ONLINE SUPPLEMENTAL MATERIAL

SUPPLEMENTAL TABLE 1

Human plasma biomarkers whose concentration did not change with consumption of Bing sweet cherries

<table>
<thead>
<tr>
<th>Variable</th>
<th>Study d7</th>
<th>Study d35</th>
<th>Study d64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-2 Macroglobulin (mg/mL)</td>
<td>1.10 ± 0.06</td>
<td>1.10 ± 0.05</td>
<td>1.10 ± 0.06</td>
</tr>
<tr>
<td>Alpha-1Antitrypsin (mg/mL)</td>
<td>1.61 ± 0.10</td>
<td>1.64 ± 0.09</td>
<td>1.61 ± 0.09</td>
</tr>
<tr>
<td>Adiponectin (µg/mL)</td>
<td>4.58 ± 0.29</td>
<td>4.41 ± 0.38</td>
<td>4.38 ± 0.36</td>
</tr>
<tr>
<td>Alpha-Fetoprotein (ng/mL)</td>
<td>1.22 ± 0.23</td>
<td>1.42 ± 0.28</td>
<td>1.17 ± 0.24</td>
</tr>
<tr>
<td>Apolipoprotein AI (mg/mL)</td>
<td>0.49 ± 0.03</td>
<td>0.49 ± 0.03</td>
<td>0.49 ± 0.04</td>
</tr>
<tr>
<td>Apolipoprotein CHI (µg/mL)</td>
<td>101 ± 6.16</td>
<td>109 ± 7.28</td>
<td>107 ± 7.31</td>
</tr>
<tr>
<td>Apolipoprotein H (µg/mL)</td>
<td>261 ± 15.1</td>
<td>262 ± 14.5</td>
<td>260 ± 14.7</td>
</tr>
<tr>
<td>Beta-2 Microglobulin (µg/mL)</td>
<td>1.22 ± 0.07</td>
<td>1.22 ± 0.06</td>
<td>1.20 ± 0.06</td>
</tr>
<tr>
<td>Factor (ng/mL)</td>
<td>0.97 ± 0.14</td>
<td>0.83 ± 0.19</td>
<td>0.90 ± 0.22</td>
</tr>
<tr>
<td>Complement C3 (mg/mL)</td>
<td>1.23 ± 0.05</td>
<td>1.25 ± 0.06</td>
<td>1.23 ± 0.05</td>
</tr>
<tr>
<td>Cancer Antigen 125 (U/mL)</td>
<td>7.31 ± 2.12</td>
<td>10.34 ± 3.77</td>
<td>9.55 ± 3.04</td>
</tr>
<tr>
<td>Cancer Antigen 19 (U/mL)</td>
<td>11.0 ± 3.84</td>
<td>10.0 ± 3.64</td>
<td>9.03 ± 2.25</td>
</tr>
<tr>
<td>Calcitonin (pg/mL)</td>
<td>7.40 ± 0.94</td>
<td>8.02 ± 0.77</td>
<td>6.92 ± 1.01</td>
</tr>
<tr>
<td>CD 40 antigen (ng/mL)</td>
<td>0.56 ± 0.03</td>
<td>0.56 ± 0.03</td>
<td>0.54 ± 0.03</td>
</tr>
<tr>
<td>CD 40 Ligand (ng/mL)</td>
<td>0.25 ± 0.04</td>
<td>0.24 ± 0.05</td>
<td>0.23 ± 0.04</td>
</tr>
<tr>
<td>Carcinoembryonic Antigen (ng/mL)</td>
<td>1.29 ± 0.22</td>
<td>1.34 ± 0.24</td>
<td>1.24 ± 0.23</td>
</tr>
<tr>
<td>Creatine Kinase MB (ng/mL)</td>
<td>0.92 ± 0.21</td>
<td>0.92 ± 0.16</td>
<td>0.88 ± 0.14</td>
</tr>
<tr>
<td>ENA-78 (ng/mL)</td>
<td>0.63 ± 0.12</td>
<td>0.61 ± 0.18</td>
<td>0.70 ± 0.20</td>
</tr>
<tr>
<td>Eotaxin-1 (pg/mL)</td>
<td>53.0 ± 5.2</td>
<td>55.4 ± 5.36</td>
<td>51.0 ± 5.69</td>
</tr>
<tr>
<td>Erythropoietin (pg/mL)</td>
<td>6.76 ± 2.1</td>
<td>5.13 ± 0.85</td>
<td>4.32 ± 1.06</td>
</tr>
<tr>
<td>Fatty Acid Binding Protein (ng/mL)</td>
<td>1.70 ± 0.37</td>
<td>1.79 ± 0.41</td>
<td>1.63 ± 0.32</td>
</tr>
<tr>
<td>Factor VII (ng/mL)</td>
<td>535 ± 45.1</td>
<td>549 ± 53.3</td>
<td>532 ± 48.7</td>
</tr>
<tr>
<td>Fibroblast Growth Factor basic (pg/mL)</td>
<td>220 ± 9.39</td>
<td>228 ± 10.4</td>
<td>227 ± 9.93</td>
</tr>
<tr>
<td>Fibrinogen (mg/mL)</td>
<td>4.38 ± 0.15</td>
<td>4.50 ± 0.20</td>
<td>4.39 ± 0.16</td>
</tr>
<tr>
<td>GCSF (pg/mL)</td>
<td>6.82 ± 0.54</td>
<td>6.77 ± 0.49</td>
<td>6.90 ± 0.45</td>
</tr>
<tr>
<td>Growth Hormone (ng/mL)</td>
<td>2.20 ± 0.46</td>
<td>2.81 ± 0.90</td>
<td>2.54 ± 0.62</td>
</tr>
<tr>
<td>Haptoglobin (mg/mL)</td>
<td>1.49 ± 0.18</td>
<td>1.49 ± 0.20</td>
<td>1.44 ± 0.17</td>
</tr>
<tr>
<td>ICAM-1 (ng/mL)</td>
<td>78.0 ± 3.66</td>
<td>79.3 ± 3.79</td>
<td>76.0 ± 3.37</td>
</tr>
<tr>
<td>Immunoglobulin A (mg/mL)</td>
<td>2.80 ± 0.25</td>
<td>2.93 ± 0.29</td>
<td>2.90 ± 0.29</td>
</tr>
<tr>
<td>Immunoglobulin E (ng/mL)</td>
<td>130 ± 96.6</td>
<td>113 ± 79.1</td>
<td>107 ± 76.2</td>
</tr>
<tr>
<td>Insulin like Growth Factor I (ng/mL)</td>
<td>17.5 ± 3.25</td>
<td>16.3 ± 3.53</td>
<td>15.9 ± 3.54</td>
</tr>
<tr>
<td>Immunoglobulin M (ng/mL)</td>
<td>1.62 ± 0.14</td>
<td>1.68 ± 0.11</td>
<td>1.67 ± 0.13</td>
</tr>
<tr>
<td>Interleukin 10 (pg/mL)</td>
<td>5.53 ± 0.47</td>
<td>5.65 ± 0.42</td>
<td>5.88 ± 0.50</td>
</tr>
<tr>
<td>Interleukin 12, Subunit p40 (pg/mL)</td>
<td>0.13 ± 0.02</td>
<td>0.14 ± 0.03</td>
<td>0.14 ± 0.01</td>
</tr>
<tr>
<td>Interleukin 13 (pg/mL)</td>
<td>40.2 ± 2.56</td>
<td>37.7 ± 2.44</td>
<td>39.0 ± 2.24</td>
</tr>
<tr>
<td>Interleukin 15 (ng/mL)</td>
<td>0.23 ± 0.03</td>
<td>0.25 ± 0.04</td>
<td>0.27± 0.04</td>
</tr>
<tr>
<td>Interleukin 16 (pg/mL)</td>
<td>288 ± 28.5</td>
<td>278 ± 26.5</td>
<td>291 ± 36.7</td>
</tr>
<tr>
<td>Interleukin 3 (ng/mL)</td>
<td>0.01 ± 0.0</td>
<td>0.01 ± 0.0</td>
<td>0.01 ± 0.0</td>
</tr>
<tr>
<td>Interleukin 4 (pg/mL)</td>
<td>17.6 ± 3.17</td>
<td>15.0 ± 1.48</td>
<td>16.1 ± 2.25</td>
</tr>
<tr>
<td>Interleukin 7 (pg/mL)</td>
<td>12.8 ± 2.06</td>
<td>12.0 ± 1.96</td>
<td>13.9 ± 1.99</td>
</tr>
<tr>
<td>Interleukin 8 (pg/mL)</td>
<td>7.90 ± 0.63</td>
<td>8.28 ± 0.55</td>
<td>8.70 ± 0.80</td>
</tr>
<tr>
<td>Insulin (µIU/mL)</td>
<td>1.43 ± 0.21</td>
<td>1.55 ± 0.19</td>
<td>1.68 ± 0.35</td>
</tr>
<tr>
<td></td>
<td>Mean ± SEM</td>
<td>Mean ± SEM</td>
<td>Mean ± SEM</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Leptin (ng/mL)</td>
<td>13.3 ± 1.61</td>
<td>13.9 ± 1.86</td>
<td>13.4 ± 1.87</td>
</tr>
<tr>
<td>Apolipoprotein a (µg/mL)</td>
<td>182 ± 58.0</td>
<td>177 ± 58.0</td>
<td>210 ± 71.1</td>
</tr>
<tr>
<td>Monocyte Chemotactic Protein 1 (pg/mL)</td>
<td>134 ± 8.00</td>
<td>139.6 ± 8.48</td>
<td>131.1 ± 6.67</td>
</tr>
<tr>
<td>Macrophage Derived Chemokine (pg/mL)</td>
<td>339 ± 23.7</td>
<td>337 ± 26.5</td>
<td>331 ± 24.2</td>
</tr>
<tr>
<td>Macrophage Inflammatory Protein a (pg/mL)</td>
<td>82.9 ± 9.36</td>
<td>80.5 ± 10.24</td>
<td>78.1 ± 9.39</td>
</tr>
<tr>
<td>Macrophage Inflammatory Protein b (pg/mL)</td>
<td>135 ± 44.2</td>
<td>136 ± 45.5</td>
<td>141 ± 50.4</td>
</tr>
<tr>
<td>Matrix Metalloproteinase 2 (ng/mL)</td>
<td>3070 ± 198</td>
<td>3180 ± 195</td>
<td>3020 ± 197</td>
</tr>
<tr>
<td>Matrix Metalloproteinase 9 (ng/mL)</td>
<td>64.1 ± 4.78</td>
<td>65.7 ± 4.69</td>
<td>68.7 ± 5.87</td>
</tr>
<tr>
<td>Myeloperoxidase (ng/mL)</td>
<td>116 ± 7.91</td>
<td>114 ± 10.6</td>
<td>154 ± 37.9</td>
</tr>
<tr>
<td>Myoglobin (ng/mL)</td>
<td>10.2 ± 0.98</td>
<td>10.0 ± 0.95</td>
<td>11.2 ± 1.62</td>
</tr>
<tr>
<td>Prostatic Acid Phosphatase (ng/mL)</td>
<td>0.35 ± 0.04</td>
<td>0.39 ± 0.05</td>
<td>0.35 ± 0.05</td>
</tr>
<tr>
<td>RANTES (ng/mL)</td>
<td>5.08 ± 0.72</td>
<td>4.76 ± 1.11</td>
<td>5.21 ± 1.13</td>
</tr>
<tr>
<td>Serum Amyloid P Component (µg/mL)</td>
<td>15.0 ± 1.11</td>
<td>15.1 ± 1.05</td>
<td>15.3 ± 1.10</td>
</tr>
<tr>
<td>Stem Cell Factor (pg/mL)</td>
<td>245 ± 22.2</td>
<td>247 ± 31.4</td>
<td>258 ± 34.5</td>
</tr>
<tr>
<td>SGOT (µg/mL)</td>
<td>3.67 ± 0.21</td>
<td>3.80 ± 0.19</td>
<td>4.00 ± 0.24</td>
</tr>
<tr>
<td>Sex Hormone Binding Globulin (nmol/L)</td>
<td>48.9 ± 9.34</td>
<td>51.0 ± 7.93</td>
<td>49.3 ± 7.53</td>
</tr>
<tr>
<td>Thyroxine Binding Globulin (µg/ml)</td>
<td>47.3 ± 3.06</td>
<td>47.7 ± 2.81</td>
<td>48.2 ± 2.45</td>
</tr>
<tr>
<td>Tissue Inhibitor of Metalloproteinase-1 (ng/mL)</td>
<td>54.4 ± 2.14</td>
<td>53.5 ± 2.17</td>
<td>52.7 ± 2.33</td>
</tr>
<tr>
<td>Thrombopoietin (ng/mL)</td>
<td>1.68 ± 0.24</td>
<td>1.67 ± 0.22</td>
<td>1.86 ± 0.16</td>
</tr>
<tr>
<td>Thyroid Stimulating Hormone (uIU/mL)</td>
<td>2.27 ± 0.41</td>
<td>2.42 ± 0.50</td>
<td>2.50 ± 0.48</td>
</tr>
<tr>
<td>Vascular Cell Adhesion Molecule-1 (ng/mL)</td>
<td>431 ± 24.7</td>
<td>442 ± 25.4</td>
<td>442 ± 30.2</td>
</tr>
<tr>
<td>Vascular Endothelial Growth Factor (pg/mL)</td>
<td>480 ± 18.6</td>
<td>460 ± 17.9</td>
<td>464 ± 19.6</td>
</tr>
<tr>
<td>von Willebrand Factor (µg/mL)</td>
<td>32.3 ± 3.68</td>
<td>32.3 ± 2.97</td>
<td>31.4 ± 2.53</td>
</tr>
<tr>
<td>Interleukin 1α (pg/mL)</td>
<td>2.80 ± 0.01</td>
<td>2.90 ± 0.01</td>
<td>2.4 ± 0.0</td>
</tr>
<tr>
<td>Tumor Necrosis Factor Receptor 2 (ng/mL)</td>
<td>4.17 ± 0.33</td>
<td>4.22 ± 0.34</td>
<td>4.08 ± 0.32</td>
</tr>
</tbody>
</table>

1Data shown are Mean ± SEM for each variable (n=18) except for IL-1α and TNFR2 (n=12), and cancer antigen, fibroblast growth factor basic, IL-4, IL-12 subunit p40, IL-15, and thrombopoietin (n=6). 2None of these variables were significantly altered by consumption of cherries (SAS mixed model procedures analysis).