Human immunodeficiency virus type 1 (HIV-1) persists in a latent reservoir of infected resting memory CD4 cells in patients receiving antiretroviral therapy. We assessed whether multitarget therapy with enfuvirtide, 2 reverse-transcriptase inhibitors, and a ritonavir-boosted protease inhibitor leads to decay of this reservoir. Nineteen treatment-naive patients initiated this regimen; 9 experienced virologic suppression and continued enfuvirtide-containing therapy for at least 48 weeks. In enfuvirtide-treated patients with virological suppression, there was no decay of the latent reservoir (95% confidence interval for half-life, 11 months to infinity). The stability of the latent reservoir despite intensive therapy suggests that new strategies are needed to eradicate HIV-1 from this reservoir. (ClinicalTrials.gov identifier: NCT00051831.)

Received 9 June 2009; accepted 27 August 2009; electronically published 15 December 2009.

Presented in part: 16th Conference on Retroviruses and Opportunistic Infections, Montreal, 8–11 February 2009 (poster 424).

Disclaimer: The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.

Reprints or correspondence: Dr Rajesh Gandhi, Massachusetts General Hospital, GRU 504, 55 Fruit St, Boston, MA 02114 (rgandhi@partners.org).

The Journal of Infectious Diseases 2010;201:293–6
© 2009 by the Infectious Diseases Society of America. All rights reserved.
0022-1899/2010/20102-0016$15.00
DOI: 10.1086/649569

BRIEF REPORT

No Evidence for Decay of the Latent Reservoir in HIV-1–Infected Patients Receiving Intensive Enfuvirtide-Containing Antiretroviral Therapy

Rajesh T. Gandhi,1 Ronald J. Bosch,2 Evgenia Aga,2 Mary Albrecht,3 Lisa M. Demeter,3 Carrie Dykes,3 Barbara Bastow,3 Michael Para,3 Jun Lai,2 Robert F. Siliciano,5,6 Janet D. Siliciano,7 and Joseph J. Eron,9 for the AIDS Clinical Trials Group A5173 Team

1Massachusetts General Hospital, 2Harvard School of Public Health, and 3Beth Israel Deaconess Medical Center, Boston, Massachusetts; 4University of Rochester School of Medicine and Dentistry, Rochester, New York; 5Social and Scientific Systems, Silver Spring, and 6Johns Hopkins School of Medicine and 7Howard Hughes Medical Institute, Baltimore, Maryland; 8Ohio State University, Columbus; 9University of North Carolina, Chapel Hill

Human immunodeficiency virus type 1 (HIV-1) persists in integrated DNA in resting memory CD4 T cells in patients receiving antiretroviral therapy (ART) [1–3]; this latent reservoir has an estimated half-life of 44 months [4]. The lack of decay of this latent reservoir may reflect the intrinsic stability of the virus in resting memory CD4 cells, but it may also be due to ongoing low-level HIV-1 replication that replenishes the reservoir. Although most patients receiving standard antiretroviral regimens have low-level viremia detectable with special assays [5], there is controversy as to whether this residual viremia represents ongoing cycles of HIV-1 replication or episodic release of virus from stable reservoirs (eg, from cellular sources or anatomic compartments, such as the central nervous system). If current antiretroviral regimens completely block viral replication, then more intensive ART will not lead to decay of the latent reservoir. Alternatively, if ongoing viral replication contributes to maintenance of the latent reservoir, then increasing the potency of therapy by inhibiting additional viral targets may further diminish replication and lead to more rapid decay of the latent reservoir. Studies of the effect of more intensive ART on the size of the latent reservoir may help determine whether ongoing replication contributes to the stability of the latent pool.

Current first-line antiretroviral regimens inhibit HIV-1 enzymes that function inside the host cell, such as reverse transcriptase or protease. The antiretroviral activity of combination therapy with reverse-transcriptase and protease inhibitors may be increased by adding an additional agent—such as the fusion inhibitor enfuvirtide—that blocks an extracellular target [6]. Inhibition of HIV-1 via an extracellular site of action might also more effectively suppress replication if efflux pumps or other mechanisms result in cellular sanctuaries of viral replication. We assessed whether initiation of intensive ART with a...
multitarget regimen that includes fusion, protease, and reverse-
transcriptase inhibitors leads to decay of the HIV-1 latent
reservoir.

Methods. In a single-arm study (AIDS Clinical Trials
Group A5173), treatment-naive HIV-1–infected patients with
CD4 cell counts of ≥ 100 cells/μL, HIV-1 RNA loads of ≥ 1000
copies/mL, and no drug-resistance mutations (as determined
by genotypic testing) initiated therapy with 90 mg of enfuvirtide
administered by subcutaneous injection twice daily, 300 mg of
tenofovir disoproxil fumarate administered daily, either 200 mg
of emtricitabine or 300 mg of lamivudine administered daily,
1000 mg of saquinavir mesylate administered twice daily, and
100 mg of ritonavir administered twice daily. Patients who
achieved a viral load of <50 copies/mL and continued enfu-
virtide-containing ART were tested at week 24 and then every
24 weeks for the frequency of latently infected resting CD4 cells
(measured in infectious units per million cells [IUPM]), using
methods described elsewhere [7]; the planned study duration
was 96 weeks. Viral load testing (Roche Amplicor HIV-1 Mon-
itor assay, ultrasensitive version 1.5) was performed at a central
laboratory for samples collected at study entry; on days 4 and 10;
at weeks 4, 8, 12, and 16; and then every 8 weeks until
week 96. CD4 cell counts were measured at entry; on day 10;
at weeks 4, 8, 12, and 16; and then every 8 weeks until week
96. CD4 and CD8 cell activation was assessed at entry and
every 24 weeks, by measuring the percentage of cells that ex-
pressed CD38 and by estimating CD38 cell surface density from
the mean fluorescence intensity of this marker. CCR5 density
on nonactivated (HLA-DR–negative) CD4 cells was measured
at study entry.

We analyzed the latent-reservoir decay rate in patients who
attained a viral load of <50 copies/mL and received enfuvirtide-
containing ART for at least 48 weeks (the analysis cohort). On
the basis of previous estimates of assay and biologic variation
and the correlation among repeated observations [8], in the
initial study design we estimated that 10 evaluable patients,
each with 4 latent-reservoir measurements, would provide 80%
power to detect a change in the decay rate from the reported
value of 44 months to <12 months. The original target en-
rollment was 40 patients, with the expectation that some would
not attain a viral load of <50 copies/mL and that others would
discontinue the study regimen prematurely. Because of both
slow enrollment and data showing no evidence of decline in
the latent reservoir, an independent review committee rec-
ommended an early stop to accrual.

The primary analysis of the latent reservoir was based on
data from the analysis cohort; the estimated decay and 95% con-
fidence intervals were obtained from a random-effects
model of log-transformed latent-reservoir measurements [4].
Analyses of toxicities were based on data from all patients
with enfuvirtide. Additional analyses were descriptive
and used rank-based and partial correlations and repeated-
measures models. Data from patients in the analysis cohort
were compared with those from other patients by means of
Wilcoxon rank sum and Fisher exact tests.

Results. Nineteen treatment-naive patients initiated inten-
sive ART with enfuvirtide, tenofovir disoproxil fumarate, either
etravir or lamivudine, saquinavir mesylate, and ritonavir.
The median age was 36 years; of the 19 patients, 17 (89%) were
male, 11 (58%) were white, 5 (26%) were Hispanic, 2 (11%) were
African American, and 1 (5%) was American Indian/
Alaska Native. The median baseline CD4 cell count was 262
cells/μL (range, 146–597), and the median baseline viral load
was $4.8 \log_{10}(63,000)$ copies/mL.

Seven patients stopped taking enfuvirtide before week 48 (6
because of toxicities related to injection site reactions [at weeks
1–13] and 1 for personal reasons not related to toxicity); these
7 patients were excluded from the latent-reservoir analysis.
Three patients did not experience virologic suppression or had
virologic rebound before week 48 and were excluded from the
reservoir analysis. Nine patients (the analysis cohort) both
experienced virologic suppression and continued enfuvirtide-
containing ART for at least 48 weeks. Patients in the analysis cohort
were in general similar to those who discontinued enfuvirtide
before week 48 ($n = 7$) and similar to those who did not have
sustained virologic suppression ($n = 3$) in terms of age, sex,
baseline CD4 cell count, and viral load, although the power to
detect differences was small.

The patients in the analysis cohort had a median CD4 cell
count increase at week 48 of 443 cells/μL, compared with 228
cells/μL in 6 patients who had a viral load of <50 copies/mL
at week 48 but were no longer receiving enfuvirtide ($P = .08$).
The median time to achieving a viral load of <50 copies/mL
in the analysis cohort was 16 weeks; patients who did not
remain on enfuvirtide had a similar median time to achieving
an undetectable viral load (also 16 weeks).

Patients in the analysis cohort had a median of 4 latent-
reservoir measurements each. Four patients had a slight de-
crease of the number of latently infected cells, and 5 patients
had a slight increase (Figure 1). Overall, there was no evidence
for decay of the latent reservoir (95% confidence interval for
half-life, 11 months to infinity). The latent-reservoir decay rate
observed in this trial was similar to that seen in previous studies
in which patients were given less intensive antiretroviral regi-
mens but on average were virologically suppressed for longer
periods of time [4] (Figure 1).

We examined the relationship between baseline factors and
the latent reservoir. Latent-reservoir size (measured by the
mean \log_{10} IUPM) was inversely correlated with baseline CD4
cell count ($r = -0.77; P = .016$) (Figure 2); that is, the lower
the baseline CD4 cell count, the larger the mean \log_{10} IUPM.
This association persisted after adjustment for baseline viral
load. After adjusting for baseline CD4 cell count, there was no relationship between baseline viral load and \(\log_{10} \) IUPM (\(r = 0.36 \); \(P = .38 \)). There was no evidence for an association between mean \(\log_{10} \) IUPM and each of the following baseline factors: age, CCR5 density on CD4 cells, and CD4 or CD8 cell activation (measured by the percentage of T cells expressing CD38 and CD38 density) (\(r = -0.40 \) to 0.14; all \(P \) values are >.30).

We also evaluated the relationship between latent-reservoir size and immune activation during ART. Although in the analysis cohort \(\log_{10} \) IUPM was inversely correlated with CD38 density on CD4 and CD8 cells at the time of latent-reservoir measurement (\(r = -0.4 \) and \(-0.24 \), respectively; \(P < .05 \)), these associations were no longer statistically significant after adjustment for baseline CD4 cell count. There was also no statistically significant correlation between latent-reservoir size and the percentage of CD4 or CD8 cells expressing CD38.

To assess whether enfuvirtide use affected immune activation, we compared the percentage of T cells expressing CD38 and CD38 density of patients who continued to receive the fusion inhibitor with those of patients who stopped receiving the drug before the study was completed. Among patients with a viral load of <50 copies/mL, there was no evidence for a difference in immune activation at week 48 between those in the analysis cohort (who continued receiving enfuvirtide; \(n = 9 \)) and those who had discontinued enfuvirtide (\(n = 5 \)) before this time point. Similar results were seen at weeks 24, 72, and 96.

Finally, because CCR5 density on CD4 cells has been associated with in vitro activity of enfuvirtide [9] and response to ART [10], we hypothesized that lower CCR5 density might be associated with greater enfuvirtide activity. To test this hypothesis, we examined whether CCR5 cell surface levels affected how rapidly viral load declined after initiation of enfuvirtide-containing therapy. The estimated mean change in viral load from day 0 to day 7 was \(-1.26 \log_{10} \) copies/mL (\(n = 18 \)). There was no association (\(r = -0.13 \); \(P = .6 \)) between baseline CCR5 density and change in viral load from day 0 to day 7 (range of days on which the viral load was measured, days 4–10).

Discussion. In treatment-naive HIV-1–infected patients who received enfuvirtide-containing multitarget ART and who achieved and sustained a plasma viral load of <50 copies/mL, we did not detect a decline in latent-reservoir size over 96 weeks. Although the small sample size limits our power to detect associations—particularly in the secondary analyses—we can, with 95% certainty, exclude the possibility that the half-life of the latent reservoir is <11 months in patients receiving this intensive regimen. Our trial examined the latent-reservoir decay rate in treatment-naive patients who initiated their first antiretroviral regimen, whereas most previous studies measured the reservoir in patients who were already receiving therapy. Despite this difference, the latent-reservoir decay rate observed in our trial was similar to that seen in a study of patients receiving less intensive ART regimens (Figure 1), which were generally combinations of nucleoside reverse-transcriptase inhibitors with nonnucleoside reverse-transcriptase inhibitors or protease inhibitors [4]. Our results suggest that addition of a fusion inhibitor to a regimen that includes reverse-transcriptase and protease inhibitors does not dramatically affect the rate of latent-reservoir decay.

Are there factors that influence the size of the latent reservoir that might impact the ability to deplete this pool? We found that baseline CD4 cell count was inversely associated with the size of the latent reservoir, even after adjustment for baseline viral load. This observation is consistent with the hypothesis that baseline CD4 cell count was inversely associated with the half-life of the latent reservoir in patients receiving enfuvirtide-containing therapy.
that a longer duration of uncontrolled viremia—which leads to more extensive CD4 cell count decline—might result in a larger latent reservoir. However, the latent reservoir is established during acute HIV-1 infection and persists even in patients who initiate therapy during this period [11, 12]. Alternatively, the latent reservoir may be smaller in patients with more robust immune systems. Whether earlier initiation of ART in patients with chronic HIV-1 infection might result in a smaller latent reservoir is not known. The finding of an inverse relationship between baseline CD4 cell count and latent-reservoir size must be confirmed in larger study populations.

Is the size of the latent reservoir related to the amount of persistent immune activation? After adjusting for baseline CD4 cell count, we did not observe any association between T cell activation and latent-reservoir size. We also did not find evidence that use of enfuvirtide had an effect on immune activation in those patients whose viral load was <50 copies/mL, although the power to detect differences was small.

There are several implications of our study. The stability of the latent reservoir in patients initiating therapy with a multitarget regimen that includes fusion, protease, and reverse-transcriptase inhibitors suggests that this strategy will not lead to depletion of this reservoir, an important step toward eradication of HIV-1 infection. It remains to be seen whether intensification of therapy with agents that have other mechanisms of action—such as integrase inhibitors or CCR5 antagonists—will impact residual viremia or the latent reservoir; studies are ongoing. If persistent viral replication does not contribute to maintenance of the latent reservoir [13], then novel strategies—such as reactivation of latent HIV-1 provirus or acceleration of the death rate of latently infected cells [14, 15]—may be needed to successfully eradicate HIV-1 infection. Studies of new approaches must be urgently pursued.

Acknowledgments

We acknowledge John Schmitz, Christopher Pilcher, Lynne Peeples, Camlin Tierney, Anne Kmack, Lynette Purdue, Tianzi Cai, David Wininger, Elizabeth Adams, Carla Pettinelli, Cheryl Marcus, Melissa Kerkau, James Rooney, James Thommes, and all the members of the A5173 team. We also thank the patients and the staff who participated in this study. In particular, we acknowledge the following individuals: Dr David A. Wininger and Mark D. Hite (Ohio State University), Dr Jorge L. Santana Bagur and Dr Santiago Marrero (Puerto Rico AIDS Clinical Trials Unit), David Currin and Susan Pedersen (University of North Carolina), Cathi Basler and Graham Ray (University of Colorado Hospital), Amy Shrolla and Teri Flynn (Massachusetts General Hospital AIDS Clinical Trials Group), Dr Judith Aberg and Karen Cavanagh (New York University and New York City Health and Hospitals Corporation at Bellevue Hospital Center), and Michael C. Royal and Dr Michael K. Klebert (Washington University). We thank the following companies for providing the study drug: Gilead, Hoffman–La Roche, Abbott, and Trimeris.

References

