Time trends of age-standardized rate (ASR) of stomach cancer incidence (ICD-10: C16) were compared among 18 selected cancer registries and ethnic/racial groups in Asia, Europe and USA. Data source was the Cancer Incidence in Five Continents Vol. IV–VIII (years at diagnosis: 1973–77, 1978–82, 1983–87, 1988–92, and 1993–97, respectively). World population was used for age-standardization.

Figures 1 and 2 shows time trends of ASR of stomach cancer incidence for males and females. In all registries, ASRs in males show higher than ASRs in females. As for the time trend of stomach cancer incidence, the same tendency is observed for males and females in all cancer registries excluding Los Angeles’ Korean.

Regardless of the levels of ASRs, a decreasing trend from the 1970’s to the 1990’s is observed in all registries for both males and females excluding the ASR for the Korean male immigrants in Los Angeles. Three registries in Japan (Miyagi, Nagasaki and Osaka) show higher ASRs compared to other registries. Although ASRs of these three registries in Japan have
been decreasing dramatically, they are still higher than registries in other countries and Japanese immigrants in Hawaii and Los Angeles in 1993–1997.

Fig. 2. Time trends in age-standardized stomach cancer incidence rate (ICD-10: C16) in 18 cancer registries in East Asia, Europe and USA: females. *Note:* Data were downloaded from IARC CANCER Mondial Statistical Information System (http://www-dep.iarc.fr/). Data of number of incidence and population for Vol. IV–VIII were extracted from the file named CI5I-VIII_September_2005.ZIP and tabulated by the authors of this article. Periods of year at diagnosis were representative, and they included the following exceptions: the first period was 1975 for Shanghai (China), 1974–77 for Hong Kong (China), 1975–77 for Bas-Rhin (France), 1973–76 for West Midlands (England); the second period was 1979–82 for West Midlands (England); the first period (1976–77) of Varese (Italy) was excluded because there were no data for several age groups. Note that calculated incidence rates were values averaged across 5 years, which could have rounded rapid annual changes (a spike or drop). Responsibility for this presentation and interpretation lies with the authors of this article. LA: Los Angeles, SEER: Surveillance Epidemiology and End Results.

Tomomi Marugame and Qiu Dongmei
Cancer Information Services and Surveillance Division
Center for Cancer Control and Information Services
National Cancer Center
doi:10.1093/jjco/hym014