Sequence Diversity of the Factor H Binding Protein Vaccine Candidate in Epidemiologically Relevant Strains of Serogroup B Neisseria meningitidis

Ellen Murphy,1 Lubomira Andrew,1 Kwok-Leung Lee,1 Deborah A. Diits,1 Lorna Nunez,1 Pamela S. Fink,1 Karita Ambrose,1 Ray Borrow,1 Jamie Findlow,1 Muhamed-Kheir Taha,2,3 Ala-Eddine Deghmane,4 Paula Kriz,4 Martin Musilek,2 Jitka Kalusnova,4 Dominique A. Caugant,1 Torill Alvestad,7 Leonard W. Mayer,2 Claudio T. Sacchi,2,8 Xin Wang,2 Diana Martin,8 Anne von Gottberg,10 Mignon du Plessis,10 Keith P. Klugman,3,10 Annaliesa S. Anderson,1 Karthin U. Jansen,1 Gary W. Zlotnick,1 and Susan K. Hoiseth1

1Wyeth Vaccines Research, Pearl River, New York; 2Centers for Disease Control and Prevention, and 3Rollins School of Public Health, Emory University, Atlanta, Georgia; 4Health Protection Agency, Manchester Royal Infirmary, Manchester, United Kingdom; 5Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France; 6National Institute of Public Health, Prague, Czech Republic; 7Norwegian Institute of Public Health, Oslo, Norway; 8Instituto Adolfo Lutz, Sao Paulo, Brazil; 9Institute of Environmental Science and Research, Porirua, New Zealand; and 10Respiratory and Meningal Pathogens Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa

Background. Recombinant forms of Neisseria meningitidis human factor H binding protein (fHBP) are undergoing clinical trials in candidate vaccines against invasive meningococcal serogroup B disease. We report an extensive survey and phylogenetic analysis of the diversity of fhbp genes and predicted protein sequences in invasive clinical isolates obtained in the period 2000–2006.

Methods. Nucleotide sequences of fhbp genes were obtained from 1837 invasive N. meningitidis serogroup B (MnB) strains from the United States, Europe, New Zealand, and South Africa. Multilocus sequence typing (MLST) analysis was performed on a subset of the strains.

Results. Every strain contained the fhbp gene. All sequences fell into 1 of 2 subfamilies (A or B), with 60%–75% amino acid identity between subfamilies and at least 83% identity within each subfamily. One fHBP sequence may have arisen via inter-subfamily recombination. Subfamily B sequences were found in 70% of the isolates, and subfamily A sequences were found in 30%. Multiple fHBP variants were detected in each of the common MLST clonal complexes. All major MLST complexes include strains in both subfamily A and subfamily B.

Conclusions. The diversity of strains observed underscores the importance of studying the distribution of the vaccine antigen itself rather than relying on common epidemiological surrogates such as MLST.

Invasive disease caused by Neisseria meningitidis is a rapidly progressing, disseminated infection with a case fatality rate of ~10% [1], and 10%–20% of survivors experience serious permanent sequelae (eg, neurological impairment, digit, limb, or hearing loss). Vaccines for meningococcal serogroups A, C, Y, and W135, which were initially based on the serogroup-defining polysaccharides and more recently on conjugates of the

Potential Conflicts of Interest: E.M., L.A., K.L.L., D.A.D., L.N., P.S.F., K.A., A.S.A., K.U.J., G.W.Z., and S.K.H. are employees of Wyeth. R.B., J.F., M.K.T., A.-E.D., P.K., M.M., J.K., D.A.C., T.A., L.W.M., C.T.S., X.W., D.M., A.V.G., M.d.P., and K.P.K. received funding from Wyeth for provision of the strain collections, associated strain information, and some of the sequence data reported here. R.B. has received assistance to attend scientific meetings from Wyeth, Sanofi Pasteur, and Baxter Bioscience; has served as an ad hoc consultant for Wyeth, GlaxoSmithKline, Novartis, Sanofi Pasteur, and Baxter Bioscience; and has performed other contract research funded by Wyeth, Novartis Vaccines, Baxter Bioscience, GlaxoSmithKline, Sanofi Pasteur, Alexion Pharmaceuticals, Emergent Europe, and Merck. J.F. has received assistance to attend scientific meetings from Wyeth and Novartis Vaccines. L.W.M. and X.W. have received funding (under Cooperative Research and Development Agreements) from Novartis Vaccines and Wyeth. K.P.K. has consulted for Wyeth and Novartis and has received other research funding from Wyeth. D.A.C. has served as an ad hoc consultant for Wyeth, Novartis, and Sanofi Pasteur. P.K. has served as an ad hoc consultant for Wyeth. A.V.G. has consulted for Novartis. D.M. has received contract funding from Novartis. M.-K.T. has also received funding from Chiron and Sanofi Pasteur for contract research and has consulted for Wyeth, GlaxoSmithKline, Sanofi Pasteur, and Novartis.
polysaccharides with protein carriers, have been available for several years. In countries in which these vaccines, particularly meningococcal serogroup C conjugate vaccines, have been adopted, disease caused by strains of these serogroups has significantly decreased [2]. However, a polysaccharide-based vaccine is not feasible for serogroup B (MnB) strains, because of the similarity of the MnB capsular polysaccharide, a homopolymer of (α2→8) sialic acid, to the polysaccharide component of human neural cell adhesion molecule [3, 4]. Therefore, the focus of attention for MnB vaccines has shifted to surface-exposed protein antigens that are capable of eliciting protective immunity.

Factor H binding protein (fHBP), an ~28 kD lipoprotein, was first identified as a protective antigen through biochemical fractionation of a soluble outer membrane preparation that had been shown to elicit a broadly cross-reactive, PorA-independent bactericidal response against a variety of heterogeneous serogroup B strains [5–7]. This lipoprotein, called LP2086 by Fletcher et al. [7], was also identified by Masignani et al. [8], who referred to it as GNA1870. It has recently been shown to bind complement factor H [9], with specificity for factor H from humans or higher primates [10]. Accordingly, the protein has been renamed fHBP. Recruitment of factor H to the surface of the bacterium, thereby inhibiting the alternative complement pathway, may be an important survival mechanism for pathogenic Neisseria [11]. Individuals carrying a genetic polymorphism in a presumed regulatory region for factor H have been reported to have elevated serum levels of factor H and an increased risk for meningococcal disease [12], and strains in which fhbp has been deleted are more susceptible to complement-mediated killing [13]. Thus, in addition to its ability to elicit a bactericidal response in humans [14], fHBP plays an important role in virulence for this organism.

Early analysis of fHBP sequences from 63 strains that represented a variety of N. meningitidis lineages identified 39 unique protein variants (differing by at least 1 amino acid) that we classified into 2 distinct groups, subfamilies A and B, with >83% amino acid identity within a subfamily but only 60%–75% amino acid identity between the subfamilies [7]. Bactericidal antibody responses were found to be mainly specific to each fHBP subfamily [7]. In a similar analysis, Masignani et al. [8] observed 24 unique variants among 78 strains and classified fHBP into 3 groups of variants: group 1 (corresponding to subfamily B) and groups 2 and 3 (together corresponding to subfamily A).

Members of the fHBP family are currently being evaluated clinically in 2 separate MnB candidate vaccines, 1 of which contains both a subfamily A and subfamily B protein, and the other of which contains only a subfamily B protein (in combination with other antigens). Measuring vaccine performance and demonstrating the sensitivity of disease-causing strains to vaccine-induced antibody is more complex for protein-based vaccines than for capsule-based vaccines. To lay the groundwork to address these issues, we have undertaken a comprehensive survey to examine the distribution and diversity of fHBP in an epidemiologically relevant, systematic collection of recent MnB clinical isolates.

MATERIALS AND METHODS

Strains. A set of 1263 invasive MnB strains was obtained from the public health laboratories of the United States, France, and the Czech Republic, and from the Health Protection Agency in Manchester (HPA), which covers England, Wales, and Northern Ireland (table 1). For the United States, strains were from the Active Bacterial Core Surveillance sites [16], which collectively cover ~13% of the US population. Available isolates for the period 2000–2005 (>80% of reported cases for those years) were included in the study. For the European countries, strains were collected in a systematic way by order of date received at the reference laboratory. Every seventh (Czech Republic) or every eighth (HPA, France, and Norway) isolate from 2001–2006 was included. The isolates from Europe that were included in this collection thus represent ~13% of invasive MnB isolates from the respective reference laboratories for the period covered by this study. The starting collections from these reference laboratories are estimated to cover 80%–85% of all invasive MnB isolates in France [17] and 50%–70% of those in the Czech Republic. For the HPA collection and Norway, coverage is estimated to be 95%. A total of 9 strains from all sources were not viable upon receipt at Wyeth and were excluded from the collection.

We also sequenced fhbp from 574 additional invasive MnB strains from various collections and years, for a total of 1837 strains (table 1). These additional strains were mainly from the United States, HPA, Norway, Czech Republic, New Zealand, and South Africa. They were included in our analysis of sequence diversity but were not included in analyses of variant frequency unless otherwise noted (eg, isolates from South Africa, for which all available isolates for 2005 were evaluated).

Polymerase chain reaction (PCR) and sequencing. The strategy for sequencing fhbp employed an initial PCR reaction with primers designed to recognize conserved regions upstream of and partially overlapping the leader peptide of fhbp and within 45 nucleotides downstream of the termination codon (5′-CTATTCTGCATGACTAGGAG-3′ and 5′-GTCCGAAC-GGTAATTATCGTG-3′, respectively). PCR templates were prepared by boiling several N. meningitidis colonies from chocolate agar plates in 100 μL of distilled H2O for 5 min, then diluting 1:4 in distilled H2O. PCR reactions (50 μL total volume) contained 4 μL DNA, Premix Taq-EX TAKARA enzyme cocktail (TAKARA Bio USA), and primers (0.4 μmol/L each). The amplification steps were 95°C for 5 min, 33 cycles of 95°C
<table>
<thead>
<tr>
<th>Collection, country</th>
<th>Source, location</th>
<th>Years collected</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematically collected strain collection</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>Centers for Disease Control and Prevention, Atlanta, Georgia</td>
<td>2000–2005</td>
<td>98</td>
<td>53</td>
<td>53</td>
<td>88</td>
<td>79</td>
<td>61</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>England, Wales, Northern Ireland</td>
<td>Health Protection Agency, Manchester</td>
<td>2001–2006</td>
<td>0</td>
<td>116</td>
<td>94</td>
<td>96</td>
<td>77</td>
<td>81</td>
<td>72</td>
<td>536</td>
</tr>
<tr>
<td>France</td>
<td>Neisseria Unit, Institut Pasteur, Paris</td>
<td>2001–2006</td>
<td>0</td>
<td>36</td>
<td>38</td>
<td>43</td>
<td>40</td>
<td>44</td>
<td>43</td>
<td>244</td>
</tr>
<tr>
<td>Norway</td>
<td>Norwegian Institute of Public Health, Oslo</td>
<td>2001–2006</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>National Institute of Public Health, Prague</td>
<td>2001–2006</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td>215</td>
<td>194</td>
<td>235</td>
<td>203</td>
<td>195</td>
<td>123</td>
</tr>
<tr>
<td>Additional strains</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>Centers for Disease Prevention and Control, Atlanta, Georgia</td>
<td>1996–1999 (mainly); 2006</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>110</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>National Institute of Public Health, Prague</td>
<td>1984–2007<sup>b</sup></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>177</td>
</tr>
<tr>
<td>Norway</td>
<td>Norwegian Institute of Public Health, Oslo</td>
<td>1996–2006<sup>c</sup></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>146</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Institute of Environmental Science and Research, Porirua</td>
<td>1992–2006</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>26</td>
</tr>
<tr>
<td>South Africa</td>
<td>National Institute for Communicable Diseases, Johannesburg</td>
<td>2005<sup>d</sup></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>54</td>
</tr>
<tr>
<td>Other</td>
<td>Chile (1 strain); Netherlands (5 strains); France (2 strains)</td>
<td></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>574</td>
</tr>
</tbody>
</table>

^a Includes 57 strains sequenced by Fletcher et al. [7].

^c Includes additional strains from 2001–2006 not included in the 1263 strain set.

^d These strains represent all available serogroup B strains collected in 2005 [15].
for 50 s, 59°C for 50 s, and 72°C for 50 s, followed by an extension step at 72°C for 7 min. Amplified DNA was purified using AMPure magnetic beads (Agencourt) and resuspended in 80 μL 10 mmol/L Tris-acetate buffer (pH 8.0).

Sequencing primers were slightly internal to the initial PCR primers and were hybridized to conserved regions in the N-terminus of fhbp or to subfamily-specific C-terminal regions. Conserved N-terminal and internal primers were 5′-TATGACT-AGGAGCAAACCTG-3′ and 5′-AGCTCATATTCCAGGAGCGGA-3′, respectively. Subfamily-specific C-terminal and internal primers were 5′-TACTGTTTGGCCGCCGATG-3′ and 5′-GAATGCTTTGCCGTGATACTCGGCT-3′, respectively, for subfamily A and were 5′-TTCGGACGGCATTTTCACAATGG-3′ and 5′-GGCGATTTCATAATGTTCCAGATT-3′, respectively, for subfamily B. All primer reactions were run for all strains; only those corresponding to the correct subfamily were successful. Sequencing reactions contained 4 μL PCR product, 2 μL 5× buffer (ABI PRISM BigDye Terminator V3.1 Cycle Sequencing Ready Reaction Kit), 4 μL ABI BDT_V3 polymerase, and 1 μL primer (3.2 pmol/μL) in a reaction volume of 20 μL.

Plates were handled on a Rapid Plate 96 channel Qiagen Bio Robot and with a Multi-plate II 4 tip system. Reactions were heated to 96°C for 30 s and then cycled at 96°C for 10 s, 50°C for 5 s, and 60°C for 4 min for 25 cycles. Electrophoresis was performed on an ABI3730 DNA sequencer (Applied Biosystems). Sequences were examined to verify double-stranded coverage with Sequencher 4.0, and sequences were subsequently trimmed to match the length of the mature protein (lipid attachment cysteine to termination codon). fhbp variant numbers were assigned sequentially to new sequences with use of a nomenclature that indicated subfamily, protein, and nucleotide variant (eg, A22_003 indicates the third nucleotide sequence variant of subfamily A protein variant number 22). This nomenclature replaces that used in our other publications [7]. Initially, all strains were sequenced twice from independent PCR reactions. After sequencing ∼100 strains with no discrepancies between duplicates, only those strains containing new fhbp sequences were confirmed by repeat PCR and sequencing. Sequences were deposited in GenBank with accession numbers FJ184079-FJ184274. Multilocus sequence typing (MLST) was performed according to the protocols at the Neisseria MLST Web site (http://pubmlst.org/neisseria/) [18].

Bioinformatic analyses. Protein sequences were aligned with ClustalW 1.83 [19]. Distances were calculated by the neighbor-joining method [20] in ClustalW, with correction for multiple substitutions [21]. Consensus sequences were calculated using the EMBASS utility “con” [22]. Each variant had equal weight in calculation of the consensus, with no adjustment for variant frequency. Trees were displayed using MEGA software, version 4.0 [23]. Independent subfamily A and subfamily B alignments were generated by separating the alignment of all sequences, without realignment or gap removal, to preserve a common numbering system. Networks were generated using Splitstree, version 4.0 [24], with default parameters.

For construction of minimum spanning trees, the aligned unique protein sequences were reduced to the set of 77 (subfamily A) or 101 (subfamily B) variable positions, and the remaining data were converted to a numerical matrix. Generation of minimum spanning trees and construction of clusters of fhBP sequences were performed with Bionumerics, version 5.1 (Applied Maths), with use of a categorical coefficient. Linkage priorities were assigned as follows: (1) maximum number of single-locus variants, (2) maximum number of single- and double-locus variants, and (3) maximum number of sequences belonging to a single type, with hypothetical types being permitted.

RESULTS

Summary of fhbp sequencing. fhbp was detected in all 1837 strains examined. All strains encoded a full-length protein except for 1 (0030/01), which carried a premature stop codon at nucleotide 366. There were 218 unique nucleotide sequences encoding 173 unique protein variants of mature fhBP. Two variants carried a substitution in the termination codon that resulted in a 3 amino acid extension at the C-terminus (B82 and B112). Phylogenetic analysis indicated that all genes fell into 1 of 2 groups (fig e 1A), which had previously been named subfamilies A and B [7]. There were 74 unique fhBP subfamily A and 99 unique subfamily B protein sequences, of which 41 and 67, respectively, were represented by just 1 strain. Pairwise identities within a subfamily ranged from 83% to 99% between subfamilies, pairwise identities ranged from 60% to 75%. A consensus alignment is shown in fig e 2. Evaluation of individual residue variation revealed that 111 amino acids (44% of all residues) were invariant among all proteins of both subfamilies (coded red in fig e 2). Within subfamily B, 166 residues were invariant; subfamily A is somewhat less diverse, with 192 positions completely conserved. At 32 positions, the residues were subfamily-defining that is, the residues were identical within and characteristic for either subfamily A or B (coded yellow in fig e 2).

Despite the clear existence of 2 subfamilies, 1 variant, A62 (found in 2 genetically and geographically unrelated strains, 0167/03 [Czech Republic, ST-5932] and 21626 [France, ST-2688]), was an apparent result of recombination between subfamilies. The N-terminus of A62_001 was 100% identical to B09 from nucleotides 1–556, and its C-terminus was 100% identical to A22 from nucleotides 507–768. The 2 A62 genes differed by 2 nucleotides. Most of the diversity between the 2 families is found in the C-terminal domain, and therefore, the recombinant variant was assigned to subfamily A. Such inter-subfamily recombination events evidently occur very rarely, be-
Figure 1.

A, Neighbor-joining tree generated based on the ClustalW alignment of 172 unique fHBP protein sequences. The truncated B110 sequence was excluded from the alignment. The tree was bootstrapped 500 times and drawn using MEGA software.

B, SplitsTree analysis of subfamily A fHBP variants. The trees in panels B and C are based on full-length alignments of subfamily A and subfamily B variants, respectively.

C, SplitsTree analysis of subfamily B variants. The trees in panels B and C are based on full-length alignments of subfamily A and subfamily B variants, respectively.

D, SplitsTree analysis of the N-terminal domain (residues 1–139) of all subfamily A and B variants. Representative variants are labeled. Subdomain assignments are described in the Results. In the nomenclature of Masignani et al. [8], variant 2 is equivalent to subfamily A variants carrying the N2 domain (N2C1 and N2C2); variant 3 is equivalent to subfamily A variants carrying the N1 domain (N1C1 and N1C2); and variant 1 corresponds to subfamily B variants.

Network analysis of fHBP sequences. Phylogenetic network analysis provides a better description of sequence relationships than standard tree representations when, as in the case of N. meningitidis, evolution most likely proceeds via horizontal transfer and recombination rather than linear, branched speciation events [25]. Network analysis using SplitsTree, version 4.0, subdivided subfamily A into 4 groups with multiple and equally likely paths among them (figure 1B). Visual examination of the aligned sequences in each group further revealed the existence of 2 N-terminal domain types (N1 and N2) and 2 C-terminal domain types (C1 and C2), which have apparently recombined in all 4 possible combinations. The 2 groups with the N1 domain, N1C1 and N1C2, are together equivalent to variant 3 in Masignani et al. [8], whereas the N2-containing variants, N2C1 and N2C2, together correspond to variant 2 in Masignani et al. [8]. The average pairwise distance of all N1-containing variants versus those with the N2 domain was 0.15266, whereas the distance between variants carrying C1 (ie, N1C1 and N2C1) versus those with C2 (N1C2 and N2C2) was 0.11529, indicating that, within subfamily A, more diversity is contributed by the N-terminal domains than by the C-terminal domains. However, the genetic distance between either of the N1- or N2-containing subfamily A groups and subfamily B (0.47303 and 0.39271, respectively) was 2.5–3 times greater than the distance between the 2 subgroups of subfamily A, reaffirming the essentially bifurcated nature of the fHBP phylogenetic tree (figure 1A).

N1 and N2 were distinguished by 20 "signature" residues
Figure 2. fHBP consensus alignment and evaluation of residue conservation. Alignment of the consensus sequences of 97 subfamily B variants (truncated variant B110 excluded), 73 subfamily A variants (hybrid A62 excluded), and each of the 4 groups of subfamily A variants N1C1 (), N1C2 (), N2C1 (), and N2C2 (). A57, which carried an N3 domain, was included only in the complete subfamily A alignment.

Residues are numbered according to the full-length structure of the B01 variant [26]; asterisks (*) indicate the position of the KDN residues in some variants, which are absent in the reference sequence B01. Residues are color-coded according to the type of variation exhibited at each position. Residues conserved between both subfamilies are colored in red and are 100% identical among all variants; orange indicates residues that differ in just 1 variant. Subfamily-defining residues (ie, residues that differ between subfamily A and subfamily B but are invariant within each subfamily) are shown in yellow. Subdomain signature residues (shown in green) are those that define the 4 subgroups of subfamily A (figure 1B); these are noted as “X” in the consensus line for all subfamily A variants. Variable residues (black on white) are those that varied in more than a single variant without conforming to any pattern. Many of these are conserved in the majority of sequences, and thus display identical consensus residues across all 6 groups. “X” indicates that there is no consensus residue. Only 1 position in the alignment (180) contained as many as 5 different residues, all other positions were limited to a maximum of 4.
Figure 3. Minimum spanning trees generated based on variable amino acid positions in the protein alignment of fHBP variants in 1317 strains (systematically collected strains and strains from South Africa). Trees were generated with BioNumerics with use of a categorical coefficient and are based on 77 variable positions in subfamily A (A) and 101 variable positions in subfamily B (B). The size of each circle is proportional to the number of strains carrying that variant. Each color in the circles represents a different MLST clonal complex. Groups based on fHBP protein sequence (connected by colored background) were formed where the neighboring distance was ≤5 amino acid differences, with formation of hypothetical types allowed. Connecting lines are proportional to distance.

Network analysis of subfamily B did not yield obvious subgroups similar to that of subfamily A (figure e 1C). However, consideration of just the N-terminal domain (residues 1–139 [26]) of all variants of both subfamilies (figure e 1D) indicated a close relationship between subfamily A and B variants. The majority of subfamily B variants (84% of subfamily B strains in the systematically collected set) possessed an N-terminal domain (N6) with all signature residues of the A subfamily N2 domain. Variation at the nonsignature residues resulted in the independent branching of N2 and N6. This analysis also revealed 7 subfamily B variants with N-terminal domains that, like N3, appeared to be a result of recombination between an N1- and N2-like domain between residues 79 and 85 (N4, exemplified by B44), as well as 4 subfamily B variants that could have arisen by recombination of an N1- and N2-like domain between residues 55 and 63 (N5).

Minimum spanning trees constructed from the variable positions in the subfamily A and subfamily B protein alignments are shown in figure e 3. Complexes were allowed to form from neighboring sequences containing up to 5 amino acid differences. In both trees, it is evident that a few “founder” sequences and closely related variants (with 1–2 amino acid differences) make up the majority of the fHBP population. In subfamily B, 31 variants (39 strains) were not included within any complex; 26 of these occurred in just 1 strain, and 5 others occurred in 4 to 5 strains. In subfamily A, there were just 9 variants (11 strains) that were not included within any complex.

Geographic distribution and frequency of fHBP variants. Overall, 71% of the systematically collected strains and 70% of the larger strain set were subfamily B variants, the remainder being subfamily A variants. Within each individual country, the percentage of strains carrying subfamily A variants ranged from 23% to 35%, and the percentage carrying subfamily B variants ranged from 65% to 77% (table 2). The distribution of strains in the United States is affected by an ongoing epidemic in Oregon that is not representative of disease elsewhere in the country. If Oregon is excluded from the analysis of strains from the United States, the subfamily distribution for the other US sites is 45% subfamily A and 55% subfamily B. In South Africa (where all available isolates from 2005 were evaluated), sub-
family A strains were isolated more frequently than were subfamily B strains (31 [57.4%] of 54 strains were subfamily A), including a high frequency of a variant (A32) that was rare elsewhere.

Within the systematically collected strain pool, 143 fHBP variants were identified among the 1263 strains; 92 variants were found just once, and 20 variants were found in 2 strains each. Only 18 variants were found in ≥10 isolates; of these, 10 variants (5 each of subfamily A and subfamily B) accounted for 79% of the systematically collected strain set (table 2). Frequencies for all variants are given in table 3.

Although the 10 most common variants were almost always among the most common in each country, their rank order differed (table 2). In the United States, B24 accounted for 42.6% of the isolates from 2000–2005. B24 is associated with the ST-32 clonal complex, which has been responsible for long-term hyperendemic disease in parts of the United States (particularly in Oregon) [27] and many parts of Europe [17, 28]. Strains carrying the B24 variant were common in Norway (35%) and France (20%) but were less frequent in the HPA set (4%), where the common subfamily B variants were B16 (23.5%) and B44 (22.0%). B44 was isolated less frequently in France, Norway, and the Czech Republic and was isolated only once in the United States. No major changes in variant frequency within countries were observed over the 6 years surveyed (figure 4).

Relationship of MnB genetic lineage and fHBP sequence type. Data for common MLST clonal complexes from the systematically collected strains from the United States, France, Norway, and the Czech Republic are shown in figure 5. Most clonal complexes contained both subfamily A and subfamily B variants. For example, the ST-41/44 clonal complex is highly diverse and contains a wide diversity of fHBP variants, including 107 subfamily A strains (13 different variants) and 129 subfamily B strains (17 variants). Two subfamily A (A12 and A22) and 2 subfamily B variants (B03 and B16) accounted for 39% and 42%, respectively, of ST-41/44 strains. The major exception was the ST-32 clonal complex, where 234 (87%) of 270 strains carried the B24 variant. However, despite the high frequency of B24 within this lineage, 27 other fHBP variants representing both subfamilies (10 subfamily A and 17 subfamily B) occurred in the remaining 36 strains. Analysis of PorA subtyping data for 500 strains revealed a similar diversity of fHBP variants within most PorA types (data not shown).

DISCUSSION

Our molecular subtyping analysis confirms that there are 2 phylogenetic groups of fHBP sequences, subfamilies A and B. Sequence variation is distributed throughout the length of the proteins and is interspersed with highly conserved residues; there are no hypervariable regions characteristic of other surface antigens, such as PorA. The pattern of natural sequence variation of fHBP suggests that evolution is operating under different constraints within each subfamily. Variation in both the N- and C-terminal domains of subfamily A is relatively limited, whereas subfamily B shows more evidence of recombination in the N-terminal domain and more allowable mutation overall.

The division of fHBP variants into 2 sequence families parallels the functional immune reactivity of these proteins. The 111 residues common to and conserved between both subfamilies map mainly to the interior core structure of fHBP, whereas 32 subfamily-specific residues lie mainly on one surface of the structure [26]. These residues are likely to be largely responsible for the subfamily-specific immune response. Because monovalent fHBP vaccines elicit bactericidal antibodies that are

Table 2. Frequency of the 10 Most Common fHBP Variants in the Systematically Collected Strain Set, by Geographic Location

<table>
<thead>
<tr>
<th>Country</th>
<th>No. of strains</th>
<th>Percentage in subfamily A</th>
<th>Percentage in subfamily B</th>
<th>Common variants, percentage of strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech Republic</td>
<td>28</td>
<td>25.0</td>
<td>75.0</td>
<td>B24 17.9 B16 3.6 B44 10.7 B03 7.1 A22 0 A19 3.6 A12 10.7 A05 3.6 A07 0</td>
</tr>
<tr>
<td>France</td>
<td>244</td>
<td>32.4</td>
<td>67.6</td>
<td>B24 19.7 B16 6.6 B44 5.7 B03 22.5 B09 1.6 A22 12.7 A19 3.7 A12 2.5 A05 1.2 A07 1.2</td>
</tr>
<tr>
<td>Norway</td>
<td>23</td>
<td>34.8</td>
<td>65.2</td>
<td>B24 34.8 B16 8.7 B44 4.3 B03 17.4 B09 0 A22 30.4 A19 0 A12 0 A05 4.3 A07 0</td>
</tr>
<tr>
<td>England, Wales, Northern Ireland</td>
<td>536</td>
<td>23.3</td>
<td>76.7</td>
<td>B24 3.9 B16 23.5 B44 22.0 B03 6.7 B09 9.9 A22 1.7 A19 0.4 A12 4.3 A05 0.9 A07 0.9</td>
</tr>
<tr>
<td>United States Including Oregon</td>
<td>432</td>
<td>34.5</td>
<td>65.5</td>
<td>B24 42.6 B16 5.1 B44 0.2 B03 3.2 B09 3.9 A22 10.4 A19 3.5 A12 6.3 A05 0.2 A07 3.0</td>
</tr>
<tr>
<td>United States Not including Oregon</td>
<td>291</td>
<td>45.0</td>
<td>55.0</td>
<td>B24 29.2 B16 6.5 B44 0.3 B03 4.8 B09 4.5 A22 12.7 A19 4.5 A12 8.6 A05 0.3 A07 4.5</td>
</tr>
<tr>
<td>Total</td>
<td>1263</td>
<td>29.1</td>
<td>70.9</td>
<td>B24 21.1 B16 13.2 B44 10.8 B03 8.8 B09 5.8 A22 10.0 A19 2.6 A12 3.0 A05 2.3 A07 1.7</td>
</tr>
<tr>
<td>South Africa</td>
<td>54</td>
<td>57.4</td>
<td>42.6</td>
<td>B24 11.1 B16 14.8 B44 1.9 B03 3.7 B09 3.7 A22 13.0 A19 13.0 A12 0 A05 0 A07 0</td>
</tr>
</tbody>
</table>

a Statistics for the United States are impacted by the epidemic in Oregon [27].

Table 3. Domain Assignments and Frequency for All fHbp Variants

This table is available in its entirety in the online version of the Journal of Infectious Diseases.
largely subfamily specific [7, 29, 30], a bivalent vaccine is necessary to provide coverage against both subfamilies. A bivalent vaccine given to mice, rabbits, monkeys, or humans is capable of generating serum bactericidal antibody responses against a variety of heterologous strains [5–7, 14, 31].

In assessing the likelihood that a surface protein–based vaccine will recognize a majority of clinical isolates, it is imperative to monitor the variation and expression of each individual antigen rather than relying on epidemiological surrogates. In a few instances, a particular fHBP variant may predict MLST (e.g., 97% of B24 strains belong to the ST-32 clonal complex), but the opposite is not necessarily true (figure 5). Earlier, less comprehensive studies [32, 33] showed that neither PorA nor MLST is predictive of fHBP variant. Similarly, this study showed that even those complexes, such as ST-32, that contain a dominant variant also contain examples of many other fHBP variants of both subfamilies.

A number of N. meningitidis surface protein–based vaccines have been considered for development, but the hurdles have been considerable. These include a failure to generate bactericidal antibodies in humans (Neisseria surface protein A [NspA]) [34], a high degree of sequence divergence in critical epitopes (PorA and Tbp) [35–37], and an absence of the gene in many isolates (N. meningitidis Adhesin A [NadA]) [32, 38]. However, fHBP is ubiquitous in N. meningitidis, is expressed on the bacterial surface, generates bactericidal antibodies in humans, and sequence divergence within each of the 2 subfamilies does not limit the development of a broad, subfamily-specific bactericidal response [5–7, 14, 30, 39]. All of these attributes make a bivalent recombinant fHBP vaccine a promising candidate for prevention of MnB disease.

The strains described in this study have also been evaluated for surface expression of fHBP and serogroup B capsule [40]. They show a range of expression for both, with no correlation between amount of capsule and level of surface expression of fHBP. The best predictor for killing by anti-fHBP antibodies appears to be the level of fHBP surface expression [30]. All 1837 strains evaluated in this study contained the fHBP gene, consistent with the important role that fHBP is believed to play in survival of the organism in vivo. An interesting observation was the detection of 3 strains with truncated or hybrid variants of fHBP; additional studies are necessary to determine whether these proteins are functional. Ongoing studies are aimed at...
further refining the correlates of HBP surface expression and protection in relation to the selection of appropriate assay strains for the evaluation of Phase III sera. The epidemiologically and genetically characterized collection of invasive MnB strains described here forms the framework for this ongoing work.

Acknowledgments

We thank the Active Bacterial Core Surveillance sites for their efforts in collecting the isolates from the United States, the Group for Enteric, Respiratory, and Meningeal Disease Surveillance in South Africa (GERMSA) for their efforts in collecting the isolates from South Africa, and all the other laboratories responsible for isolating and documenting the primary case isolates. The technical assistance of Scott Sigethy and Diane Pawlyk (Wyeth); Eva Hong, Corinne Ruckly, Dario Giorgini, and Jean-Michel Alonso (Institut Pasteur); Vlasta Pavlikova, Renata Pospisilova, Monika Heroldova and Romana Richterova (NIPH Prague); and Linda de Gouveia and Kedibone Mothibeli (South Africa) is greatly appreciated.

References