Supplemental Figure 1. Prevalence of iron deficiency by age group among Cameroonian children 12-59 months of age, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 2. Prevalence of iron deficiency by vitamin A status category among Cameroonian children 12-59 months of age, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); RBP, retinol-binding protein; sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 3. Prevalence of iron deficiency by caregiver education level among Cameroonian children 12-59 months of age, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 4. Prevalence of iron deficiency by socio-economic status quintile among Cameroonian children 12-59 months of age, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 5. Prevalence of iron deficiency by urban or rural milieu among Cameroonian children 12–59 months of age, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 6. Prevalence of iron deficiency by child stunting among Cameroonian children 12-59 months of age, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); HAZ, height-for-age Z score; sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 7. Prevalence of iron deficiency by child wasting among Cameroonian children 12-59 months of age, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (μmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11); WHZ, weight-for-height Z-score.
Supplemental Figure 8. Prevalence of iron deficiency by study region among Cameroonian women 15-49 y, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 9. Prevalence of iron deficiency by presence of inflammation among Cameroonian women 15-49 y, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; AGP, α₁-acid glycoprotein; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; CRP, C-reactive protein; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 10. Prevalence of iron deficiency by vitamin A status among Cameroonian women 15-49 y, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); RBP, retinol-binding protein; sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 11. Prevalence of iron deficiency by educational level among Cameroonian women 15-49 y, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 12. Prevalence of iron deficiency by socio-economic status quintile among Cameroonian women 15-49 y, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 13. Prevalence of iron deficiency by urban or rural milieu among Cameroonian women 15-49 y, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).
Supplemental Figure 14. Prevalence of iron deficiency by physiological status among Cameroonian women 15-49 y, according to (A) various iron status indicators and adjustments for inflammation, and (B) iron status indicators and derived deficiency cutoffs. Error bars indicate 95% confidence intervals. Adj, adjusted for inflammation; BIS, body iron stores (mg/kg); C, acute proteins considered as continuous variables in adjustment for inflammation; F, ferritin (µmol/L); sTfR, soluble transferrin receptor (mg/L); T, Thurnham method used to adjust values for inflammation (11).