SUPPLEMENTARY MATERIAL

Figure S1. Nt- and Ct-sequences of Arabidopsis p24 proteins.
Sequence of the N-terminus and the C-terminus of the 11 members of the p24 family in Arabidopsis, including those from the delta subfamily (p24δ3-p24δ11) and those from the beta subfamily (p24β2-p24β3). Sequences used to obtain peptide antibodies are underlined.

Figure S2. Characterization of T-DNA insertion mutants.
A. RT-PCR analysis of p24δ5-1, p24δ4-1 mutants to show the absence of p24δ5 and p24δ4 mRNA, respectively. Total RNA from leaves of the T-DNA insertion mutant and wild-type plants were used for the RT-PCR. In the PCRs, gene specific primers were used. Actin7 (ACT7) was used as a control. B. p24δ5-1, p24δ4-1 and p24δ4δ5 mutant seedlings grown on vertical agar plates for 6 days did not show a phenotype different from that of wild-type (Col-0)
plants. C. Three-week-old p24δ5-1, p24δ4-1 and p24δ4δ5 mutant plants did not show a phenotype different from that of wild-type (Col-0) plants.

Figure S3. Localization of RFP-p24δ5 and deletion mutants and colocalization between GFP-p24β2 and RFP-p24δ5 or RFP-p24δ5(ΔCC) in Arabidopsis protoplasts.

A-L. Transient gene expression in Arabidopsis protoplasts. A-C. RFP-p24δ5 (A) shows a typical ER pattern and colocalizes with the ER marker GFP-HDEL (B) (merged image in C). D-F. RFP-p24δ5 deletion mutants lacking the coiled-coil domain (ΔCC) (D), the GOLD domain (ΔGOLD) (E) or both (TMCT) (F) show a typical ER pattern and colocalize with the ER marker GFP-HDEL. G-I. GFP-p24β2 (G) and RFP-p24δ5 (H) colocalize in punctate structures (see merged images in I). J-L. GFP-p24β2 (J) and RFP-p24δ5 (ΔCC) (K) do not colocalize (see merged image in L). Scale bars = 5 μm.

Figure S4. RFP-p24δ5 and RFP-p24δ5 (ΔCC) localize to the ER at different expression levels.

A-P. Transient gene expression in tobacco mesophyl protoplasts using the indicated concentrations of DNA (from 0.3 to 10 μg). A-H. RFP-p24δ5 shows a typical ER pattern at all DNA concentrations and both at 5 (A-D) or 24 (E-H) hours post-electroporation. I-P. RFP-p24δ5(ΔCC) shows a typical ER pattern at all DNA concentrations and both at 5 (I-L) or 24 (M-P) hours post-electroporation. Scale bars = 5 μm.
Figure S5. Co-expression of RFP-p24δ5 and different DNA concentrations of GFP-p24β2.

A-I. Transient gene expression in tobacco mesophyll protoplasts. An increased ratio in the concentrations of GFP-p24β2 (A, 5 µg; D, 25 µg; G, 50 µg) vs RFP-p24δ5 (35 µg, B, E and H) induces a progressive change in the localization of RFP-p24δ5, from a mainly reticulate pattern (B) to a mostly punctate one (H), and increased colocalization between both proteins (merged images in C, F and I). Scale bars = 5 µm.

Figure S6. Co-expression of RFP-p24δ5(ΔCC) and different DNA concentrations of GFP-p24β2.

Figure S7. 2 h BFA treatment redistributes RFP-p24δ5 and GFP-p24β2 to the ER.

A-C. Transient gene expression in tobacco mesophyll protoplasts. Treatment with BFA (90 µM, 120 min) after coexpression of GFP-p24β2 (A) and RFP-p24δ5 (B) may induce a complete relocalization of both proteins to the ER (merged image in C). Scale bars = 5 µm.
Figure S8. A comparison between frame scan and line scan modes for colocalization studies. A-L. Transient gene expression in tobacco mesophyll protoplasts. A-F. GFP-p24β2 (A, D) colocalizes partially with the Golgi marker Man1-RFP (B, E) in punctate structures (merged images in C and F), both in the frame scan mode (A-C) and in the line scan mode (D-F). G-L. GFP-p24β2 (G, J) punctae do not colocalize with the PVC marker ARA6-RFP (H, K) (merged images in I and L), neither in the frame scan mode (G-I) nor in the line scan mode (J-L).
Figure S1. Nt- and Ct-sequences of Arabidopsis p24 proteins.

Sequence of the N-terminus and the C-terminus of the 11 members of the p24 family in Arabidopsis, including those from the delta subfamily (p24δ3-p24δ11) and those from the beta subfamily (p24β2-p24β3). Sequences used to obtain peptide antibodies are underlined.

<table>
<thead>
<tr>
<th>p24δ3</th>
<th>VWLDVPPTGT</th>
<th>YLKQYFEKKKLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>p24δ4</td>
<td>VWLTVPHTGS</td>
<td>YLKQYFEKKKLI</td>
</tr>
<tr>
<td>p24δ5</td>
<td>IWLTIPTTGG</td>
<td>YLKRYFHKKKLI</td>
</tr>
<tr>
<td>p24δ6</td>
<td>IWLTVPESGE</td>
<td>YLKRYFLKKKLI</td>
</tr>
<tr>
<td>p24δ7</td>
<td>IRYELLSGHT</td>
<td>HLKTFQKKKLI</td>
</tr>
<tr>
<td>p24δ8</td>
<td>MRYELKSSKT</td>
<td>HLKTFEEKKKLI</td>
</tr>
<tr>
<td>p24δ9</td>
<td>LHFELQSGRT</td>
<td>HLKTFEEKKVI</td>
</tr>
<tr>
<td>p24δ10</td>
<td>LHFDLHSGRRT</td>
<td>HLKTFEEKKVI</td>
</tr>
<tr>
<td>p24δ11</td>
<td>MRLMESGNT</td>
<td>HLKSFLEKKLL</td>
</tr>
<tr>
<td>p24β2</td>
<td>IRFVIDREE</td>
<td>LFERKLGMSRV</td>
</tr>
<tr>
<td>p24β3</td>
<td>LSVTVNDEE</td>
<td>LFSKVAYNRV</td>
</tr>
</tbody>
</table>
Figure S2

Figure S2. Characterization of T-DNA insertion mutants.

A. RT-PCR analysis of p24δ5-1, p24δ4-1 mutants to show the absence of p24δ5 and p24δ4 mRNA, respectively. Total RNA from leaves of the T-DNA insertion mutant and wild-type plants were used for the RT-PCR. In the PCRs, gene specific primers were used. Actin7 (ACT7) was used as a control. B. p24δ5-1, p24δ4-1 and p24δ4δ5 mutant seedlings grown on vertical agar plates for 6 days did not show a phenotype different from that of wild-type (Col-0) plants. C. Three-week-old p24δ5-1, p24δ4-1 and p24δ4δ5 mutant plants did not show a phenotype different from that of wild-type (Col-0) plants.
Figure S3
Figure S3. Localization of RFP-p24Δ5 and deletion mutants and colocalization between GFP-p24β2 and RFP-p24Δ5 or RFP-p24Δ5(ΔCC) in Arabidopsis protoplasts.

A-L. Transient gene expression in Arabidopsis protoplasts. A-C. RFP-p24Δ5 (A) shows a typical ER pattern and colocalizes with the ER marker GFP-HDEL (B) (merged image in C). D-F. RFP-p24Δ5 deletion mutants lacking the coiled-coil domain (ΔCC) (D), the GOLD domain (ΔGOLD) (E) or both (TMCT) (F) show a typical ER pattern and colocalize with the ER marker GFP-HDEL. G-I. GFP-p24β2 (G) and RFP-p24Δ5 (H) colocalize in punctate structures (see merged images in I). J-L. GFP-p24β2 (J) and RFP-p24Δ5 (ΔCC) (K) do not colocalize (see merged image in L). Scale bars = 5 μm.
Figure S4. RFP-p24Δ5 and RFP-p24Δ5 (ΔCC) localize to the ER at different expression levels.

A-P. Transient gene expression in tobacco mesophyl protoplasts using the indicated concentrations of DNA (from 0.3 to 10 μg). A-H. RFP-p24Δ5 shows a typical ER pattern at all DNA concentrations and both at 5 (A-D) or 24 (E-H) hours post-electroporation. I-P. RFP-p24Δ5(ΔCC) shows a typical ER pattern at all DNA concentrations and both at 5 (I-L) or 24 (M-P) hours post-electroporation. Scale bars = 5 μm.
Figure S5. Co-expression of RFP-p24δ5 and different DNA concentrations of GFP-p24β2.

A-I. Transient gene expression in tobacco mesophyll protoplasts. An increased ratio in the concentrations of GFP-p24β2 (A, 5 µg; D, 25 µg; G, 50 µg) vs RFP-p24δ5 (35 µg, B, E and H) induces a progressive change in the localization of RFP-p24δ5, from a mainly reticulate pattern (B) to a mostly punctate one (H), and increased colocalization between both proteins (merged images in C, F and I). Scale bars = 5 µm.
Figure S6. Co-expression of RFP-p24Δ5(ΔCC) and different DNA concentrations of GFP-p24β2.

Figure S7

Figure S7. 2 h BFA treatment redistributes RFP-p24δ5 and GFP-p24β2 to the ER.

A-C. Transient gene expression in tobacco mesophyll protoplasts. Treatment with BFA (90 µM, 120 min) after coexpression of GFP-p24β2 (A) and RFP-p24δ5 (B) may induce a complete relocalization of both proteins to the ER (merged image in C). Scale bars = 5 µm.
Figure S8
Figure S8. A comparison between frame scan and line scan modes for colocalization studies. A-L. Transient gene expression in tobacco mesophyll protoplasts. A-F. GFP-p24β2 (A, D) colocalizes partially with the Golgi marker Man1-RFP (B, E) in punctate structures (merged images in C and F), both in the frame scan mode (A-C) and in the line scan mode (D-F). G-L. GFP-p24β2 (G, J) punctae do not colocalize with the PVC marker ARA6-RFP (H, K) (merged images in I and L), neither in the frame scan mode (G-I) nor in the line scan mode (J-L).