CORRESPONDENCE

Re: Prostate Cancer Incidence and Mortality in the United States and the United Kingdom

Previously, we reported trends of prostate cancer incidence and mortality among white men in the United States (U.S.) and men in the United Kingdom (U.K.) during the period 1968–1995 (1). In that brief communication, we noted a striking excess in the U.S. incidence rates compared with the U.K. rates, despite similar mortality rates in the two populations. Since prostate cancer screening by prostate-specific antigen (PSA) has been more common in the U.S. than in the U.K. (2), the data suggested to us that these differences were due to differences in screening.

A subject of ongoing debate is the diagnosis and treatment of early-stage prostate cancer detected via intensive screening. The pros and cons of such screening must be evaluated by its impact on prostate cancer mortality, as assessed in randomized, controlled, long-term trials. Meanwhile, close monitoring of population-based mortality rates may provide clues (3). Accordingly, we updated the incidence and mortality rates described above with data since 1995.

Fig. 1 shows the incidence and mortality rates for U.S. men (white) and for U.K. men (all races) from 1986 to the most recent years for which statistics are available. All rates (for both the U.S. and the U.K.) were standardized to the age distribution of the European standard population (4). For U.S. white men, the incidence rates were calculated with the use of data from nine Surveillance, Epidemiology, and End Results (SEER) registries (San Francisco–Oakland, CA; Connecticut; Detroit, MI; Hawaii; Iowa; New Mexico; Seattle, WA; Utah; and Atlanta, GA) (5), whereas the mortality rates were calculated with the use of data for the entire U.S. (6). For U.K. men, the incidence rates pertain to England and the mortality rates pertain to England and Wales (7).

The U.S. incidence rates show a sharp increase starting in 1990 and then begin declining rapidly in 1993 until settling around 1995 to a level substantially higher than the 1986 level. The U.K. incidence rates show a different pattern, rising slowly and steadily until 1994 and then leveling off. In contrast to the incidence rates, the mortality rates for both populations show downward trends since about 1993, although the trends are less dramatic. The decline in death rates is more rapid in the U.S. than in the U.K. These data suggest a favorable impact of PSA screening on prostate cancer mortality, although alternative explanations, such as improvements in treatment, must be considered and further monitoring of mortality is warranted (3).

ATSUKO SHIBATA
ALICE S. WHITTEMORE

REFERENCES


(6) U.S. National Center for Health Statistics. Data Warehouse, Table 292A. Death rates for 282 selected causes, by 5-year age groups,
race, and sex: United States, 1979–98 (rates per 100,000 population) (available online: http://www.cdc.gov/nchswindata/wh/statab/unpubd/mortabs/gmwk292.htm).


NOTES

Editor’s note: SEER is a set of geographically defined, population-based, central cancer registries in the United States, operated by local non-profit organizations under contract to the National Cancer Institute (NCI). Registry data are submitted electronically without personal identifiers to the NCI on a biannual basis, and the NCI makes the data available to the public for scientific research.

Supported in part by Public Health Service grant CA67044 (to A. S. Whittemore) from the National Cancer Institute, National Institutes of Health, Department of Health and Human Services.

We thank Arthur Kern for suggesting this update.

Affiliation of authors: Department of Health Research and Policy, Stanford University School of Medicine, CA.

Correspondence to: Atsuko Shibata, M.D., Ph.D., Department of Health Research and Policy, Stanford University School of Medicine, HRP-Redwood Bldg., Rm. T211, Stanford, CA 94305–5405 (e-mail: ashibata@stanford.edu).