Reply to Sadlier et al

TO THE EDITOR—We read with interest the letter by Sadlier et al [1], which reported the human papillomavirus (HPV) prevalence in both human immunodeficiency virus (HIV)–positive and HIV-negative men who have sex with men (MSM).

The prevalence of anal HPV DNA in the Dublin study by Sadlier et al was substantially higher than that in our study, a cohort of 16–20 year old MSM in Melbourne, Australia [2]. The prevalence of anal HPV of any type was 69% in their study, compared with 31% in ours (P < .001), and the prevalence of anal HPV type 16 (HPV-16) and/or HPV-18 was 42% in their study, compared with 7% in ours (P < .001). The higher prevalence reported by Sadlier et al is to be expected because the men in that study were much older than the men in our study (mean age, 36 vs 19 years) and, therefore, likely to have more sexual experience. Also, just over half of men in that study were HIV positive, whereas none were HIV positive in our study. Previous studies of HIV-positive MSM in Melbourne have revealed very high rates of HPV. In a study of HIV-positive Melbourne MSM with a median age of 48 years, 90% had any anal HPV detected and 33% had anal HPV-16 detected [3]. In another study of HIV-positive Melbourne MSM aged ≥35 years, 19% had oral HPV [4]. In a meta-analysis that included data on all published studies of adult MSM, the prevalence of anal HPV-16 was 35.4% in HIV-positive MSM and 12.5% in HIV-negative MSM [5]. A high incidence of HPV-16 seroconversion is maintained into middle age in MSM, suggesting that new HPV-16 infections continue to occur well into adulthood [6].

Although ideally MSM should be vaccinated before their sexual debut, in reality, currently no country other than Australia has implemented universal, free, school-based vaccination of males. We agree with Sadlier et al that selective HPV vaccination of MSM, including HPV-positive men, should be considered and may result in benefits to individuals who are not currently infected with the HPV vaccine types. However, the cost-effectiveness of this approach is dependent on the prevalence of HPV among such men. It has been estimated that HPV vaccination of MSM is cost-effective (US $37 830 per quality-adjusted life year), even if half were already exposed to all HPV vaccine types [7]. This is not dissimilar to the cost-effectiveness of vaccinating boys of school age (USD14000–42000, per quality-adjusted life year) [8]. Given the high incidence of HPV among MSM, research on the population effectiveness of a combined approach incorporating universal childhood HPV vaccination with selective vaccination of MSM who miss out on this would be of great interest.

Notes

Financial support. This work was supported by Merck Sharp and Dohme (Investigator Initiated Studies Program grant 39379) and the National Health and Medical Research Council (NHMRC; grant 568971).

Disclaimer. The opinions expressed here are those of the authors and do not necessarily represent those of Merck Sharp and Dohme or the NHMRC. Merck had no input into the design, analysis, or reporting of the study.

Potential conflicts of interest. C. K. F. has received honoraria from CSL Biotherapies and Merck and research funding from CSL Biotherapies. C. K. F. owns shares in CSL Biotherapies, the manufacturer of Gardasil. A. E. G. has received honoraria and untied research funding from CSL Biotherapies and has received honoraria from Merck. The institution with which M. Y. C. is affiliated received a grant from Merck Sharp and Dohme that supported the conduct of the study. H. Z. certifies no potential conflicts of interest.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References


Received 2 April 2014; accepted 11 April 2014; electronically published 8 May 2014.

© Crown copyright 2014.

DOI: 10.1093/infdis/jiu267

1 School of Population and Global Health, University of Melbourne, 2 Melbourne Sexual Health Centre, Alfred Health, and 3 Central Clinical School, Monash University, Melbourne, and 4 Kirby Institute, University of New South Wales, Sydney, Australia