Serum Levels of Rubella Virus Antibodies Indicating Immunity: Response to Vaccination of Subjects with Low or Undetectable Antibody Concentrations

Lukas Matter, Karen Kogelschatz, and Daniel Germann

Institute for Medical Microbiology, University of Bern, Switzerland

To define the concentration of anti–rubella virus (RV) antibodies discriminating nonimmune from immune persons and to characterize immune responses to rubella vaccination, serologic studies were performed after rubella vaccination in persons with low or undetectable antibody concentrations. Thirty-six subjects with primary immune responses had prevaccination anti-RV IgG concentrations < 15 IU/mL by ELISA and negative results by radial hemolysis. Eighty-three subjects with secondary immune responses had mean IgG increases of 9 IU/mL within 2 weeks. Eight of them had initial IgG levels < 15 IU/mL, and 2 were negative by radial hemolysis. Both groups attained similar antibody levels after 1–3 months. Secondary immune responses to rubella vaccination were delayed by > 2 weeks and thus resembled the time course of primary immunization, but IgM responses and IgG avidity were distinct between subjects with primary or secondary immune responses. Thresholds for immunity < 15 IU/mL entail the risk of withholding rubella vaccination from susceptible persons.

Prevention of the congenital rubella syndrome rests on the efficient implementation of childhood vaccination programs and on the detection and vaccination of women of childbearing age who are susceptible to rubella [1]. Definition of a cutoff level for anti–rubella virus (RV) antibodies that reliably indicates previous exposure and immunization by RV, and thereby presumably immunity in terms of protection from intrauterine infection, is therefore important [1–3]. Hemagglutination inhibition and radial hemolysis are time-honored techniques with disadvantages such as nonspecific inhibition by serum components other than antibodies [4–6] and difficulties in providing suitable reagents. They are increasingly being replaced by various ELISAs or latex agglutination assays [1, 7–10] that may detect lower concentrations of anti-RV IgG antibodies than do older techniques [7]. This creates problems for standardization and uncertainties as to the antibody levels that indicate immunity [4, 5, 9–14]. The estimation of the persistence of anti-RV antibodies [15–19] and the surveillance of rubella vaccination strategies by age-stratified seroprevalence studies [20] also depend on the reliability of the techniques in detecting susceptible persons in need of vaccination.

The response to vaccination may give insight into the immunologic experience of a person irrespective of the current serum level of antibodies [21–24]. The production of high-avidity IgG within several days after reexposure to RV [25–27] and the lack of an IgM response are the expected hallmarks of secondary immune responses [8, 11, 12, 28–30]. However, rubella revaccination may induce only weak or transient responses [11, 21, 22]. The question “are many women immunized against rubella unnecessarily?” [12] remains unanswered, particularly for the allegedly more sensitive modern tests. We therefore studied the immune response in persons who had received rubella vaccine because of low or undetectable anti-RV antibodies, in order to establish the cutoff for an automated IgG ELISA and to compare its performance with radial hemolysis as well as to characterize the kinetics and vigor of primary and secondary responses.

Materials and Methods

Study population. Between 30 July 1992 and 1 November 1995, consecutive testing of 5060 subjects for anti-RV IgG revealed 1015 with low or undetectable levels of IgG (i.e., < 40 IU/mL). Of these, 501 were offered serologic testing if their physicians considered rubella vaccination to be indicated and if they were negative for anti-RV IgM. Determination of anti-RV IgG was offered at 1 week and 1–2 months after vaccination. We obtained information on rubella vaccination and serum samples from a total of 165 subjects (only 4 were men). Of the subjects, 139 had been tested in a pregnancy screening program, 19 were health care workers, and 7 were tested for other reasons. One hundred forty-seven first samples were taken within a mean of 7 days (SD, 2.6) and 119 samples within 37 days (SD, 9) after vaccination. A third sample was obtained from 11 subjects after 56–545 days. The group without follow-up contained 282 women and 54 men. The median age and anti-RV IgG concentration were similar in vaccinated women before vaccination and in women without follow-up (28.9 vs. 28.7 years and 20 IU/mL in both groups; P > .05, Mann-Whitney U test). The distribution of IgG values was also comparable in women who were not included in the study and those who were followed up, with about one-third having < 10 IU/mL in both groups. About two-thirds of the men had values < 10 IU/mL, but most of them were not available for follow-up.

Methods. Serum was separated from blood cells within 2–14 h after venipuncture and tested for anti-RV IgG. The serum samples...
were maintained at 2–8°C for 2–10 days, until they were aliquoted and kept frozen at −20°C for further testing. Anti-RV IgG concentrations were measured by ELISA. During the recruitment period we used the semiautomated VIDAS Rübeöle IgG Test version 1 (V11-G; bioMérieux, Marcy-l’Etoile, France), and results were reported as international units per milliliter. Anti-RV IgG concentrations from 20 to 40 IU/mL were interpreted as weak positive results. For final analysis, all available serum samples from vaccinated persons were subjected to batchwise testing using the VIDAS Rübeöle IgG Test version 2 (V12-G), in which IgG concentrations <15 IU/

were interpreted as negative according to the manufacturer’s recommendations. Both versions of this assay are based on the indirect immunosorbent principle, with a solid phase coated by inactivated wild virus antigen and alkaline phosphatase–conjugated mouse monoclonal anti-human IgG antibodies and 4-methylumbelliferylphosphate as detecting reagents. In addition, anti-RV antibodies were measured by Hämolyse-Gel-Test für Röteln (RHG; Labor Dr. Koch + Dr. Merk, Ochsenhausen, Germany). This test is based on the complement-mediated lysis of RV hemagglutinin-sensitized baby chick erythrocytes embedded in agarose gel that has been penetrated by serum from punch holes. Hemolysis zone diameters of ≥9 mm (corresponding to 20 IU/mL by ELISA or 1:32 by hemagglutination inhibition) were considered positive.

The avidity of anti-RV IgG was determined by the rubella IgG avidity test (Labsystems, Helsinki), which applies the elution principle using a washing step with urea to an indirect solid-phase ELISA with alkaline phosphatase–conjugated anti-human IgG [31, 32]. Results were analyzed by using an Excel-based Macintosh program that calculates the shift to the left of the dilution curves caused by the elution step.

Anti-RV IgM was detected by the AxSYM Rubella IgM assay (Abbott Laboratories, Abbott Park, IL), an automated ELISA that uses microparticles coated with purified RV (strain HPV-77), which bind on a glass fiber matrix after reaction with diluted serum, and alkaline phosphatase–conjugated anti-human IgM with 4-methylumbelliferylphosphate as detecting reagents; in this procedure, all sera were absorbed with the IMx rheumatoid factor neutralization reagent according to the manufacturer’s instructions. As a second IgM test, we used the VIDAS Rübeöle IgM Test (bioMérieux), an automated μ-capture ELISA with inactivated wild virus antigen and alkaline phosphatase–labeled Fab’ fragments of a monoclonal anti–RV hemagglutinin antibody and 4-methylumbelliferylphosphate for detection.

Low IgG avidity (<15%) or intermediate IgG avidity (15%–25%) and positive IgM test results 1–3 months after rubella vaccination were classified as primary immune responses. High IgG avidity and negative IgM results at this time interval were considered to represent a secondary immune response; that is, these persons must previously have been exposed to RV antigens. From 46 of 165 subjects, there were no adequately timed samples for the definite characterization of the type of the immune response by these techniques.

Data were analyzed using the StatView 4.02 program (Abacus Concepts, Berkeley, CA) for paired or unpaired means comparisons, Mann-Whitney U tests, Wilcoxon signed rank tests, and box plots. Statistical significance was defined as $P < .05$.

Results

Prevaccination anti-RV antibodies were negative by V12-G (figure 1A) and RHG (figure 1B) in 35 subjects who developed a primary immune response to rubella vaccination characterized by low anti-RV IgG avidity (figure 2A) and positive anti-RV IgM (figure 2B) after 1–3 months (test specificity, 100%). One person who responded with low-avidity IgG (9.6%) but had negative results with both IgM tests was arbitrarily considered to have a primary response. Anti-RV IgG concentrations measured by V12-G remained unchanged within 2 weeks after rubella vaccination of 29 persons with primary immune responses ($P = .16$; paired means comparison).

Secondary immune responses could be documented by high avidity of anti-RV IgG antibodies and negative specific IgM responses after 1–3 months in 83 persons (figure 2). Nine subjects with secondary immune responses to rubella vaccination by these criteria had prevaccination anti-RV antibody results below the cutoffs recommended by the manufacturers for V12-G and/or RHG, and a response to rubella vaccination was not evident within 1–2 weeks (table 1; figure 1). After 1–2 months, specific IgG concentrations increased >10-fold in 5 and to a lesser degree in the rest of them. With a cutoff at 7 mm for RHG, this test would be negative in only 2 persons and yet remain 100% specific.

The sensitivities of V12-G and RHG were 90.4% and 97.6%, respectively, in the selected group of 119 persons who could be tested appropriately for the type of immune response to rubella vaccination. If these results are representative of all 5060 persons tested during the study period, the sensitivity and predictive value of negative V12-G results can be estimated at 98.5% and 75%, respectively. The seroprevalence of anti-RV IgG in young Swiss adults is 96% [20]. Thus, ~1% of them lack detectable RV antibodies despite previous immunization.

Anti-RV IgG concentrations increased slightly but significantly within 2 weeks in 74 subjects with secondary responses, from a mean value of 32.5 to 41.5 IU/mL (mean difference, 9 IU/mL; 95% confidence interval, 5–13 IU/mL; $P < .001$; paired means comparison) (figure 1A). A similar response was evident with anti-RV antibody determinations by RHG ($P = .75$ and $P = .01$ for primary and secondary responses, respectively; paired means comparisons) (figure 1B). A clearcut increase in anti-RV IgG levels was evident 1–3 months after vaccination in persons with both primary and secondary immune responses (median intervals, 34 and 37 days, respectively), reaching similar mean (median) values of 112 (87) and 127 (105) IU/mL, respectively (tied $P = .19$; Mann-Whitney U test for difference between groups at 1–3 months). Subjects with secondary immune responses and prevaccination anti-RV IgG concentrations of <15 IU/mL ($n = 8$), 15–29 IU/mL ($n = 30$), and ≥30 IU/mL ($n = 43$) showed a mean increase of 17.3–, 5.6–, and 3.4-fold, respectively ($P < .02$ for all groups, unpaired means comparison) (figure 3A). Seventeen of the secondary responses were <2-fold. Mean IgG increases in primary immune responses were 58-fold. A similar evolution of the responses was evident with RHG (figure 3B).

After a median observation interval of 152 days (range, 56–545), anti-RV IgG concentrations of 17 persons were
rubella vaccination has a high protective efficacy, in particular for viremic infections [1, 2, 22, 28, 34]. However, in the absence of wild virus exposure, protective vaccine-induced immunity may wane [35, 36]. A few cases of reinfection during pregnancy, with transmission of the virus to the fetus and the emergence of congenital rubella syndrome, have been described in women with well-documented immune responses to vaccine or wild virus before conception [37, 38]. In spite of this, any level of detectable antibody to RV is generally considered presumptive evidence of protective immunity [1–3], especially with tests that correlate with neutralizing antibodies [39, 40]. Although the presence of anti-RV antibodies detectable at any level does not completely rule out the possibility of viremic infections by wild type RV and transmission to the fetus [37,
Avidity of anti-RV IgG antibodies 1–3 months after rubella vaccination in persons with primary or secondary immune responses to vaccination. 2 serum samples with equivocal results (between horizontal lines) were anti-RV IgM–positive. B, Anti-RV IgM responses before (IgM-0), and 1–2 weeks (IgM-1), 1–3 months (IgM-2), or up to median of 152 days (IgM-3) after rubella vaccination, grouped according to type of immune response to vaccine. Standardized index = fluorescence value of sample/fluorescence value of cutoff. Values >1 (horizontal line) are positive. For explanation of box plots see legend to figure 1. Nos. of samples available for testing in different subgroups are shown in parentheses.
Table 1. False-negative or equivocal anti-RV antibodies in 9 female patients with secondary immune responses to rubella vaccination characterized by high IgG avidity 1–3 months thereafter and negative IgM tests throughout the observation period.

<table>
<thead>
<tr>
<th>Patient (days)</th>
<th>Interval (IU/mL)</th>
<th>RHG (mm)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>113</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>234</td>
<td>14</td>
<td>8.5</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>15</td>
<td>8.5</td>
</tr>
</tbody>
</table>

NOTE. NA, not available. Vi2-G, VIDAS Rubéole IgG Test version 2; RHG, Hämolyse-Gel-Test für Röteln.

techniques [11] may inhibit the replication of vaccine virus and thereby delay or abort the secondary immune response [21, 22, 46] by preventing the production of sufficient amounts of immunogenic material. The inverse relation between the increase of anti-RV IgG concentrations attained within 3 months after vaccination and prevaccination values of IgG is in agreement with this interpretation.

Some persons fail to respond to repeated RV vaccinations [40], and patients with congenital RV infection may be tolerant to RV epitopes [40, 49–52]. In addition, antibody responses in previously immunized subjects tend to be transient (this study and [11, 21, 22]). Therefore, boosting previously immunized persons with low anti-RV antibody concentrations may be ineffective, and additional vaccine doses after childhood vaccination should mainly be targeted at the unimmunized. In contrast, re-infection by wild type RV may overcome the neutralizing capacity of antibodies and induce antibody levels above those attainable by revaccination [28].

Both a modern automated ELISA and a radial hemolysis test for the determination of rubella immunity had excellent specificity in identifying persons who have previously mounted an immune response to RV. Thus, the cutoffs recommended for these tests avoid false-positive results and ensure that vaccination can be targeted at all susceptible persons, especially if the indication to vaccinate is extended into a safety margin of weakly positive results (e.g., up to 25 IU/mL). Lowering the cutoff value would compromise specificity, yet it would improve the predictive value of positive results only slightly, as the majority of false-negative results could not be avoided.

After revaccination, rates of adverse reactions (particularly joint-related complaints in females) have been lower than after primary vaccination [53]. We therefore decline to withhold vaccination from potentially susceptible persons and offer boosting to persons with low antibody levels. By the same token, this approach avoids overestimating vaccine efficacy in population studies for the surveillance of mass vaccination programs.

A well-calibrated ELISA for the detection of anti-RV IgG has the potential to be as reliable as established techniques such as radial hemolysis, which clearly separates susceptible from immune subjects, even at a lower cutoff than the one recommended by the manufacturer of RHG. The sequential use of the two tests in case of a negative ELISA could reduce the number of false-negative results and still provide the ease and rapidity of an automated test for most cases. The results obtained with the automated ELISA used in this study are not necessarily transferable to other assays, even if they are based on similar test principles. Some recently developed automated ELISAs for the detection and quantitation of anti-RV IgG may give rise to false-positive results in a large proportion of subjects mounting a primary immune response to vaccination, particularly when using a cutoff value below 15 IU/mL (data not shown). Therefore, for low levels of antibodies, the correct calibration of every assay should be ascertained using serum panels that have been characterized according to biologic criteria instead of relying exclusively on standard serum preparations. In defining the cutoff values, priority should be given to the avoidance of false-positive results.
Acknowledgments

We are grateful for the collaboration of patients’ physicians, particularly at the University Hospital for Obstetrics and Gynecology, University of Bern. We thank D. Dietrich for advice on statistical analysis; bioMérieux, Pharma Consulting, Labor Dr. Koch + Dr. Merk, and Abbott Diagnostics Division for some test reagents; Klaus Hedman (Dept. of Virology, University of Helsinki) for the Excel program for calculation of IgG avidity; and P. Affolter, F. Baggi, L. Boulet, S. Glau-Kampfer, and K. von Ballmoos for excellent technical support.

References

