photographs of representative cream dogs that had a genotype of e/e at $MC1R$. Top to bottom: Akita pup, Miniature Schnauzer, German Shepherd Dog, Puli, and Caucasian Mountain Dog. The Labrador Retriever littermates in the final photo illustrate the difference between cream or pale yellow and dark yellow seen in some breeds.
with either cream or albino in when compared with the sequence obtained from additional dogs of the same phenotype.

We had previously identified a polymorphism in \textit{TYR}, 175GA (GenBank no. AF473807), which changed a valine to an isoleucine (Schmidt and Schmutz 2002) that was used to map this gene to CFA21 with no recombinants to FH2312. Some cream dogs were heterozygous, suggesting that this variant was not responsible for cream coat color which is inherited as a recessive. Neither the informative Golden Retriever family of 7 pups (Figure 3) nor the Labrador Retriever family of 4 pups showed cosegregation with cream coat color and \textit{TYR} using the FH2312 microsatellite (LOD 5.02). This also excludes mutations in the promoter and introns as being associated with variation in phaeomelanin pigmentation.

\textbf{SLC45A2}

No mutations affecting amino acids were found in the coding sequence of \textit{SLC45A2} (GenBank no. DQ302162) in a cream poodle compared with a Brittany Spaniel of darker red pigmentation and \textit{e/e} genotype at \textit{MC1R} or a black-and-white Large Munsterlander of \textit{E/E} genotype. We did identify an SNP, 150GA, in exon 1 (GenBank no. DQ118774S1), but it was not informative in the families segregating for shades of phaeomelanin. We also identified a microsatellite in intron 2. This did not cosegregate with pale and dark yellow in the Labrador Retriever family (Figure 4) (LOD = −2.8).

This microsatellite was polymorphic in several additional dog families. Linkage mapping was accomplished using one French Brittany, one Newfoundland, one Cardigan Welsh Corgi, and one Tervuren family. \textit{SLC45A2} was mapped to canine chromosome 4.9 cm from \textit{FH2097} (LOD = 5.158).

Because cream dogs always have an \textit{e/e} genotype at \textit{MC1R}, DNA testing for an \textit{e} allele should be predictive that the dog is heterozygous for cream coat color in breeds such as Akita, Caucasian Mountain Dogs, German Shepherd Dogs, Miniature Schnauzers, and Puli. Neither \textit{TYR} nor \textit{SLC45A2} appeared to co-segregate with cream coat color in dogs from breeds with an \textit{e/e} genotype where the variation in phaeomelanin can be cream through yellow and even red, such as Chinese Shar-Pei, Golden Retrievers, Labrador Retrievers, and Poodles.

\section*{Supplementary Material}

Supplementary Table 1 can be found at http://www.jhered.oxfordjournals.org/.

\section*{Acknowledgments}

We thank HealthGene, Inc., and a Collaborative Research and Development matching grant from the Natural Science and Engineering Research Council for funding. We are grateful to the many dog owners who contributed cheek brush and/or skin samples from their dogs. Our thanks to the very helpful suggestions of 2 anonymous reviewers.

\section*{References}

This paper was delivered at the 3rd International Conference on the Advances in Canine and Feline Genomics, School of Veterinary Medicine, University of California, Davis, CA, August 3–5, 2006.

Corresponding Editor: Urs Giger