Estimated Risk of Radiation-Induced Breast Cancer From Mammographic Screening for Young BRCA Mutation Carriers

Amy Berrington de Gonzalez, Christine D. Berg, Kala Visvanathan, Mark Robson

BRCA mutation carriers are recommended to start mammographic screening for breast cancer as early as age 25–30 years. We used an excess relative risk model (based on a pooled analysis of three cohorts with 7600 subjects who received radiation exposure) to estimate the lifetime risk of radiation-induced breast cancer from five annual mammographic screenings in young (<40 years) BRCA mutation carriers. We then estimated the reduction in breast cancer mortality required to outweigh the radiation risk. Breast cancer rates for mutation carriers were based on a pooled analysis of 22 pedigree studies with 8139 subjects. For BRCA1 mutation carriers, the estimated lifetime risk of radiation-induced breast cancer mortality per 10 000 women resulting from annual mammography was 26 (95% confidence interval [CI] = 14 to 49) for screening at age 25–29 years, 20 (95% CI = 11 to 39) for screening at age 30–34 years, and 13 (95% CI = 7 to 23) for screening at age 35–39 years. To outweigh these risks, screening would have to reduce breast cancer mortality by 51% (95% CI = 27% to 96%) at age 25–29 years, by 12% (95% CI = 6% to 23%) at age 30–34 years, and by 4% (95% CI = 2% to 7%) at age 35–39 years; estimates were similar for BRCA2 mutation carriers. If we assume that the mortality reduction from mammography is 15%–25% or less for young women, these results suggest that there would be no net benefit from annual mammographic screening of BRCA mutation carriers at age 25–29 years; the net benefit would be zero or small at age 30–34 years, but there should be some net benefit at age 35 or older. These results depend on a number of assumptions due to the absence of empiric data. The impact of varying these assumptions was therefore examined.

In this analysis, we used this indirect approach to estimate the risk of radiation-induced breast cancer mortality from five annual mammographic screenings in BRCA mutation carriers before age 40 years and calculated the mortality reduction from screening that would be required to outweigh the radiation risk.

An outline of the methods is presented here, and additional details are available in a previous publication (7). To estimate the risk of radiation-induced breast cancer, we used an excess relative risk model (per gray) that was based on a pooled analysis of two cohorts of women who were exposed to multiple fluoroscopies and a cohort of children who received thymic irradiation (n = 7600) (5). The radiation exposures in those studies were from high-dose-rate X-rays similar to those that are used for mammography screening. The assumption underlying the excess relative risk model is that the magnitude of the radiation-induced cancer risk is proportional to the baseline cancer rate in the exposed population. Estimates of the baseline breast cancer incidence rates for BRCA1 and BRCA2 mutation carriers were taken from a pooled analysis of 22 studies of pedigree data (n = 8139) (9). The mean radiation dose to the glandular breast tissue (which is the most radiosensitive tissue in the breast) per two-view mammographic screen was estimated to be 3.85 mGy (10,11). We assumed that for these low-dose exposures delivered at a high dose rate, the risk increases linearly with dose and there is no threshold below which there is no risk (5).

Affiliations of authors: Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (ABdG, KV); Early Detection Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD (CDP); Clinical Genetics and Breast Cancer Medicine Services, Memorial Sloan-Kettering Cancer Center, New York, NY (MR).

Correspondence to: Amy Berrington de Gonzalez, DPhil, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205 (e-mail: aberring@jhsp.h.edu).

See “Funding” and “Notes” following “References.”

DOI: 10.1093/jnci/djn440

© The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org.
An example of the risk calculation for annual mammographic screen (10,11) at age k, with $d_j = 0.00385 \text{ Gy for } k = 35–39 \text{ years}$, and $d_j = 0$ otherwise. For each attained age j, the relevant exposures are the sum of the doses from age 35 years through $(j - 10)$ years to allow for the lag period.

Radiation-induced breast cancer mortality was estimated by multiplying the incidence risk calculated above by 1.0 minus the current age-specific breast cancer survival probability (assumed to be equal to the current 10-year survival probability in the United States) (12). Preston et al. (5) found that breast cancer rates remained elevated for at least 60 years after radiation exposure. Hence, the total absolute risk of radiation-induced breast cancer mortality was estimated as the cumulative risk from 10 years after exposure (the assumed lag period) to age 84 years, with adjustment for competing causes of death that included the higher mortality rates from ovarian and breast cancer in BRCA mutation carriers (9,13).

Breast cancer mortality without screening was estimated for each of the screening periods by using cumulative incidence-based mortality rates. A 2-year lead time was assumed for each screening period (14); for example, for screening from age 35 through 39 years, the cumulative incidence rate that could be affected by screening was calculated to be the cumulative incidence rate from age 35 through 41 years. These cumulative incidence rates were then multiplied by 1.0 minus the age-specific breast cancer survival probability [as described above (12)] to estimate mortality.

The percentage mortality reduction required by screening to outweigh the radiation risk was calculated for each screening period by dividing the risk by the cumulative incidence-based mortality rate. We estimated 95% confidence intervals (CIs) for the results using Monte Carlo simulation methods (15), which took account of the statistical uncertainties in the model parameters (5,9).

For BRCA1 mutation carriers, the estimated lifetime risk of radiation-induced breast cancer mortality per 10000 women from annual mammography decreased with increasing age at screening from 26 (95% CI = 14 to 49) at age 25–29 years to 13 (95% CI = 7 to 23) at age 35–39 years (Table 1). The estimated cumulative breast cancer mortality without screening increased with increasing age at screening. Therefore, the estimated reduction in breast cancer mortality from screening required to outweigh this radiation risk decreased with increasing age at screening from 51% (95% CI = 27% to 96%) at age 25–29 years to 4% (95% CI = 2% to 7%) at age 35–39 years (Table 1). Because baseline breast cancer rates for BRCA2 mutation carriers are lower than those for BRCA1 mutation carriers, the absolute radiation risks and the absolute cumulative mortality in the absence of screening for BRCA2 carriers were lower, but the estimates of the mortality reduction required to outweigh the radiation risk were similar for both groups (Table 1).

Results from randomized controlled screening trials suggest that the reduction in breast cancer mortality from mammographic screening for average-risk women age 40–49 years is 15%–25% (5). The efficacy of screening for younger high-risk women is uncertain because there have not been any trials that have had mortality as an endpoint, but it is probably lower because mammography sensitivity is lower (16). Therefore, assuming that screening efficacy would be 15%–25% or lower, our results suggest that there may be no net benefit from annual mammographic screening of BRCA mutation carriers age 25–29 years, the net benefit may be zero or small for screening of those age 30–34 years, but some net benefit from screening should exist for those age 35 years or older.

These calculations were based on several assumptions and so we examined the impact of varying the following key assumptions: 1) the joint effect of BRCA1 and radiation exposure, 2) the lead time for breast cancer, 3) the linear no-threshold assumption for radiation-induced cancer, and 4) the breast cancer survival probability in BRCA mutation carriers.

Because BRCA1 mutations are associated with a reduction in DNA repair efficiency, it has been hypothesized that there could be a gene–radiation interaction that would result in a supra-additive or supramultiplicative joint effect of these two exposures (17,18). Epidemiological studies (19–23) that have examined whether there is a supramultiplicative joint effect have yielded
Table 1. Estimated lifetime risk of radiation-induced breast cancer mortality from annual mammographic screening per 10,000 women, mortality without screening‡ per 10,000 women, and % reduction in breast cancer mortality from screening needed to outweigh radiation risk by screening period

<table>
<thead>
<tr>
<th>Mutation carrier status and screening period</th>
<th>Cumulative lifetime risk* of radiation-induced breast cancer mortality per 10 000 (95% CI)</th>
<th>Cumulative breast cancer mortality without screening‡ per 10 000</th>
<th>Mortality reduction needed to outweigh radiation risk, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 25–29 y</td>
<td>26 (14 to 49)</td>
<td>51</td>
<td>>51 (27 to 96)</td>
</tr>
<tr>
<td>Age 30–34 y</td>
<td>20 (11 to 39)</td>
<td>172</td>
<td>>12 (6 to 23)</td>
</tr>
<tr>
<td>Age 35–39 y</td>
<td>13 (7 to 23)</td>
<td>345</td>
<td>>4 (2 to 7)</td>
</tr>
<tr>
<td>BRCA2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 25–29 y</td>
<td>15 (8 to 28)</td>
<td>33</td>
<td>>45 (24 to 85)</td>
</tr>
<tr>
<td>Age 30–34 y</td>
<td>12 (6 to 23)</td>
<td>84</td>
<td>>14 (7 to 27)</td>
</tr>
<tr>
<td>Age 35–39 y</td>
<td>10 (5 to 21)</td>
<td>143</td>
<td>>7 (3 to 15)</td>
</tr>
</tbody>
</table>

* Cumulative risk to age 84 years. CI = confidence interval.
† Due to breast cancers arising during the screening period.

inconsistent results. One recent study (19) estimated that the risk of radiation-induced breast cancer in BRCA mutation carriers was approximately 1.5 times higher than the risk in noncarriers (ie, a supramultiplicative interaction of 1.5); if this were true, then the reduction in breast cancer mortality from screening required to outweigh the radiation risk would be increased by a factor of 1.5 (Table 2).

A previous study (24) assumed that the joint effect of radiation exposure and a family history of breast cancer was additive and concluded that for women with a family history of breast cancer, the benefit from mammography screening would outweigh the radiation risk in women age 30 years or older. The additive assumption was used because a study that compared the risk of radiation-induced breast cancer among Japanese atomic bomb survivors and those of US women who were exposed to multiple fluoroscopies found that the patterns of risk were more consistent across studies for the additive model than for the multiplicative risk model (5). This result has been interpreted as meaning that the joint effect of radiation and other breast cancer risk factors is additive. If this were true for the joint effect of BRCA mutations and radiation, then the estimated reduction in breast cancer mortality that is required to outweigh the radiation risk would be up to sixfold lower for BRCA1 and threefold lower for BRCA2 mutation carriers than those estimated with the multiplicative model, resulting in a potential net benefit from screening for women age 30 years or older (Table 2).

Because no direct estimates of the lead time are currently available for young BRCA mutation carriers, we used an estimate from a study of screening of average-risk women age 40–49 years (14). Tumors in young BRCA mutation carriers may grow faster than breast cancers in the general population (25) and so the lead time may be shorter. If the lead time was 1 year rather than 2 years, the required mortality reduction would increase by approximately 25%; however, if the lead time were longer, for example, 3 years, the required mortality reduction would decrease by approximately 25% (Table 2).

We assumed that the risk of radiation-induced breast cancer is linear in dose and there is no threshold below which there is no risk. These assumptions are supported for breast cancer by the results from the pooled analysis of breast cancer cohorts (n = 7600) by Preston et al. (5) and also by experimental results (26). However, if the dose–response curve at

Table 2. Estimated reduction in breast cancer mortality from screening (%) needed to outweigh the risk of radiation-induced breast cancer under the original and alternative assumptions for the joint effect of radiation and BRCA mutation status and breast cancer lead time

<table>
<thead>
<tr>
<th>Mutation carrier status and screening period</th>
<th>Original assumptions, * % mortality reduction needed to outweigh radiation risk</th>
<th>Alternative assumptions</th>
<th>Lead time for breast cancer ≤ age 40 y, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radiation risk model, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additive</td>
<td>Supramultiplicative †</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 y</td>
<td>1 y</td>
<td></td>
</tr>
<tr>
<td>BRCA1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 25–29 y</td>
<td>>51</td>
<td>>8</td>
<td>>77</td>
</tr>
<tr>
<td>Age 30–34 y</td>
<td>>12</td>
<td>>2</td>
<td>>17</td>
</tr>
<tr>
<td>Age 35–39 y</td>
<td>>4</td>
<td>>1</td>
<td>>6</td>
</tr>
<tr>
<td>BRCA2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 25–29 y</td>
<td>>45</td>
<td>>15</td>
<td>>64</td>
</tr>
<tr>
<td>Age 30–34 y</td>
<td>>14</td>
<td>>5</td>
<td>>21</td>
</tr>
<tr>
<td>Age 35–39 y</td>
<td>>7</td>
<td>>2</td>
<td>>10</td>
</tr>
</tbody>
</table>

* The original assumptions included a multiplicative risk model and a lead time of 2 years.
† For this model, we assumed an interaction effect of 1.5 (19).
low doses of radiation (<100 mGy) was not linear but curved either upward or downward, this would result in lower or higher risk estimates for mammographic screening, respectively. Some experimental research suggests that the risks per unit dose are halved at low doses (27), which at low doses would halve the estimated required reduction in mortality for the benefit to outweigh the risk. Similarly, if the risk per unit dose was doubled at low doses, this would double the required mortality reduction.

We assumed that the average breast cancer survival probability for BRCA1 mutation carriers was the same as the average survival probability in the general population (28). Varying this probability would have little impact on the estimated mortality reduction required to outweigh the risk because it would change the radiation risk and the benefit approximately proportionally if we assume that the survival probability for radiation-induced breast cancers does not differ from nonradiation-induced cancers. Because it is not currently possible to distinguish breast cancers caused by radiation from breast cancers caused by other factors, it is not possible to test this assumption.

An additional factor that could alter the balance of the risks and benefits from mammographic screening is oophorectomy, which is now commonly recommended for BRCA1 mutation carriers who are no longer at child-bearing age, because it has been shown to effectively lower the rates of breast and gynecologic cancers (29). This surgical removal of the ovaries should theoretically reduce the risk of radiation-induced breast cancer from mammographic screening because it would reduce the baseline rate of breast cancer, although the benefit from screening before the oophorectomy would not be changed.

This example for oophorectomy highlights the fact that the benefits and risks associated with radiation from screening mammography occur at different points in time. The benefits (deaths prevented) occur close to the screening period, whereas the radiation-induced breast cancer deaths occur later in life; in these calculations, about half of the radiation-induced breast cancer deaths were estimated to occur after age 50 years (data not shown). We have assumed that proximate and distant deaths carry equal weighting, but women who are more concerned about proximate events may apply different weightings, which would also alter the risk–benefit assessment.

Although the results depend on a number of assumptions, we have based the assumptions on the currently available data and have also illustrated the impact of varying the assumptions. In the absence of direct empirical data, our estimates can be used by those involved in the decision-making process for BRCA1 mutation carriers to assess whether the benefits from early mammographic screening are likely to outweigh the radiation risks.

References

Funding
No direct funding was used for this work.

Notes
The sponsors had no role in the study design, the collection and analysis of the data, the interpretation of the results, the preparation of the manuscript, or the decision to submit the manuscript for publication.
Manuscript received May 12, 2008; revised October 23, 2008; accepted October 28, 2008.