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A A brief data analysis

So as to give a sense of the distribution of the data, we propose two kinds of visual summaries.
The first one uses Lloyd’s k-means algorithm (Lloyd, 1982) to build synthetic profiles represent-
ing the real profiles x1, . . . , xM on the one hand and y1, . . . , yN on the other hand. The second
one uses kernel density estimators of the j-th component of x1, . . . , xM on the one hand and of
y1, . . . , yN on the other hand, for each 1 ≤ j ≤ d.

A.1 Using k-means to cluster the mRNA and miRNA profiles

In Figure 1 we plot the synthetic mRNA profiles x̂1, . . . , x̂5 of the 5 centroids obtained by running
Lloyd’s k-means algorithm on x1, . . . , xM with k = 5. Likewise, we plot in Figure 2 the synthetic
miRNA profiles ŷ1, . . . , ŷ5 of the 5 centroids obtained by running Lloyd’s k-means algorithm on
y1, . . . , yN with k = 5.

The 5 mRNA centroids correspond to 5319 (x̂1), 2097 (x̂2), 4688 (x̂3), 310 (x̂4) and 1202
(x̂5) mRNA profiles. The first and third centroids (x̂1 and x̂3), which represent 73% of the real
mRNA profiles, are rather flat. The second and fourth centroids (x̂2 and x̂4), which represent
18% of the real mRNA profiles, are decreasing in poly Q length and age, in a more pronounced
way for the latter than for the former. Finally, the fifth centroid (x̂5), which represents the
remaining 9% of real mRNA profiles, is increasing in poly Q length and age.

The 5 miRNA centroids correspond to 872 (ŷ1), 7 (ŷ2), 80 (ŷ3), 81 (ŷ4) and 103 (ŷ5) miRNA
profiles. The first centroid (ŷ1), which represents 76% of the real miRNA profiles, is rather flat.
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The second and fifth centroids (ŷ2 and ŷ5), which represent 10% of the real miRNA profiles,
are increasing in poly Q length and age, in a more pronounced way for the former than for the
latter. The fourth centroid (ŷ4), which represents 7% of the real miRNA profiles, is decreasing in
poly Q length and age. Finally, the third centroid (ŷ3), which represents 7% of the real miRNA
profiles, exhibits two peaks.

In Section 1, we stated the following biological hypothesis: if a miRNA induces the degra-
dation of a target mRNA or blocks its translation into proteins, or both, then the profile of the
former should be similar to minus the profile of the latter (a particular form of affine relation-
ship). In view of this hypothesis, it is tempting to relate the synthetic miRNA profiles ŷ2 and ŷ5

to the synthetic mRNA profiles x̂4 and x̂2, respectively, and the synthetic miRNA profile ŷ4 to
the synthetic mRNA profile x̂5. Our objective is to identify groups of real mRNA and miRNA
profiles that interact in this manner.

A.2 Using kernel density estimators to study the marginal distributions of
the mRNA and miRNA profiles

For each 1 ≤ j ≤ d, we build the kernel density estimator of the j-th component of the mRNA
profiles x1, . . . , xM , using a Gaussian kernel and the default fine-tuning of the density function
from the stats R-package (R Core Team, 2022), see Figure 3. We do the same for the miRNA
profiles y1, . . . , yN , see Figure 4. Both for mRNA and miRNA the kernel density estimates are
systematically more concentrated around their means (all close to 0) than the corresponding
Gaussian densities. Moreover, the kernel density estimates obtained from the M mRNA profiles
are much smoother than those obtained from N miRNA profiles, a feature that could be simply
explained by the fact that M/N > 11.

Table 1 reports, for each level of poly Q length (Q80, Q92, Q111, Q140, Q175) and age (2, 6,
10 months), the empirical standard deviation of mRNA (a) and miRNA (b) gene expressions, all
normalized by the empirical standard deviation at poly Q length Q80 and 2 months of age (that
is, by 0.0475 for mRNA and 0.0660 for miRNA). A clear pattern emerges from sub-Table 1 (a):
except for poly Q length Q80, the poly Q length-specific empirical standard deviation increases
as age increases. Likewise, except for age 2 months, the age-specific empirical standard deviation
increases as poly Q length increases. On the contrary, no clear pattern emerges from sub-Table 1
(b) but the fact that, except for poly Q lengths Q80 and Q92, the poly Q length-specific empirical
standard deviation increases as age increases. We do not comment on the empirical means
because they are all very small compared to the corresponding empirical standard deviations.

B Simulation study

B.1 Two “Gromov-Wasserstein co-clustering” algorithms

We compare our algorithms with two co-clustering algorithms adapted from (Laclau et al., 2017).
For self-containedness, we summarize here how these algorithms work.

The first step of both algorithms consists in computing the similarity matrices KX ∈
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Figure 1: Profiles x̂1, . . . , x̂5 of the 5 centroids obtained by Lloyd’s k-means algorithm on the
mRNA profiles x1, . . . , xM .
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Figure 2: Profiles ŷ1, . . . , ŷ5 of the 5 centroids obtained by running Lloyd’s k-means algorithm
on the miRNA profiles y1, . . . , yN .
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poly Q length Age 2 Age 6 Age 10

Q80 1 0.646 1.39
Q92 0.886 1.02 1.48
Q111 0.964 1.21 3.08
Q140 0.805 1.70 4.11
Q175 1.24 1.86 4.32

(a) mRNA

poly Q length Age 2 Age 6 Age 10

Q80 1 2.35 1.03
Q92 0.516 1.06 0.956
Q111 0.655 0.722 2.15
Q140 0.698 1.92 2.72
Q175 0.588 1.80 3.34

(b) miRNA

Table 1: For each level of poly Q length (Q80, Q92, Q111, Q140, Q175) and age (2, 6, 10 months)
we computed the empirical standard deviation of mRNA (a) and miRNA (b) gene expressions,
all normalized by the empirical standard deviation at poly Q length Q80 and 2 months of age
(that is, by 0.0475 for mRNA and 0.0660 for miRNA).

(R+)M×M and KY ∈ (R+)N×N given by

(KX)mm′ := exp

{
−‖xm − xm

′‖22
2`2X

}
(m,m′ ∈ JMK),

(KY )nn′ := exp

{
−‖yn − yn

′‖22
2`2Y

}
(n, n′ ∈ JNK)

where `X (respectively, `Y ) is the mean of all pairwise Euclidean distances between elements of
X (respectively, of Y ). The similarity matrices KX and KY now represent X and Y through
the lens of the so called radial basis function kernel.

For any integers a, b ≥ 1 and pair of matrices A ∈ Ra×a and B ∈ Rb×b, define

Πa,b :=
{
P ∈ (R+)a×b|P1b = a−11a, P

>1a = b11b

}
,

〈[A,B], [P, P ]〉F :=
∑

i,k∈JaK,j,`∈JbK

(Aik −Bj`)2PijPk` (P ∈ Πa,b),

GWγ(A,B) := min
P∈Πa,b

{〈[A,B], [P, P ]〉F − γE(P ) (1)

where E(P ) := −
∑

(i,j)∈JaK×JbK Pij(logPij − 1). The quantity GWγ(A,B) is known in the litera-
ture as an entropic Gromov-Wasserstein discrepancy between A and B. It can be used to define
an entropic Gromov-Wasserstein barycenter of A and B and its barycenter transport matrices.
Specifically, setting s = b1

2(a+b)c (one choice among many), (Γ̂, P̂A, P̂B) ∈ (R+)s×s×Πs,a×Πs,b

that solves

min
Γ,PA,PB

1

2

{(
〈[Γ, A], [PA, PA]〉F − γE(PA)

)
+
(
〈[Γ, B], [PB, PB]〉F − γE(PB)

)}
(2)

(where (Γ, PA, PB) ranges over (R+)s×s×Πs,a×Πs,b) can be interpreted as a barycenter between

A and B (Γ̂) and the optimal transport matrices between Γ̂ and A (P̂A) and between Γ̂ and B
(P̂B).

The second step of the algorithms consists either in solving numerically (1) with (A,B) =
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Figure 3: In black, kernel density estimates of the densities of mRNA gene expression for each
level of poly Q length (Q80, Q92, Q111, Q140, Q175) and age (2, 6, 10 months), zooming on the
interval [−0.5, 0.5] and using a log(1 + ·)-scale on the y-axis. In red, densities of the Gaussian
laws with a mean and a variance equal to the empirical mean and variance computed in each
stratum of data. Systematically, the kernel density estimates are more concentrated around
their means than the corresponding Gaussian densities.

(KX ,KY ), yielding Q̃, or in solving numerically (2) with (A,B) = (KX ,KY ), yielding in particu-
lar the transport matrices Q̃X and Q̃Y . We call CCOT-GWD and CCOT-GWB the correspond-
ing algorithms. In both cases, the Sinkhorn-Knopp algorithm is used and provides solutions that
decompose as

Q̃ = diag(ρ)ξ diag(ρ′),

Q̃X = diag(ρX)ξX diag(ρ′X),

Q̃Y = diag(ρY )ξY diag(ρ′Y ),

for some ρ, ρX ∈ RM , ρ′, ρ′Y ∈ RN , ρX , ρY ∈ Rs and ξ ∈ RM×N , ξX ∈ Rs×M , ξY ∈ Rs×N (Peyré
et al., 2016).

The third and last step builds upon either (ρ, ρ′) or (ρ′X , ρ
′
Y ) to derive partitions of X and
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Figure 4: In black, kernel density estimates of the densities of miRNA gene expression for each
level of poly Q length (Q80, Q92, Q111, Q140, Q175) and age (2, 6, 10 months), zooming on the
interval [−0.5, 0.5] and using a log(1 + ·)-scale on the y-axis. In red, densities of the Gaussian
laws with a mean and a variance equal to the empirical mean and variance computed in each
stratum of data. Systematically, the kernel density estimates are more concentrated around
their means than the corresponding Gaussian densities.

Y , by detecting “jumps” along the vectors. The two partitions finally yield a co-clustering.

B.2 First simulation study

Simulation scheme. For four different choices of the hyperparametersM ≥ 200, N ≥ 200,K ≥
2, d ≥ 2, µ1, . . . , µK ∈ Rd, σ ∈ R∗+, α ∈ (R+)K such that

∑
k∈JKK αk = 1, we sample indepen-

dently x1, . . . , xM from the mixture of Gaussian laws∑
k∈JKK

αkN(µk, σ
2Idd) (3)
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and y1, . . . , yN from ∑
k∈JKK

αkN(−µk, σ2Idd). (4)

One way to sample x from the mixture (3) consists in sampling a latent label u in JKK from
the multinomial law with parameter (1;α1, . . . , αK) then in sampling x from the Gaussian law
N(µu, σ

2Idd). Similarly, sampling y from the mixture (4) can be carried out by sampling a
latent label v in JKK from the multinomial law with parameter (1;α1, . . . , αK) then by sampling
y from the Gaussian law N(−µv, σ2Idd). We think of x and y as having a mirrored relationship
if u = v. In this light, the challenge that we tackle consists in finding such relationships without
having access to the latent labels.

Table 2 describes the four configurations that we investigate. Note that configuration A2
is more difficult to deal with than A1 because (i) the weights in α are balanced in the latter
and unbalanced in the former, and (ii) because the variance σ2 is smaller in A1 than in A2.
Moreover, configurations A3 and A4 are more challenging than A2 because there is K = 4
components in the Gaussian mixture under A3 and A4 and K = 3 components under A2.

configuration (M,N) K µ1, . . . , µK σ2 α

A1 (200, 200) 3

4.0
0.5
1.5

 ,

1.8
4.5
1.1

 ,

1.5
1.5
5.5

 0.10 (1/3, 1/3, 1/3)

A2 (300, 300) 3

4.0
0.5
1.5

 ,

1.8
4.5
5.1

 ,

3.5
1.5
5.5

 0.15 (0.2, 0.3, 0.5)

A3 (400, 300) 4

(
4.0
0.5

)
,

(
0.5
3.5

)
,

(
7.5
7.8

)
,

(
0.5
0.5

)
0.20 (0.4, 0.2, 0.2, 0.2)

A4 (300, 300) 4

(
4.0
0.5

)
,

(
0.5
3.5

)
,

(
7.5
7.8

)
,

(
0.5
0.5

)
0.10 (0.5, 0.2, 0.1, 0.2)

Table 2: Four different configurations for the first simulation scheme. Configuration A1 is less
challenging than A2 which is itself less challenging than A3 and A4.

Results. Thirty times, independently, we simulated synthetic data sets X and Y under the
simulation scheme described above, then we applied the various algorithms as presented in
Section 5.2. We summarize the results in Tables 4, 5, and 6. Table 4 summarizes the results
of the seven algorithms listed in Section 5.2 that rely on bona fide co-clustering algorithms
(see Section 4.2.1), that is, of our algorithms WTOT-SCC1∗, WTOT-SCC1, WTOT-SCC2∗,
WTOT-SCC2, WTOT-BC∗ and of algorithms CCOT-GWD and CCOT-GWB. As for Tables 5
and 6, they summarize the results of our algorithm that relies on matching (see Section 4.2.2).

Table 4. Except in configuration A1, where they perform equally well, our algorithms WTOT-
SCC1, WTOT-SCC2 outperform their competitors CCOT-GWD and CCOT-GWB.

Recall that WTOT-SCC1 and WTOT-SCC2 learn the number of co-clusters. When they
underestimate it, they pay a high price, partly explaining why the standard deviations
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are rather large. In order to assess how well they work relative to their counterparts
which benefit from knowing in advance the true number of co-clusters, we can compare
their measures of performance to those of algorithms WTOT-SCC1∗ and WTOT-SCC2∗.
In configurations A1 and A2, algorithms WTOT-SCC1, WTOT-SCC2 perform almost as
well as WTOT-SCC1∗ and WTOT-SCC2∗, respectively. In configuration A3, they are
clearly outperformed. In configuration A4, algorithm WTOT-SCC1 performs better in
average but not in standard deviation.

Finally, we note that algorithm WTOT-BC∗ outperforms all our other algorithms. Un-
fortunately, its counterpart that learns the number of co-clusters performs poorly (results
not shown).

Tables 5 and 6. Table 5 illustrates the influence of k = k′ on the performances of algorithm
WTOT-matching. In configuration A1, specificity is not impacted much by the value
of k = k′, whereas precision decreases and sensitivity increases as k = k′ grows. More
specifically, precision does not change much when one goes from k = k′ = 10 to k = k′ = 75
but it drops for larger values of k = k′. As for sensitivity, it increases dramatically when one
goes from k = k′ = 10 to k = k′ = 75 and slightly for higher values of k = k′. Furthermore
we note that, in configuration A1, when k = k′ equal either 65 or 75 and are thus closest
to Nα` = Mα` ≈ 67, k̃r is close to 67 and precision, sensitivity and specificity are quite
satisfying. In configuration A4 (as in configuration A1), specificity is not impacted much
by the value of k = k′; on the contrary, precision decreases and sensitivity increases steadily
as k = k′ grows. The best performances are achieved for k = k′ = 95 and k = k′ = 150,
that is, when k = k′ get closer to M maxi≤4{αi} = N maxi≤4{αi}. As emphasized earlier,
deriving relevant matchings is more difficult in configuration A4 than in configuration A1
because the weights given in parameter α are unbalanced in the former and balanced in
the latter.

Table 6 summarizes the results of WTOT-matching in all configurations for a specific
choice of k = k′ in terms of the row- and column-specific averages k̃r and k̃c, precision,
sensitivity and specificity. In each configuration, we chose the value of k = k′ among
many retrospectively, so that the overall performance (in terms of precision, sensitivity
and specificity) is good. The left-hand-side (m-specific) and right-hand-side (n-specific)
tables in Table 6 are very similar. This does not come as a surprise because the first
simulation scheme imposes symmetry.

B.3 Second simulation study

Simulation scheme. The second simulation scheme also relies on mixtures of Gaussian laws,
but the means and weights are generated randomly from a Gaussian determinantal point process
(DPP) for the former and from a Dirichlet law for the latter. More specifically, given the
hyperparameters M ≥ 200, N ≥ 200,K ≥ L ≥ 3, σ ∈ R∗+,

1. we sample µ1, . . . , µK from a Gaussian DPP on [0, 1]2 with a kernel proportional to
x 7→ exp(−‖x/0.05‖22) conditionally on obtaining exactly K points Lavancier et al. (2015);
Baddeley and Turner (2005);
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2. independently, we sample α ∈ (R+)K and β ∈ (R+)L from the Dirichlet laws with param-
eters 7 1K and 7 1L;

3. we sample independently x1, . . . , xM from the mixture of Gaussian laws∑
k∈JKK

αkN(µk, σ
2Id2)

and y1, . . . , yN from ∑
k∈JLK

βkN(−µk, σ2Id2).

We use a DPP to generate µ1, . . . , µK to avoid the arbitrary choice of the mean parameters in
such a way that the randomly picked µ1, . . . , µK are dispersed in [0, 1]2 (because the DPP is a
repulsive point process).

Table 3 describes the four configurations that we investigate. The larger L is the more
challenging the configuration is. In configurations B2, B3, B4, it holds that K = L + 1, hence
the data points from the Kth cluster should not be matched. Moreover, for given (K,L) and
(M,N), a configuration gets more challenging as its σ2 parameter increases. It is noteworthy
that the values of σ2 as reported in Table 3 cannot be compared straightforwardly to those
reported in Table 2, because µ1, . . . , µK live in [0, 1]2 in the present simulation study whereas
they do not in the simulation study of Section B.2.

configuration (M,N) (K,L) σ2

B1 (200, 200) (3, 3) 5× 10−4

B2 (300, 300) (7, 6) 10−4

B3 (300, 300) (16, 15) 10−5

B4 (300, 300) (16, 15) 10−4

Table 3: Four different configurations for the second simulation scheme. The larger ` ∈ J4K is
the more challenging configuration B` is.

Results. Thirty times, independently, we simulated synthetic data sets X and Y under the
simulation scheme described above, then we applied the various algorithms as presented in
Section 5.2. Table 7 summarizes the results of the seven algorithms listed in Section 5.2 that
rely on bona fide co-clustering algorithms (see Section 4.2.1). Tables 8 and 9 summarize the
results of our algorithm that relies on matching (see Section 4.2.2).

Table 7. We first note that WTOT-SCC1, WTOT-SCC2 and CCOT-GWD perform similarly
in configurations B1 and B2, much better than CCOT-GWB, but less well than the orac-
ular algorithms WTOT-SCC1∗, WTOT-SCC2∗ and WTOT-BC∗. More generally, across
configurations B1, B2, B3, B4, the oracular algorithms WTOT-SCC1∗ and WTOT-SCC2∗

perform much better than the other algorithms (and WTOT-BC∗ fails to find a partition
with the given number of co-clusters in B3 and B4). Moreover, WTOT-SCC1 and WTOT-
SCC2 perform poorly in configurations B2, B3 and B4 though not as poorly as CCOT-
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GWD and CCOT-GWB in configurations B3 and B4. It seems that WTOT-SCC1 and
WTOT-SCC2 fail to learn a “practical” number of co-clusters from P̃ , in part because
of those among x1, . . . , xM that are drawn from the Gaussian law N(µK , σ

2Id2) when
K = L+ 1 (these data points should not be matched at all). The fact that WTOT-SCC1
and WTOT-SCC2 perform similarly in configurations B3 and B4 although σ2 is 10 times
larger in B4 than in B3 gives credit to the previous interpretation.

Tables 8 and 9. Table 8 illustrates the influence of k = k′ on the performances of algorithm
WTOT-matching in configurations B1 and B4. In each configuration, the values of k = k′

are chosen in the vicinity of M/K (67 in configuration B1, 11 in configuration B4). We
observe the same patterns in configurations B1 and B4: precision decreases (gradually)
and specificity decreases (slightly) as k = k′ grows, while sensitivity increases (strongly in
B1 and dramatically in B4).

Table 9 summarizes the results of WTOT-matching in configurations B1, B2, B3, B4
for a specific choice of k = k′ in terms of the row- and column-specific averages k̃r and
k̃c, precision, sensitivity and specificity. In each configuration, we chose the value of
k = k′ among many retrospectively so that the overall performance (in terms of precision,
sensitivity and specificity) is good. The left-hand-side (m-specific) and right-hand-side
(n-specific) tables in Table 9 are very similar although K > L in configuration B3 and B4.
Interestingly, the fact that σ2 is 10 times larger in configuration B4 than in B3 does not
affect much the performance of the matching algorithm.

C Biological analysis of the results

In this section, we expose the full-blown biological analysis of the results.

C.1 Analyzing the overlaps

Figure 5 presents two Venn diagrams summarizing the overlaps between the sets of miRNAs
(respectively, mRNAs) which belong to a pair output by the WGCNA, MiRAMINT and WTOT-
matching algorithms. On the one hand, focusing on miRNAs, 13/14 (respectively, 29/46) miR-
NAs involved in a mRNA-miRNA pair output by MiRAMINT (respectively, WGCNA) are
among the miRNAs involved in a mRNA-miRNA pair output by WTOT-matching. On the
other hand, focusing on mRNAs, 1/20 (respectively, 100/1, 583) miRNAs involved in a mRNA-
miRNA pair output by MiRAMINT (respectively, WGCNA) are among the miRNAs involved
in a mRNA-miRNA pair output by WTOT-matching. We carry out one-sided Fisher’s exact
tests to quantify to what extent the overlaps reflect an agreement between two algorithms (using
the 1,478 miRNAs and 27,355 mRNAs appearing in the TargetScan, MicroCosm and miRDB
databases as reference populations). The p-value of the test comparing WTOT-matching and
MiRAMINT in mRNAs equals 0.45. The other p-values are smaller than 10−6.

It is desirable to identify miRNAs that are particularly susceptible to play a distinct role in
HD in mice. To do so, we evaluate two simple criteria on the mRNAs associated to each miRNA
(the miRNAs with no matched mRNAs are obviously less interesting in our study). The criteria
assess to what extent a mRNA profile is “monotonic” and, on the contrary, to what extent it
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is “peaked”, accounting for the amplitude of log-fold change. Formally, rewriting each profile
x ∈ R15 as a matrix (x̃tq)t∈J3K,q∈J5K, the first criterion is the minimum (relative to time t) of
the absolute values of the slopes of the regression lines of the sets {(q, x̃tq) : q ∈ J5K} and the
second criterion is maxq∈J5K(x̃1q − x̃2q)× (x̃2q − x̃3q). By convention, a miRNA profile is labeled
monotonic (respectively, peaked) if at least one of its associated mRNA profiles is such that its
first (respectively, second) criterion is larger than 95% (respectively, smaller than 99%) of the
similar criteria. Moreover, all mRNA profiles x appearing in a pair (x, y) are labeled like y. We
stress that no mRNA labeling conflicts occur.

Below, we reproduce the same analysis as above focusing in turn on mRNA-miRNA match-
ings labeled as peaked, monotonic, and neither peaked nor monotonic.

Peaked profiles. Figure 6 presents two Venn diagrams summarizing the overlaps between the
sets of miRNAs (respectively, mRNAs) which belong to a pair output by the WGCNA,
MiRAMINT and WTOT-matching algorithms, looking at the WTOT-matching matchings
labeled as peaked. None of the 17 miRNAs and none of the 12 mRNAs involved in a
mRNA-miRNA pair output by WTOT-matching are involved in a mRNA-miRNA pair
output by the WGCNA or MiRAMINT algorithms.

The take-home message is that the WTOT-algorithm retains mRNA-miRNA matchings
that we label as peaked whereas neither the WGCNA nor the MiRAMINT algorithms do.

Monotonic profiles. Figure 7 presents two Venn diagrams summarizing the overlaps between
the sets of miRNAs (respectively, mRNAs) which belong to a pair output by the WGCNA,
MiRAMINT and WTOT-matching algorithms, looking at the WTOT-matching matchings
labeled as monotonic. On the one hand, focusing on miRNAs, 8/14 (respectively, 9/46)
miRNAs involved in a mRNA-miRNA pair output by MiRAMINT (respectively, WGCNA)
are among the miRNAs involved in a mRNA-miRNA pair output by WTOT-matching.
On the other hand, focusing on mRNAs, 0/20 (respectively, 14/1, 583) miRNAs involved
in a mRNA-miRNA pair output by MiRAMINT (respectively, WGCNA) are among the
miRNAs involved in a mRNA-miRNA pair output by WTOT-matching. We carry out
one-sided Fisher’s exact tests to quantify to what extent the overlaps reflect an agreement
between two algorithms (using the 1,478 miRNAs and 27,355 mRNAs appearing in the
TargetScan, MicroCosm and miRDB databases as reference populations), excluding the
comparison of the MiRAMINT and WTOT-matching algorithms in mRNAs (due to an
empty intersection). The p-values are smaller than 10−5.

The take-home message is that, in matchings that we label as monotonic, the agreement
between the WTOT-matching and WGCNA algorithms is better than that between the
WTOT-matching and MiRAMINT algorithms.

Neither peaked nor monotonic profiles. Finally, Figure 8 presents two Venn diagrams sum-
marizing the overlaps between the sets of miRNAs (respectively, mRNAs) which belong
to a pair output by the WGCNA, MiRAMINT and WTOT-matching algorithms and la-
beled neither as peaked nor monotonic. On the one hand, focusing on miRNAs, 12/14
(respectively, 28/46) miRNAs involved in a mRNA-miRNA pair output by MiRAMINT
(respectively, WGCNA) are among the miRNAs involved in a mRNA-miRNA pair out-
put by WTOT-matching. On the other hand, focusing on mRNAs, 1/20 (respectively,
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86/1, 583) miRNAs involved in a mRNA-miRNA pair output by MiRAMINT (respec-
tively, WGCNA) are among the miRNAs involved in a mRNA-miRNA pair output by
WTOT-matching. We carry out one-sided Fisher’s exact tests to quantify to what extent
the overlaps reflect an agreement between two algorithms (using the 1,478 miRNAs and
27,355 mRNAs appearing in the TargetScan, MicroCosm and miRDB databases as ref-
erence populations), excluding the comparison of the MiRAMINT and WTOT-matching
algorithms in mRNAs (due to an intersection reduced to a singleton). The p-value are
smaller than 10−5.

The take-home message is that, in matchings that we label as neither peaked nor mono-
tonic, the agreement between the WTOT-matching and WGCNA algorithms is better
than that between the WTOT-matching and MiRAMINT algorithms.

C.2 Enrichment analysis

We interpret here the results of the enrichment analysis exposed in Section 6.3.2 from a biological
viewpoint. Recall that the peaked and monotonic profiles are especially interesting because they
are more susceptible to correspond to mRNAs and miRNAs that play a distinct role in HD in
mice. Extracellular matrix organization (the primary annotation of the matchings output by
the WTOT-matching algorithm, driven by the mRNA-miRNA matchings labeled as neither
peaked nor monotonic) is known to be regulated by miRNAs (Rutnam et al., 2013) and HD
mutations are known to strongly affect neuronal identity via down-regulating a large number
of cell identity genes (Achour et al., 2015). Mitigation of host antiviral defense response (the
first secondary annotation of the matchings output by the WTOT-matching algorithm, due to
the mRNA-miRNA matchings labeled monotonic) is similar to the primary annotation of the
matchings output by the MiRAMINT algorithm. Finally, conventional motile cilium (the second
secondary annotation of the matchings output by the WTOT-matching algorithm, due to the
mRNA-miRNA matchings labeled peaked) is a new finding.

Additionally, although miRNA levels and regulation in response to mutant huntingtin is
anticipated to be dependent on cellular context and could be differentially influenced across
murine models of HD, it is noticeable that the analysis of miRNA regulation in the striatum of
HD knock-in mice based on the WTOT-matching algorithm retained several miRNAs that are
altered in the striatum of other types of HD mice such as BACHD (Olmo et al., 2021) or altered
in the human HD caudate nucleus (Petry et al., 2022) such as for example Mir100, Mir127,
Mir132, Mir 212 and Mir133, supporting the relevance of our findings for the study of molecular
regulation in mouse and human HD.

We believe that these facts substantiate our claim that the WTOT-matching algorithm
strikes a good balance between the low and high selectivity of the WGCNA and MiRAMINT
algorithms. Moreover, our findings related to striatal alterations in HD mice lead to reconsidering
the formerly-expressed view on a limited role of miRNA regulation in the striatum of HD mice
on a systems level (Mégret et al., 2020).
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D Parametric model Θ

Introduced in Section 4.1, the parametric model Θ consists of affine mappings θ : Rd → Rd of the
form x 7→ θ1x+ θ2, where θ1 takes its values in a subset T1 of Rd×d and θ2 takes its values in Rd
(without any constraint). It is easier to describe the set of linear mappings {x 7→ θ1x : θ1 ∈ T1}
after a reparametrization.

In the rest of this section only, we rewrite the mRNA and miRNA profiles x, y ∈ Rd under
the form of d1 × d2 matrices x̃ = (x̃tq)t∈Jd1K,q∈Jd2K and ỹ = (ỹtq)t∈Jd1K,q∈Jd2K. For each t ∈ Jd1K
and q ∈ Jd2K, x̃t• and x̃•q are the tth row and qth column of x̃. Here, indices t and q correspond
to the age and CAG lengths of the mice whose RNA sequencing yielded x̃tq and ỹtq.

The definition of T1 should formalize what we consider to be a (plausible) mirroring rela-
tionship. The simplest mirroring relationship is y = −x or, equivalently, ỹ = −x̃. The equality
is of course too stringent/rigid, and the definition of T1 is driven by our wish to relax it.

Biological arguments encourage us to consider that y and x exhibit a (plausible) mirroring
relationship if, for each (t, q) (t ∈ Jd1K, q ∈ Jd2K), ỹtq is strongly negatively correlated with x̃tq,
mainly, and (positively or negatively) correlated with x̃(t−1)q (if t > 1) and/or with x̃t(q−1) (if
q > 1), secondarily. We thus formalize {x 7→ θ1x : θ1 ∈ T1} as the set of all linear mappings of
the form

x 7→ θ̃a1 � x̃+ θ̃b1 �

 0>d2
x̃1•
...

x̃(d1−1)•

+ θ̃c1 �
(
0d1 x̃•1 · · · x̃•(d2−1)

)
where θ̃a1 and θ̃b1, θ̃

c
1 are d1 × d2 matrices (here, � is the componentwise multiplication). The

entries of θ̃a1 correspond to comparisons between x̃tq and ỹtq (same poly Q length q and age t).
The entries of θ̃b1 (whose first row consists of 0s) correspond to comparisons between x̃(t−1)q and

ỹtq (same poly Q length q, different age t). The entries of θ̃c1 (whose first column consists of 0s)
correspond to comparisons between x̃t(q−1) and ỹtq (different poly Q length q, same age t).

In the simulation study presented in Section B, the entries of θ̃a1 are constrained to take
their values in the interval ] − 5, 0[ while those of θ̃b1, θ̃

c
1 are constrained to take their values in

]−1/2, 1/2[. The initial mapping is drawn randomly by sampling the entries of θ̃a1 independently
and uniformly in ]−5, 0[ and, independently, by sampling the entries of θ̃b1 and θ̃c1 independently
and uniformly in ]− 1/2, 1/2[.

In the illustration of the WTOT-matching algorithm presented in Section 6.2, the mapping
θ̂ is parametrized by θ̃ given by

θ̃a1 =

(−0.88 −1.47 −0.73
−0.59 −0.90 −0.89
−0.62 −0.70 −1.17
−0.97 −1.30 −0.95
−0.56 −1.16 −1.24

)
, θ̃b1 =

(
0 0 0

0.13 −0.19 0.13
0.17 0.09 0.13
0.19 0.09 −0.00
0.18 0.15 0.08

)
,

θ̃c1 =

(
0 0.18 −0.18
0 0.19 0.17
0 0.04 0.15
0 0.05 0.11
0 0.18 0.14

)
, θ2 =

(−0.01 0.01 −0.00
0.00 0.01 0.01
0.00 0.01 0.00
0.01 0.01 0.01
−0.01 0.01 0.01

)

(the numbers are rounded to two decimal places). We note that:

• On the one hand, the entries of θ̃a1 are distributed around -1. On the other hand, the

14



entries of θ2 are small. This is in line with the strong biological hypothesis (that is, if a
miRNA induces the degradation of a target mRNA or blocks its translation into proteins,
or both, then the profile of the former should be similar to minus the profile of the latter).

• The entries of θ̃b1 and θ̃c1 are small.
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Procedure 1 Master optimal transport algorithm.

Input: X,Y , minibatch sizes M̃, Ñ , decay rate η ∈]0, 1], initial regularization parameter γ0,
initial mapping θ0 ∈ Θ, maximal number of iterations T

Output: Transport coupling P̃T ∈ (R+)M×N , mapping θT ∈ Θ, weight ωT
Compute:

• γ = mean{‖x− x′‖2 : x, x′ ∈ X} {for entropy regularization}

• h = mean{‖y − y′‖2 : y, y′ ∈ Y } {for window calibration}

Set t← 0
Set stop ← FALSE
while ¬ stop or t < T do
γt ← max(γ0 × ηt, γ)

Sample uniformly a minibatch of M̃ observations x̃
1:M̃

:= (x̃1, . . . , x̃M̃ ) from X

Sample uniformly a minibatch of Ñ observations ỹ
1:Ñ

:= (ỹ1, . . . , ỹÑ ) from Y
Define and compute θt(x̃1:M̃

) :=
(
θt(x̃1), . . . , θt(x̃M̃ )

)
Define and compute ωt ∈ (R+)M̃ such that

∑
m∈JM̃K(ωt)m = 1 by setting

(ωt)m ∝
∑
n∈JÑK

ϕ

(
ỹn − θt(x̃m)

h

)
(all m ∈ JM̃K)

where ϕ is the standard normal density
Define µωt

θt(x̃1:M̃
), the ωt-weighted empirical measure attached to θt(x̃1:M̃

), and νỹ
1:Ñ

, the

empirical measure attached to ỹ
1:Ñ

Compute Losst = W̄γt

(
µωt

θt(x̃1:M̃
), νỹ1:Ñ

)
and ∇Losst, the gradient of Losst relative to the

parameter defining θt {relies on the Sinkhorn-Knopp algorithm}
Update the parameter defining θt by performing one step of stochastic gradient descent,
yielding θt+1

Check stopping criterion and update stop variable accordingly
t← t+ 1

end while
Set θT ← θt−1

Set γT ← γt−1

Define and compute ωT ∈ (R+)M such that
∑

m∈JMK(ωT )m = 1 by setting

(ωT )m ∝
∑
n∈JNK

ϕ

(
yn − θT (xm)

h

)
(all m ∈ JMK)

Compute P̃T ∈ Π(ωT ) solving minP∈Π(ωT )WγT

(
µωT

θT (X), νY

)
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Figure 5: Venn diagrams summarizing the overlaps between the sets of miRNAs (left) and
mRNAs (right) which belong to a pair output by the WGCNA, MiRAMINT and WTOT-
matching algorithms.
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Figure 6: Venn diagrams summarizing the overlaps between the sets of miRNAs (left) and
mRNAs (right) which belong to a pair output by the WGCNA, MiRAMINT and WTOT-
matching algorithms, focusing on the WTOT-matching matchings labeled as peaked.
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Figure 7: Venn diagrams summarizing the overlaps between the sets of miRNAs (left) and
mRNAs (right) which belong to a pair output by the WGCNA, MiRAMINT and WTOT-
matching algorithms, focusing on the WTOT-matching matchings labeled as monotonic.
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Figure 8: Venn diagrams summarizing the overlaps between the sets of miRNAs (left) and
mRNAs (right) which belong to a pair output by the WGCNA, MiRAMINT and WTOT-
matching algorithms, focusing on the WTOT-matching matchings which are labeled as neither
peaked nor monotonic.

20



Figure 9: The mRNA-miRNA networks based on the mRNA-miRNA matchings output by
the WTOT-matching algorithm, focusing on the matchings which are labeled as peaked. Disks
correspond to miRNAs and squares to mRNAs. The top annotation is conventional motile
cilium (GO:0097729, 3 hits).

Figure 10: The mRNA-miRNA networks based on the mRNA-miRNA matchings output by
the WTOT-matching algorithm, focusing on the matchings which are labeled as monotonic.
Disks correspond to miRNAs and squares to mRNAs. Elements also retained by the WGCNA
algorithm (respectively, the MiRAMINT algorithm) are indicated in blue (respectively, yellow).
The top annotation is mitigation of host antiviral defense response (GO:0050690, 2 hits).
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