Objective: Management of laryngeal cancer has focused on improving survival while preserving function. Over the past 20 years, the trends have shifted from surgery to chemoradiotherapy and presently we are facing various challenges. It is imperative to re-examine what has happened and what can be done.

Methods: Review of the literature along with our experience in the management of functional organ preservation for laryngeal cancer.

Results: There was an increasing use of chemoradiotherapy with a decreasing use of surgery. Inappropriate patient selection along with inability to properly apply salvage surgeries have been presumed to be responsible for survival deterioration in laryngeal cancer. Reports concerning late adverse events after chemoradiotherapy are also increasing. Reconfirmation of the multidisciplinary team approach is imperative. Transoral laser microsurgery can be used for early laryngeal cancer and, in some experienced institutes, for advanced-stage cancers. Supracricoid laryngectomy demonstrated satisfactory oncologic and functional outcomes, based on our experience.

Conclusions: Treatment selection for larynx preservation should not merely be decided by guidelines but considering each patient’s individual condition. Head and neck surgeons are encouraged to take reasonable risks in performing salvage larynx preservation surgery when it is the only option to save a functioning larynx.

Key words: larynx preservation – organ preservation – laryngeal function – chemoradiation – chemoradiotherapy – supracricoid laryngectomy – partial laryngectomy
Table 1. Milestones in larynx management

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Indirect laryngoscope</td>
<td></td>
</tr>
<tr>
<td>*Laryngeal pathogogy</td>
<td></td>
</tr>
<tr>
<td>*Electric light bulb</td>
<td></td>
</tr>
<tr>
<td>*Bacteriology</td>
<td></td>
</tr>
<tr>
<td>*Radiology</td>
<td></td>
</tr>
<tr>
<td>*Direct laryngoscope</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>*Anesthesia</td>
<td></td>
</tr>
<tr>
<td>*Aspirin</td>
<td></td>
</tr>
<tr>
<td>*Partial laryngectomy</td>
<td></td>
</tr>
<tr>
<td>*Total laryngectomy</td>
<td></td>
</tr>
<tr>
<td>*Sterilization</td>
<td></td>
</tr>
<tr>
<td>*Total laryngectomy for laryngeal ca.</td>
<td></td>
</tr>
<tr>
<td>*Laryngoscopic surgery</td>
<td></td>
</tr>
<tr>
<td>*Neck dissection</td>
<td></td>
</tr>
<tr>
<td>*Antibiotics</td>
<td></td>
</tr>
<tr>
<td>*CT scan</td>
<td></td>
</tr>
<tr>
<td>*MDCT</td>
<td></td>
</tr>
<tr>
<td>*PET</td>
<td></td>
</tr>
<tr>
<td>*Cobalt 60 / Linac</td>
<td></td>
</tr>
<tr>
<td>*SCPL</td>
<td></td>
</tr>
<tr>
<td>*Laser</td>
<td></td>
</tr>
<tr>
<td>*Pedicle flap</td>
<td></td>
</tr>
<tr>
<td>*5-FU *Cisplatin</td>
<td></td>
</tr>
<tr>
<td>*Taxane</td>
<td></td>
</tr>
<tr>
<td>*Free flap</td>
<td></td>
</tr>
<tr>
<td>*VA trial</td>
<td></td>
</tr>
<tr>
<td>*RTOG91-11</td>
<td></td>
</tr>
<tr>
<td>*VEGF trial</td>
<td></td>
</tr>
</tbody>
</table>

CT, computed tomography; MDCT, multidetector computed tomography; PET, positron emission tomography; 5-FU, 5-fluorouracil.
impact on the patient. Total laryngectomized patients inevitably face substantial mental distress over and above losing their voices (1).

Various types of open function preservation surgery have been contemplated to avoid TL. Horizontal or vertical partial laryngectomy (PL), which saves half of the uninvolved larynx, was popularized by Piquet and Piquet (2) in France, Ogura and Dedo (3) in the US, Hiroto et al. (4) in Japan and others after the 1960s. Supracricoid laryngectomy (SCL), which saves one-fourth of the uninvolved larynx, was first reported by Majer and Rieder (5) and popularized by Laccourreye et al. (6) after the 1970s. In contrast to open procedures, transoral microsurgery utilizing a CO2 laser was initially introduced to treat early-stage cancer in the 1970s and recently extended to treat advanced-stage cancer (7).

Radiation therapy (RT) was primarily introduced to treat early-stage cancer after the advent of Cobalt 60 and Linac in the 1950s. The development of chemotherapy agents, 5-fluorouracil in the 1960s, cisplatin in the 1970s and taxane in the 1990s, expanded the role of non-surgical larynx preservation. Concurrent chemoradiotherapy (CCRT) has become the standard of care in the USA after two landmark trials, the VA study in 1991 (8) and RTOG 91-11 in 2003 (9). For the past 20 years, CCRT has certainly saved many larynges and improved the quality of lives, particularly in advanced-stage cancers. However, a significant proportion of patients did not benefit from CCRT because of local failure and/or late complications (10). The fact that over the past 15 years, the larynx has been the only site showing survival deterioration in the US raised enormous concerns about the current standard of care led by CCRT (Fig. 1). It is now imperative to re-examine what has happened and what can be done in the future.

THE PATIENTS’ PERSPECTIVE

In re-examining the evolution of laryngeal preservation, it appears also that the importance of patients’ opinion has been growing as Western societies require more and more that patients participate in medical decisions affecting their care and welfare. Are patients willing to ‘trade’ a reduction in overall survival for the chance to preserve their larynx and its function? McNeil et al. (11) first studied this phenomenon in the US in 1981 using an ‘expected utility’ theory in a group of 12 firefighters and 25 middle and upper management executives. They noted that 20% of individuals would be willing to accept a 30–40% reduction in survival in order to preserve their voice if they faced a T3 glottic cancer amenable to TL or RT. More recently, Laccourreye et al. (12) in a series of 309 patients seen at the otorhinolaryngology clinic of a university teaching hospital in France noted that 24.6% of the patients made survival their main consideration and would not consider any reduction in their cure rate in order to avoid TL, while on the other hand, 62.5% made larynx preservation the main goal and agreed to reduce their cure rate that varied from 5 to 100% (mean: 33% SD: 23%). Interestingly, in this last study, none of the socio-demographic and medical variables analyzed statistically modified these results.

METACHRONOUS SECOND PRIMARIES

The spectrum of larynx preservation in the face of advanced laryngeal cancer is further complicated by the high incidence for metachronous second primaries in patients cured from this disease. Gao et al. (13) in a database with 20 074 laryngeal cancer documented (i) a 26 and 47% cumulative risk to develop a second cancer at 10 and 20 years, respectively, (ii) an increased risk of a second cancer in the lungs and head and neck level in patients in whom initial management included RT and (iii) poor survival in patients who developed a second primary. Yilmaz et al. (14) suggested that irradiation of laryngeal cancer increase the risk of a metachronous second primary tumor. Taken together, such data should be viewed as a strong impetus for the various physicians (otorhinolaryngologists, head and neck surgeons, and medical and radiation oncologists) who take part in the management of patients with advanced laryngeal cancer to evaluate the possibility to preserve RT for the management of a second primary.

RT FOR FUNCTIONAL ORGAN PRESERVATION

In the clinical practice guidelines for the application of larynx preservation for laryngeal cancers, the American Society of Clinical Oncology (ASCO) recommended that all patients with T1 or T2 should be treated initially with the intent to preserve the larynx; for most patients with T3 or
Chemotherapy plus RT for functional organ preservation

The advent of platinum-based chemotherapy in the 1980s was epoch-making for head and neck cancer management. In 1991, the VA trial suggested an innovative role for platinum-based chemotherapy in patients with advanced laryngeal cancer. Induction chemotherapy (IC) followed by definitive RT was proved to be advantageous in preserving the larynx with survival comparable to TL followed by RT (8). This regimen became the standard alternative to TL in the US after 1992 and prevailed until the advent of the new concept of CCRT reported in a randomized trial RTOG 91-11 in 2003 (9). By comparing three arms, IC followed by RT, CCRT or RT alone, Forastiere et al. reported the superiority of CCRT over the other two arms for larynx preservation and locoregional control; overall survival was similar in all three arms. In the US, this new concept has placed CCRT in the forefront as the standard of care for larynx preservation. The concept of CCRT was confirmed in Phase III randomized trials and in meta-analyses (22). Meanwhile, in a recent article, Chen and Halpern (23) reported that among patients with the most advanced disease (Stage IV), TL was associated with increased survival compared with CCRT or RT, whereas both TL and CCRT improved survival over RT among patients with Stage III cancer.

Some reports pushed the indication of CCRT into T4 cancer with cartilage invasion, but the results were variable (24,25). The effect of a more intensive taxane-based CCRT (Triplet) in laryngeal cancer is still investigational (26). CCRT with weekly cisplatin was reported to be better than three-weekly cisplatin in terms of feasibility and clinical response (27). Superselective high-dose cisplatin infusion with concomitant radiotherapy (RADPLAT) provides remarkable local control and larynx preservation in the base of tongue cancer (28) and in selected advanced laryngeal cancers (29). RADPLAT is currently applicable in some selected institutes in Japan.

Beside the prevalence of new standards of care in larynx preservation, reports concerning adverse events due to CCRT are increasing (30,31). Machtay et al. (30) reported that 43% of CCRT patients experienced severe late toxicities, such as laryngopharyngeal dysfunction, feeding tube dependency and treatment-related death. A 30% risk for post-laryngectomy pharyngocutaneous fistula was reported in CCRT patients in the RTOG 91-11 trial. Post-operative wound infection after salvage surgery can be delayed particularly in CCRT patients with radiation doses above 65 Gy (32).

In addition to increasing concerns about late toxicities, the fact that the larynx is the only site showing survival deterioration in the US is also worrisome. Hoffman et al. (33) pointed out that survival deterioration may be attributed to changes in patterns of management. During this period, there was an increasing use of CCRT with a decreasing use of surgery. Head and neck surgeons presumed that inappropriate patient selection for CCRT along with the inability to properly apply salvage surgeries may be responsible for this result (34). Oncologists disagreed with the notion of exclusively attributing CCRT to survival deterioration (35). In reality, some patients may be referred to radiation oncologists without the attention of head and neck surgeons; in this setting, if patients fail CCRT, application of salvage surgeries may be complicated. Reconfirmation of the multidisciplinary team approach among head and neck surgeons and radiation oncologists is imperative.

Surgery for functional organ preservation

Transoral CO2 laser microsurgery (TLM) was initially introduced to treat T1 glottic cancer; the oncologic outcome was comparable with and the functional outcome better than PL (7). Local control, however, may be impaired when the cancer invades the anterior commissure (36). In some experienced institutes, TLM with or without RT has been incorporated to treat advanced-stage cancers with satisfactory oncologic and functional outcomes (37). An innovative
transoral approach utilizing videolaryngoscopy was reported—

able of removing supraglottic or hypopharyngeal

lesions in an en bloc fashion (38).

Open PLs can be classified into horizontal PLs, which

remove the upper half of the larynx (epiglottis and bilateral

false cords), and vertical PLs, which remove the unilateral

true cord with an anterior commissure. With the technical

advances in RT, PL is now seldom incorporated for un-

treated early-stage cancer. PL can be used for salvage surgery

after failure of CCRT with acceptable oncologic and func-

tional outcomes (39); head and neck surgeons should be pro-

ficient with the surgical technique and perioperative care.

SCL with cricothyroidopiglottopexy (CHEP) or cricothyoi-
dopexy is a more radical functional preservation procedure

for early and selected advanced laryngeal cancers (6).

SCL-CHEP has been reported to be beneficial in local

control over conventional PL (40). SCL can also be

employed as a salvage surgery following failure of CCRT.

In our institute, a total of 73 patients have been treated with

SCL-CHEP over the last 14 years, and the 5-year larynx

preservation and overall survival rates were 92 and 85%, re-

spectively. Oncologic and functional outcomes were satisfac-
tory and did not vary between irradiated \(n = 30 \) and non-irradiated \(n = 43 \) patients.

CONCLUSIONS

It is an indisputable fact that the survival outcome should be

prioritized over functional benefits in laryngeal cancer man-

agement. Likewise, the patient’s well-being should be con-

sidered over before clinical interests. Over the past 20 years,

the pendulum has swung from surgery to CCRT and we are

facing various challenges (41,42). As Olsen (34) described,

trials that are used to determine the standard of care must

have no major unintended consequences and make no war-

anted conclusions. Treatment selection should not merely

be decided by guidelines and each patient’s individual condi-

tion must be taken into consideration.

We believe that there are some patients whose larynges

can only be saved by surgery. With the reality of an increas-

ing number of patients failing with intensive CCRT, sur-

geons should be more proficient regarding salvage surgical

options. Head and neck surgeons are encouraged to take rea-

sonable risks in performing salvage surgery when it is the

only option to save a functioning larynx.

Eliciting the best treatment option in patients with

advanced laryngeal cancer remains challenging. The weight

of the functional organ preservation approach must be care-

fully balanced as this option is not without pitfalls in terms

of complications, local control and long-term survival, as

well as optimal management of metachronous head and neck

and esophageal second primaries. The role and benefits of TL

must be carefully analyzed and discussed with each patient

suffering from advanced laryngeal cancer as TL may also

have benefits of speech rehabilitation and low-cost

voice prosthesis. Our predecessors have taught us many

lessons and it is time to open our eyes and try to ascertain

the ultimate standard of care which yields an optimal benefit

for our patients.

Funding

This study was supported by a Grant-in-Aid for Scientific

Research (C) from the Ministry of Education, Culture,

Sports, Science, and Technology of Japan (#20592028:

2008—11).

Conflict of interest statement

None declared.

References

2. Piquet JC, Piquet JJ. Partial vertical laryngectomy in cancer of the

3. Ogura J, Dedo H. Glottic reconstruction following subtotal glottic—

conservative surgery for laryngeal carcinoma—partial laryngectomy.

5. Majer H, Rieder A. Technique de laryngectomie permetant de conserver

la permeabilite respiratoire. (La crico-lyuido-peeix). Ann Otolaryngol

Chir Cervicofac 1959;76:677—83.

6. Laccourreye O, Salzer S, Brasnu D, Shen W, Laccourreye H,

Weinstein G. Glottic carcinoma with a fixed true vocal cord—outcomes

following chemotherapy and supracricoid partial laryngectomy with

7. Strong M, Iako G. Laser surgery in the larynx: early clinical experience

8. The Department of Veterans Affairs Laryngeal Cancer Study Group.

Induction chemotherapy plus radiation compared with surgery plus

1991;324:1685–90.

et al. Concurrent chemoradiotherapy and radiotherapy for organ preserva-

10. Lambert L, Fortin B, Soulire D, Guertin L, Coulonbe G,

Charpentier G, et al. Organ preservation with concurrent

chemoradiation for advanced laryngeal cancer: are we succeeding? Int J

Trade-offs between quality and quantity of life in laryngeal cancer.

12. Laccourreye O, Malinvaud D, Holsinger F Ch, Consoli S, Menard M,

Bonfils P. Trade-off between survival and laryngeal preservation in

advanced laryngeal cancer: the otorhinolaryngology patient’s

patients with laryngeal cancer: a population-based study. Int J Radiat

14. Yilmaz T, Hosal S, Ozyar E, Akyol F, Gursel B. Postoperative

radiotherapy in advanced laryngeal cancer: effect on local and regional

recurrence, distant metastasis and second primaries. J Laryngol Otol

2005;119:784–90.

et al. American society of clinical oncology clinical practice guideline

for the use of larynx-preservation strategies in the treatment of

Functional preservation for laryngeal cancer

