In Vivo Prediction of Tuberculosis-Associated Cavity Formation in Rabbits

Brian Luna,1,6 André Kobler,1,6,7 Christer Larsson,1,8 Brent Foster,4 Ulas Bagcî,4 Daniel J. Mollura,1 Sanjay K. Jain,1,9,10 and William R. Bishai1,2,5

1Johns Hopkins Center for Tuberculosis Research, 2Center for Infection and Inflammation Imaging Research, 3Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, 4Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, and 5Howard Hughes Medical Institute, Chevy Chase, Maryland; and 6Department of Medicine, Imperial College London, United Kingdom

The presence of cavitary lesions in patients with tuberculosis poses a significant clinical concern due to the risk of infectivity and the risk of antibiotic treatment failure. We describe 2 algorithms that use noninvasive positron emission tomography (PET) and computed tomography (CT) to predict the development of cavitary lesions in rabbits. Analysis of the PET region of interest predicted cavitary disease with 100% sensitivity and 76% specificity, and analysis of the CT region of interest predicted cavitary disease with 83.3% sensitivity and 76.9% specificity. Our results show that restricting our analysis to regions with high 18F-fluorodeoxyglucose uptake provided the best combination of sensitivity and specificity.

Keywords. CT; 18F-FDG; PET; tuberculosis.

Mycobacterium tuberculosis is the primary etiological agent of tuberculosis in humans and was responsible for an estimated 1.4 million deaths in 2011 [1]. The initial infection is usually cleared or otherwise contained by the host immune system in a granuloma. One hypothesis is that cavities evolve when solid caseous necrotic granulomas liquefy [2]. Cavities are a risk factor for disease transmission [3]. The tissue destruction that results from cavitation contributes to the morbidity and mortality of tuberculosis [2,4,5]. Cavitary disease is also an indicator of treatment failure and disease relapse [6].

There are no clinical tests that are designed to assay the risk of cavitary lesion development [7]. Imaging markers provide an attractive option because of their benefit of providing a real-time, noninvasive tool. Additionally, noninvasive imaging tests allow for monitoring disease progression within a patient over time.

We used a rabbit cavitory model of tuberculosis to develop imaging markers predictive of cavitary lesion development. In this study, we demonstrate that, although inflammation, as measured by 18F-fluorodeoxyglucose (18F-FDG) uptake, does not positively correlate with cavitary disease, changes in lung density, as measured by CT, are predictive of cavitary lesion development. We believe this novel method can be used as a noninvasive tool to analyze the progression of tuberculosis cavitory lesions. Such imaging biomarkers could shorten the time and cost of tuberculosis drug trials and are valuable in evaluating therapeutics that target the cavitation process.

MATERIALS AND METHODS

Ethics Statement

All animal experiments were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and all procedures were approved by the Johns Hopkins University Animal Care and Use Committee.

Modified Rabbit Cavitary Model

Sensitization and infection of New Zealand White female rabbits were done as previously described [8]. Briefly, rabbits received 5 separate injections of 10^8 colony-forming units (CFUs) of heat-killed Mycobacterium bovis Ravenel. Twenty-five days after the final injection, the animals were given a skin test (purified protein derivative) to measure hypersensitivity. Positivity was defined as any measurable induration. Animals for which the skin test revealed no conversion were still included in this study. Following receipt of the skin test results, rabbits were challenged with 10^4 live M. tuberculosis H37Rv bacilli. The bacterial suspension was delivered to the right lower lung lobe by bronchoscopy. Inoculum dose was determined by plating the inoculum on 7H11 selective plates.

18F-FDG PET/CT Imaging

Rabbits were anesthetized with ketamine (20 mg/kg), xylazine (5 mg/kg), and acepromazine (10 mg). Animals were maintained under 3 L/min O2 and 1% isoflurane for the duration.
Cavitary progressive disease was defined by visual assessment of a cavity structure during necropsy or observing a region with density of less than -900 HU as measured by CT. Animals in which no cavity disease was observed were labeled as having noncavitary progressive disease.

PET and CT ROIs

Raw PET and CT images were acquired, coregistered, and then segmented. The PET ROI was defined as a global threshold of the top fifth percentile of $[^{18}F]$-FDG uptake, and the CT ROI was defined by the density range of -200 to 200 HU. The PET and CT ROIs were applied to the segmented PET and CT data sets, respectively (Supplementary Figure 1). The PET ROI can be summarized as defining a region with high inflammation, and the CT ROI can be summarized as defining a consolidated region. Both regions identify abnormalities that can be interpreted as signs of disease. A summary of the main types of pathology that are visualized by CT are summarized in Figure 1A. Because PET and CT images have been coregistered, application of the ROI is not restricted to the data set used to generate the ROI. For example the spatial volume defined by the PET ROI can be applied to the CT image set and also the PET data set.

Changes in Lung Density During Disease Progression

Progression of active tuberculosis in the rabbit model leads to structural changes, such as fibrosis, that can be measured as an increase in lung tissue density (Figure 1B). A significant difference ($P = .0038$) was found when comparing the lung density distribution in cavitary progressive animals at the week of cavitation versus the week prior to cavitation (Figure 1B). A significant difference was also observed when measuring the density distribution at the week of cavitation, compared with the week prior to cavitation, using the PET ROI (2-tailed unpaired t test; Figure 1C). The density distribution of cavitary progressing animals did show an increasing trend in the 0:100 HU domain in the CT ROI (Figure 1D).

Defining an Imaging Marker of Cavitation

We observed that the shift in the density distribution from the PET ROI produced a peak in the -200 to 200 HU region (Figure 1B–D). It was also observed that a significant increase ($P = .0003$) in lung density in range of -200 to 200 HU occurs after infection (Supplementary Figure 2A). There was a significant difference ($P = .0001$) between cavitary progressing and noncavitary progressing animals when measuring the percentage of lung within the range of -200 to 200 HU (Supplementary Figure 2B).

Assessment of the Predictive Power of the Imaging Markers, Using the Test Set

We developed 2 methods for predicting cavitary lesion progression, using the data we collected from the training set series of
animals. The methods quantify the density distribution, as measured by CT, using differently defined ROIs. The area under curve (AUC) cutoffs of >90 and >115 for the PET and CT ROIs, respectively, were positive predictors for the development of cavitary disease. These criteria were designed to provide the best combination of both sensitivity and specificity. Images defined as positive were the week of cavitation and the week prior to cavitation. Therefore, the training set consisted of 10 positive imaging sets and 47 negative imaging sets (Table 1).

To validate the usefulness of these methods, these predictive criteria were applied to a new test set of rabbits. The test set was subjected to the same infection conditions as the training set group. Three of 4 animals developed cavitary disease from the test set. The test set was imaged before infection and 1, 2, 3, and 5 weeks after infection and consisted of 6 positive images and 13 negative images (the week 5 image from 1 rabbit was not used because it was obtained 2 weeks after cavitation occurred). Use of the PET ROI predicted cavitary disease with 100% sensitivity

Table 1. Sensitivity and Specificity of Cavitary Predictive Radiology Markers

<table>
<thead>
<tr>
<th>Marker</th>
<th>Training Set a</th>
<th>Test Set b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region of interest</td>
<td>PET</td>
<td>CT</td>
</tr>
<tr>
<td>Area under the curve</td>
<td>90</td>
<td>115</td>
</tr>
<tr>
<td>Sensitivity, %</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>Specificity, %</td>
<td>78.182</td>
<td>72.727</td>
</tr>
</tbody>
</table>

Use of the PET ROI outperformed the CT ROI.
Abbreviations: CT, computed tomography; PET, positron emission tomography; ROI, regions of interest.

a There were 10 true positive and 55 true negatives.
b There were 6 true positives and 13 true negatives.
DISCUSSION

Tuberculosis biomarkers for monitoring disease outcome are urgently needed. The use of imaging biomarkers could have an immediate impact in a clinical trial setting in which resources are more abundant. At present, the cost of clinical trials for new tuberculosis vaccines and drugs is staggeringly high because of poor biomarkers. Identification of robust biomarkers to monitor treatment outcome could dramatically reduce both the financial cost and study duration needed to evaluate new therapeutics [7]. These technologies may also have value in clinical care and management as costs decline. This tool can also be used for reducing the number of animals used for studies and also for mitigating animal suffering. The number of animals used for studies can be reduced because the noninvasive imaging techniques described do not require animals to be euthanized at each time point.

The improved sensitivity of predicting cavitary disease for the PET ROI, compared with the CT ROI, is likely due to a positive correlation between 18F-FDG uptake and inflammation. Inflammation results in the release of enzymes capable of remodeling the extracellular matrix. The role of proteases and collagenases and their necessity for producing the disease pathology typically observed in tuberculosis has previously been reported [2,4,5].

It is important to note that increasing uptake of 18F-FDG was observed during disease progression, consistent with findings from recent studies [12–14]. These studies established that 18F-FDG uptake is correlated with CFU burden. While it has been reported that cavities provide an environment for high bacterial burden, it is unknown whether a high bacterial burden is a necessary prerequisite for cavitary formation [2,8,15]. It is plausible that the CFU burden prior to cavitation was similar between cavitary and noncavitary groups, and therefore there was a similar uptake of 18F-FDG. The density region that we observed to be increased during the course of disease progression was also independently reported in a marmoset model recently published by Via et al [12]. This suggests that the density region that we identified in this study may be applicable in model animals other than rabbits.

Limitations of the proposed study were that the predictive power of the algorithm is only 1 week at present. Lin et al [14] reported a similar lung density increase in M. tuberculosis–infected nonhuman primates. While we are optimistic that our algorithm can be extended to other species beyond rabbits, this has not been demonstrated. Noninvasive tests, such as sputum smear microscopy, interferon-γ release assays, and quantification of lung matrix and breakdown products, could be integrated into a multi-biomarker disease activity (MBDA) matrix for risk assessment. Similar approaches have been done for rheumatoid arthritis. This tool could be used to advance the understanding of cavity lesion development by identifying precavitary lesions.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases online (http://jid.oxfordjournals.org). Supplementary materials consist of data provided by the author that are published to benefit the reader. The posted materials are not copyedited. The contents of all supplementary data are the sole responsibility of the authors. Questions or messages regarding errors should be addressed to the author.

Notes

Financial support. This work was supported by the Swedish Research Council, the Swedish Society for Medical Research, the National Institute of Allergy and Infectious Diseases (grant RO1AI079590), the National Institutes of Health (grant RO1AI1035272), and the Howard Hughes Medical Institute.

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

