Determinants of ozone fluxes and metrics for ozone risk assessment in plants

Silvano Fares¹,²,*, Allen Goldstein² and Francesco Loreto³

¹ CNR (National Research Council)–Istituto di Biologia Agroambientale e Forestale, Via Salaria km. 29,300, I-00016 Monterotondo Scalo (Rome), Italy
² Department of Environmental Science, Policy, and Management, University of California, 137 Mulford Hall, Berkeley, CA 94720, USA
³ CNR (National Research Council)–Istituto per la Protezione delle Piante, Sesto Fiorentino (Florence), Italy

* To whom correspondence should be addressed: E-mail: silvano.fares@ibaf.cnr.it

Received 11 September 2009; Revised 21 October 2009; Accepted 27 October 2009

Abstract

Tropospheric ozone concentration is increasing and represents a threat to single plants and whole ecosystems. The deleterious ozone effects mainly occur when (i) ozone concentration in the air builds up; (ii) the pollutant enters the leaf through stomatal uptake, and (iii) ozone-produced reactive oxygen species are not efficiently scavenged by leaf antioxidants and then oxidize leaf tissues. The sensitivity of plants to ozone is species-specific, and a correct risk assessment should be based on a metric that correctly takes into account the ambient concentration of ozone, the physiological control on stomatal apertures, and the efficiency of leaf antioxidant system. Current methodologies have been analysed to evaluate ozone risk assessment, and, by phasing-in and phasing out sources and sinks of ozone, elements of improvements for the current metrics have been suggested.

Key words: Antioxidants, ozone, risk assessment, volatile isoprenoids.

Ozone impact on plants

Tropospheric ozone is considered to be one of the most dangerous oxidant molecules for plants and its concentration has been increasing in the troposphere, particularly in northern mid-latitudes (Brasseur et al., 1998; UNECE, 2004; Parrish et al., 2009). Plants may experience injuries when chronically exposed to ozone and injuries are often severe when acute ozone exposures occur. Ozone causes biochemical and physiological changes leading to the inhibition of photosynthesis and a consequent decrease in plant growth (Guderian et al., 1985), often associated with visible injuries (Bussotti et al., 2003; Vollenweider and Gunthardt-Georg, 2005).

Plants act as a sink for ozone, through stomatal and non-stomatal processes (Fig. 1). Stomatal conductance to ozone is the inverse of the sum of an array of resistances that ozone meets in specific locations along the path from the outside of the leaf to the reaction site inside the apoplast (Fares et al., 2008). After entering the stomata, ozone reacts with the liquid components of the apoplast to create reactive oxygen species (ROS, mainly H₂O₂, but also OH radicals; Kangasjarvi et al., 2005) that can oxidize the cell walls to start a cascade of reactions which lead, at the final stage, to cellular death. Ozone and ROS can also react with a multitude of apoplastic antioxidants, with ascorbic acid being the most representative (Dizengremel et al., 2008). Another class of antioxidants is the volatile isoprenoids. These compounds were shown to contribute to ozone removal in the intercellular spaces and to protect plant tissues from oxidation, probably reacting with the very reactive oxygen species (e.g. O, O⁻) (Velikova et al., 2004; Loreto and Fares, 2007), and with reactive nitrogen species generated by the first interaction of ozone with plant tissues (Velikova et al., 2005, 2008; reviewed in Vickers et al., 2009). Volatile isoprenoids may also contribute to gas phase chemical losses of ozone, reacting with this molecule in the leaf boundary layer. This phenomenon was found to be the main source of non-stomatal uptake, and in warm seasons was the highest source of ozone removal in a Mediterranean climate.
ponderosa pine ecosystem (Kurpius and Goldstein, 2003) and in a Mediterranean holm oak forest (Gerosa et al., 2005). Other sources of non-stomatal uptake are ozone deposition to soil, stems, and cuticles. These sources are considered of minor importance unless in conditions of surface wetness (Altimir et al., 2004).

Metrics for ozone risk assessment

Several metrics have been developed for ozone risk assessment and plant damage (Musselman et al., 2006; Paoletti and Manning, 2007). One class of metrics is based on the accumulated daytime ozone concentration. The European directives (UNECE, 2004) suggest the use of the AOT40 (Accumulated Ozone over a Threshold concentration of 40 ppb) for forest ecosystems. This metric only considers ozone concentrations in air that are above the 40 ppb threshold and which occur during daylight hours and over a specific solar radiation intensity as potentially damaging (Karenlampi and Skarby, 1996). However, ozone concentration in air is not always correlated to ozone flux into leaves (Kurpius et al., 2002). The AOT40 index does not account for the physiological and ecological control of stomatal apertures, and for the effective amount of ozone entering leaves and oxidizing the apoplast.

A second class of ozone-risk metrics is based on accumulated stomatal fluxes above a phytotoxic threshold (Karlsson et al., 2004). This is, in principle, a more tenable metric because it takes into account the effective amount of ozone responsible for plant injuries after entering stomata. Stomatal ozone fluxes are the product of the stomatal conductance (modelled in a multiplicative algorithm which takes into account the maximal stomatal conductance and all the phenological and environmental parameters affecting it; Emberson et al., 2000) multiplied by the ozone concentration at the height of the top of the canopy. This value can be calculated with a deposition model which considers the ozone concentration at a certain height above the canopy and the resistances to ozone deposition on the canopy (UNECE, 2004). A flux-based method implies that a more species-specific approach is required than for an exposure-based method (Tuovinen et al., 2007). Incorrect calculation of stomatal conductance would introduce a source of uncertainty, as would the application of canopy ozone concentrations if some deposition mechanisms are unexplained.

Recent studies have demonstrated that, in plant ecosystems emitting isoprenoids, especially monoterpenes and sesquiterpenes, two classes of biogenic volatile organic compounds that react quickly with ozone, non-stomatal ozone deposition can be the dominant process (Kurpius and Goldstein, 2003; Bouvier-Brown et al., 2009). This implies that the ozone concentration at the canopy level can be less than the ozone concentration at the measuring height above the canopy. This ozone gradient increases under conditions of low vertical mixing. If this reduction in ozone concentration is not properly taken into account in ecosystems emitting isoprenoids, the stomatal fluxes would be overestimated.

Ozone sources and sinks are (often) out-phased over the day

Previous research (Massman et al., 2000; Musselman et al., 2006) introduced the importance of plant defence mechanisms for detoxifying ozone and suggested their inclusion in flux-based metrics for ozone-risk assessment. In a recent article, Heath et al. (2009) highlight how the ambient ozone concentration, stomatal conductance, and apoplastic ascorbate follow different diurnal trends (Fig. 2) causing a temporal decoupling of ozone exposure and ozone flux.

Fig. 1. Conceptual dynamic of ozone fluxes in a plant ecosystem: ozone reacts in the gas phase with BVOC (here drawn as molecules) contributing to the non-stomatal ozone sink. The blue ozone molecules represent the ozone deposition on the plant surfaces. The gradient from blue to red is the progressive decrease of tropospheric ozone concentration due to gas-phase reactions and leaf stomatal uptake. At a progressively smaller scale, detail of a leaf portion is shown and a vertical leaf section representing the cell tissue, with palisade and spongy cells, and with the apoplastic space rich in BVOC and ascorbate which detoxify ozone entering through the stomatal aperture.
Ambient ozone concentration generally peaks in the afternoon (16.00–18.00 h; Fig. 2) whereas maximal stomatal opening often occurs earlier (13.00–15.00 h) (Kurpius and Goldstein, 2003; Massman, 2004; Fares et al., 2009). In addition, plants in Mediterranean environments often experience a midday reduction in stomatal conductance in response to high temperatures and drought stress in the warmest central hours of the day (Raschke and Resemann, 1986). This causes the maximum stomatal conductance to occur earlier in the day (10.00–11.00 h), and further decouples the diurnal cycles of stomatal opening and atmospheric ozone concentrations (Cieslik, 2004), thus reducing the potential oxidative ozone damage.

The capacity for the regeneration of antioxidants within the cell is driven by an ‘oxidative signalling’ process and is linked to appropriate changes in reducing power (NADPH), which depends on carbon metabolism (Dizengremel et al., 2008). For this reason, the maximum level of apoplastic antioxidants, primarily ascorbate, and the activity of the enzymes involved in the ascorbate cycle peaks in a temporal window close to that of maximal stomatal conductance and photosynthesis, preceding the daily peak in ambient ozone concentration by several hours (Pelzer and Polle, 2000; Cheng and Ma, 2004).

Phenolic compounds, such as chlorogenic acid and quercetin, are also important antioxidants, and may protect plants against ozone (Yama et al., 2003; Kontunen-Soppela et al., 2007). The production of these compounds does not necessarily follow a diurnal cycle but is often temporally coincident with the antioxidant defences mentioned above and associated with structural acclimation of the leaves in response to high atmospheric ozone (Oksanen et al., 2005).

Volatile isoprenoid emissions are well known to depend on light and temperature, and on the availability of photosynthetic intermediates, and thus also follow a similar daily pattern (Fig. 2) (Niinemets et al., 2004). Thus both non-stomatal ozone deposition (in which isoprenoids are also involved; Fares et al., 2008) and leaf antioxidant capacity trigger leaf protection during the phase of higher stomatal conductance in the central hours of the day. Whereas, during the afternoon hours, the stomatal-driven depression of photosynthesis may reduce carbon metabolism and allocation to antioxidant defences, thus triggering ozone injuries even under limited stomatal aperture.

It is noted, however, that volatile isoprenoids may accumulate inside leaves when stomata close, reaching concentrations much higher than those in the atmosphere (Loreto et al., 1996). In fact, stomatal closure may dramatically increase leaf temperature, decoupling it from the outside air temperature (Singsaas et al., 1999). Isoprenoid production increases exponentially with temperature (Loreto and Sharkey, 1990), and thus isoprenoid accumulation inside leaves is often enhanced in the afternoon, coincident with the depression of stomatal opening and high ozone concentrations in the atmosphere. Indeed, in Fig. 2, the concentration of isoprenoids, calculated from emission rates and stomatal conductances during summer days in a live oak ecosystem in the Mediterranean area (Fares et al., 2008) and in a Pinus ponderosa ecosystem in the Sierra Nevada mountains of California (Kurpius and Goldstein, 2003) was the only process in phase with ozone accumulation in the air. Production of volatile isoprenoids inside leaves may, therefore, be a key process for detoxifying ozone, possibly by one of the mechanisms reviewed in Vickers et al. (2009), during daily peaks of ozone.

In summary, the mismatch between ozone concentrations and stomatal aperture generally makes exposure-based metrics less suitable than flux-based metrics. The works reviewed by Heath et al. (2009) correctly suggest that a stomatal-driven flux-based approach may establish a phytotoxic threshold of accumulated ozone fluxes, with emphasis on when stomatal conductance is high. We argue that this approach, however, does not take into account the temporal variability of defence mechanisms, and, in particular, the reduction of photosynthetically-generated antioxidants when photosynthesis is inhibited by stomatal closure. In these circumstances however, atmospheric ozone concentrations are very high and even a minor amount of ozone entering stomata may cause serious injuries if the antioxidant capacity is low.

Whereas the flux-based metric is the most suitable for ozone-risk assessment, apoplastic ascorbate may not be the only antioxidant to take into consideration in parameterizing ozone fluxes. Antioxidants such as phenolic compounds and volatile isoprenoids may also be important during peak episodes of tropospheric ozone. Phenolic compounds may play an important role during the night, especially under conditions when atmospheric ozone concentration remains
high and stomata do not totally close, for example in mountain areas characterized by strong valley breezes. The production of volatile isoprenoids is generally phased-in with peak ozone episodes during the day, and may importantly contribute to removing ozone inside the mesophyll. Given the complexity and interspecific differences in antioxidant systems, future research should investigate the relationship between oxidative leaf injury and antioxidant dynamics, as this could improve the predicting capacity of flux-based metrics.

References


Kärenlampi L, Skärby L, eds. 1996. Critical levels for ozone in Europe: testing and finalising the concepts. Finland: University of Kuopio.


Paoletti E, Manning WJ. 2007. Toward a biologically significant and usable standard for ozone that will also protect plants. Environmental Pollution 150, 85–95.


UNECE. 2004. Revised manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. www.icpmapping.org.


