Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis

Stine Huseby1,2,*, Anna Koprivova1, Bok-Rye Lee1,†, Shikha Saha3, Richard Mithen3, Anne-Berit Wold2, Gunnar B. Bengtsson4 and Stanislav Kopriva1

1 Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
2 Department of Plant- and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, NO-1432 Aas, Norway
3 Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
4 Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, NO-1430 Aas, Norway
† Present address: College of Agriculture & Life Science, Chonnam National University, Buk-Gwangju, Gwangju, 500–600, Korea.

* To whom correspondence should be addressed. E-mail: stine_huseby@yahoo.no

Received 28 September 2012; Revised 11 December 2012; Accepted 13 December 2012

Abstract

Glucosinolates are a major class of sulphur-containing secondary metabolites involved in plant defence against pathogens. Recently many regulatory links between glucosinolate biosynthesis and sulphate assimilation were established. Since sulphate assimilation undergoes diurnal rhythm and is light regulated, this study analysed whether the same is true for glucosinolate biosynthesis. The levels of glucosinolates and glutathione were found to be higher during the day than during the night. This agreed with variation in sulphate uptake as well as activity of the key enzyme of the sulphate assimilation pathway, adenosine 5'-phosphosulphate reductase. Correspondingly, the flux through sulphate assimilation was higher during the day than during the night, with the maximum flux through primary assimilation preceding maximal incorporation into glucosinolates. Prolonged darkness resulted in a strong reduction in glucosinolate content. Re-illumination of such dark-adapted plants induced accumulation of mRNA for many genes of glucosinolate biosynthesis, leading to increased glucosinolate biosynthesis. The light regulation of the glucosinolate synthesis genes as well as many genes of primary sulphate assimilation was controlled at least partly by the LONG HYPOCOTYL5 (HY5) transcription regulator. Thus, glucosinolate biosynthesis is highly co-regulated with sulphate assimilation.

Key words: Diurnal, glucosinolates, HY5, light, primary metabolism, secondary metabolism, sulphate assimilation.

Introduction

Glucosinolates (GLS) are sulphur-rich compounds found in the Brassicaceae family. GLS and their breakdown products (thiocyanates, isothiocyanates, and nitriles) play an important role in plant defence against pathogens and herbivores, while humans may gain protection against cancer through the consumption of vegetables containing GLS, such as broccoli, kale, and Brussels sprouts (Traka and Mithen, 2009).

The GLS core structure is an S-glucose moiety and a sulphoxime group with an attached amino acid-derived side chain (Fig. 1). GLS are classified based on the origin of their side chain, and the main groups are aliphatic, indolic, and benzenic GLS derived from the amino acids methionine, tryptophan, and phenylalanine, respectively (Brown et al., 2003; Agerbirk and Olsen, 2012). The biosynthesis of GLS starts with chain elongation of the amino acids followed by oxidation, to form an aldoxime (Fig. 1). Glutathione donates a sulphur atom to the aldoxime, resulting in a thiohydroxymate, which quickly undergoes glycosylation by UDP-glucose to give desulpho-GLS. GLS are formed when the desulpho-GLS are sulphated by sulphotransferases using
3'-phosphoadenosine 3'-phosphosulphate (PAPS), linking GLS biosynthesis to primary sulphate assimilation (Mugford et al., 2009). The GLS can further undergo secondary modifications, such as hydroxylations, methylations, or oxidations, which give rise to a large variation of structures (Grubb and Abel, 2006; Sonderby et al., 2010).

Glucosinolates contain at least two sulphur atoms in their core structure, and aliphatic GLS may have additional sulphur incorporated in their side chains (Fig. 1). The sulphur status of the plant therefore affects the biosynthesis of GLS (Falk et al., 2007), which is co-regulated with sulphate assimilation, both positively controlled by the same group of MYB transcription factors (Hirai et al., 2004, 2005; Yatusevich et al., 2010). The availability of other nutrients such as nitrogen and potassium can also affect production of GLS (Omirou et al., 2009; Trouflard et al., 2010).

GLS content and the expression of GLS biosynthetic genes are regulated by a range of environmental factors. In line with their function in biotic stress defence, the genes are inducible by wounding, jasmonate, or pathogens (Mikkelsen et al., 2003; Jost et al., 2005; Kusnierczyk et al., 2007). In addition, GLS and the mRNA levels of biosynthetic genes have been shown to change during a 24 h light/dark cycle; the metabolic fluctuations are affected by temperature in cultivars of *Brassica oleracea* (Rosa et al., 1994; Rosa, 1997; Schuster et al., 2006). Branched-chain aminotransferase (BCAT4) and methylthioaloxylmalate synthase (MAM1), both involved in the early side chain elongation process, show higher expression levels under light compared with darkness, and the expression levels remain high when the plants are kept under continuous light (Schuster et al., 2006). The three sulphotransferases involved in core GLS biosynthesis, SOT17 in particular, show higher expression levels during the light period followed by a gradual decrease during the dark period (Klein et al., 2006). AOP2, involved in secondary modification of the side chain, has a high expression level under continuous light, while it is not detectable in continuous darkness (Neal et al., 2010).

Despite the link that seems to exist between light and the biosynthesis of GLS, their total content often fluctuates more than the gene expression, and elevated levels can be seen during the dark period when the genes have low expression levels (Rosa, 1997; Klein et al., 2006; Schuster et al., 2006). In addition, the closely related sulphate assimilation is also regulated by light. The key enzyme of sulphate assimilation, adenosine 5'-phosphosulphate reductase (APR), undergoes diurnal rhythm in *Arabidopsis* and maize, with a maximum during the light period (Kocsy et al., 1997; Kopriva et al., 1999). On the other hand, no diurnal changes in cysteine or glutathione contents were observed in poplar (Noctor et al., 1997), although the capacity for glutathione synthesis is higher in light than in the dark (Buwalda et al., 1988). Other components of sulphate assimilation are regulated by light: ATP-sulphurylase activity was higher in irradiated oat, barley, and maize (Passera et al., 1989). In *Arabidopsis*, mRNA levels of genes of sulphate assimilation were several times higher in green leaves than in etiolated tissues (Hell et al., 1997). APR activity is repressed in dark-adapted plants, and induced rapidly by re-illumination (Neuenschwander et al., 1991; Kopriva et al., 1999). The transcription factor LONG HYPOCOTYL5 (HY5) has been shown to be involved in the regulation of APR light response (Lee et al., 2011). HY5 is a bZIP transcription factor and a positive regulator of photomorphogenesis (Ang et al., 1998). Mutation in HY5 causes defects in the inhibition of hypocotyl elongation in all light conditions, suggesting that HY5 acts downstream of phytochromes A and B, cryptochromes, and UV-B (Ang et al., 1998; Ulm et al., 2004). HY5 directly binds to the promoters of >1000 light-inducible genes, including APR (Lee et al., 2007, 2011).

However, while the light and diurnal regulation of sulphate assimilation is well established, the data have been obtained in different species in various growth conditions. In addition, particularly little is known about such regulation of GLS biosynthesis and the coordination with sulphate assimilation in *Arabidopsis*. The aims of this study were, therefore, to analyse light induction and diurnal regulation of GLS biosynthesis genes and to provide a comprehensive study of diurnal variation of sulphur-containing metabolites, sulphate uptake, flux through sulphate assimilation, and the rate of GLS biosynthesis, in the same plant material.

![Fig. 1.](image)
Materials and methods

Plant material and growth conditions

For all experiments, Arabidopsis thaliana ecotype Col-0 or the hy5 mutant [T-DNA insertion line SALK_056405 (Lee et al., 2011)] were grown on vertical plates with Murashige and Skoog (MS) medium, without sucrose supplement, and 0.5% phytagel. The seeds were stratified for 72 h at 4 °C before being transferred to a controlled environment room at 20 °C and with a 16 h light/8 h dark cycle. For the diurnal experiments, samples of 15-day-old seedlings were collected every fourth hour, for 24 h. For the light induction experiments, 21-day-old seedlings were either kept under a normal 16 h/8 h day-night rhythm or transferred to continuous darkness. After 44 h, half of the dark-treated plants were re-illuminated while the remainder were kept in the dark. Sampling was done 3 h (metabolites and RNA) or 4 h (35S incorporation) after re-illumination. For the experiments with hy5, the seedlings were grown for 7 d, transferred to dark for 38 h, and re-illuminated for 90 min before sampling. The control group were kept in the dark. This allowed direct comparison of these results with the previous analysis of hy5 (Lee et al., 2011) and of regulation of the GLS synthesis genes at different developmental stages.

GLS analysis

The content of GLS and desulpho-GLS was determined using the protocol described in Mugford et al. (2009). GLS analysis was based on UV absorption at 229 nm and response factors relating to the internal standard. Identification was done by liquid chromatography–mass spectrometry (LC-MS), using atmospheric pressure chemical ionization and the +H+ molecular ion. The quantification was based on UV absorption at 229 nm and the +H+ molecular ion. The +H+ molecular ion was used to confirm the identity of GLS and desulpho-GLS. The GLS content was determined using the protocol described in Mugford et al. (2009). The quantification was based on UV absorption at 229 nm and response factors relating to the internal standard. Identification was done by liquid chromatography–mass spectrometry (LC-MS), using atmospheric pressure chemical ionization and the +H+ molecular ion. The quantification was based on UV absorption at 229 nm and the +H+ molecular ion. The +H+ molecular ion was used to confirm the identity of GLS and desulpho-GLS.

RNA extraction and expression analysis

RNA was isolated by phenol–chloroform–isoamyl mixture (25:24:1) extraction and LiCl precipitation. cDNA was synthesized from 1 μg of total RNA with a QuantiTect Reverse Transcription Kit (Qiagen, Crawley, UK), which includes a DNase step to remove possible DNA contamination. Quantitative real-time PCR was performed using gene-specific primers (Supplementary Table S1 available at JXB online) and the fluorescent intercalating dye SYBR Green (Sigma, Dorset, UK) as described by Lee et al. (2011). All quantifications were normalized to the TIP41 gene, and relative quantification was performed using the comparative Ct-method. The real-time PCRs were performed in duplicate for each of the three independent biological replicates.

Sulphate uptake

Every fourth hour plants were placed in 24-well plates with 1 ml of MS nutrient solution [adjusted to contain 0.2 mM sulphate and supplemented with 5.6 μCi of [35S]sulphate (Hartmann Analytic, Braunschweig, Germany)]. The plants were incubated in light or dark according to the light period previously described. When collecting samples in the dark, the plants were transferred using green light. After 4 h incubation the plants were washed in sterile water, blotted in paper tissue, weighed, and placed in scintillation vials. A 4 ml aliquot of tissue solubilizer (Solvente-350, Perkin Elmer) was added and the samples were left overnight to dissolve. After addition of 10 ml of Optiphase HiSafe3 scintillation cocktail (Perkin Elmer), the radioactivity of the samples was measured in a scintillation counter (Beckman, High Wycombe, UK).

Results

Diurnal variation in sulphur metabolism and GLS biosynthesis

To obtain a more detailed understanding of the diurnal variation of sulphur metabolism, [35S]sulphate was used to determine sulphate uptake and fluxes in both primary and secondary sulphate assimilation. Sulphate uptake was measured in six 4 h intervals over a 24 h period, starting at light onset. The uptake increased from the start of the day to a higher level during the rest of the light period, followed by a decrease, until reaching the same level as at the beginning of the light period (Fig. 2A). The flux through primary assimilation was determined as incorporation of radioactivity into thiols (cysteine and glutathione) and proteins, while GLS represented the secondary metabolites (Mugford et al., 2011). The incorporation of 35S into thiols was higher in the light than in the dark, with maximal values between 8 h and 12 h (Fig. 2B). The incorporation of 35S into proteins, however, had a different pattern, showing an increase only late in the day and in the first part of the dark period (Fig. 2C). There was a clear minimum in incorporation of sulphate into thiols and proteins in the second part of the night. The GLS biosynthesis rate showed a very similar pattern, with a minimum
at the end of the night (Fig. 2D). Thus, sulphur metabolism seems to be well coordinated throughout the day, with higher activity during the light period than during the night.

The levels of two major sulphur-containing metabolites, glutathione and GLS, were compared as representatives of primary and secondary sulphate assimilation pathways. Glutathione levels were higher during the light period than in the dark, without a clear maximum (Fig. 3A). GLS levels were relatively stable except for a peak 8 h after light onset (Fig. 3B; Supplementary Table S2 at JXB online). APR, which controls flux through the sulphate assimilation pathway (Vauclare et al., 2002), had previously only been shown to undergo diurnal rhythm in plants adapted to short days (Kopriva et al., 2009); therefore, it was necessary to confirm the same regulation in plants that were grown in long days. APR activity was again higher during the light period than in the dark, but without the strong maximum observed under short days (Fig. 3C).

Regulation of GLS biosynthesis by light

The direct effect of dark–light transitions on GLS biosynthesis was analysed in more detail through a light induction experiment testing both the biosynthetic rate and gene expression. Plants kept under the normal light/dark rhythm contained the highest GLS levels (Fig. 4A; Supplementary Table S3 at JXB online). Forty-four hours of darkness resulted in an ~25% decrease in GLS levels. Re-illumination for 3 h was not sufficient to increase the GLS content significantly, and this stayed significantly lower than in control plants (Fig. 4A). However, 44 h of darkness affect many processes in plants, and the lack of difference in total GLS content between the dark-treated and re-illuminated plants does not preclude that light directly regulates GLS biosynthesis.

To measure the effect of light on the GLS biosynthesis rate, the incorporation rate of 35S into GLS and desulpho-GLS was determined for the different light regimes. While there was some basal incorporation of 35S in dark-incubated plants, the rate of biosynthesis was greatly increased by light (Fig. 4B). Labelling was found in both GLS and desulpho-GLS, with the former being labelled to a higher degree, reflecting the nature of desulpho-GLS as pathway intermediates. Thus, biosynthesis of GLS is indeed a light-regulated process.

Among the sulphate assimilation genes, $ATPS1$–$ATPS3$ isofoms of ATP sulphurylase and $APK1$–$APK3$ genes encoding APS kinase were down-regulated after 44 h in the dark, while $ATPS4$ and $APK4$ were not affected (Fig. 5). The three $ATPS$ genes were induced by light, but only $ATPS2$ reached the levels in control plants after 3 h re-illumination. All APK isofoms were up-regulated by light; in particular, $APK1$ and $APK4$ transcript levels were increased very strongly, ~15-fold compared with the levels in dark-adapted plants. The increase led to mRNA levels for $APK3$ and $APK4$ being higher than in control plants, but not for $APK2$ which was most strongly repressed (Fig. 5). The six genes directly associated with the GLS biosynthesis pathway ($SOT16$, $SOT17$, $SOT18$, $MAML$, $CYP79F1$, and $CYP79B2$) all followed the same pattern of down-regulation in the dark and up-regulation after light
The role of light in glucosinolate biosynthesis

induction, with both CYP genes being repressed to the highest degree. The same expression pattern can be seen in regulation of mRNAs for transcription factors MYB28, MYB29, and MYB76, which have been shown to control biosynthesis of aliphatic GLS (Hirai et al., 2007). For the transcription factors associated with indolic GLS (MYB51, MYB34, and MYB122), the results are more varied. MYB51 was down-regulated in the dark, but showed no response to light induction. MYB34 was regulated in an opposite manner, namely it did not respond to dark treatment but was still induced by light. MYB122, on the other hand, was the only gene that showed a strong up-regulation under dark conditions and no response after light induction (Fig. 5). Thus, the genes of GLS metabolism are highly regulated by light but not in a completely coordinated manner.

Having established that the GLS biosynthetic genes are light regulated, tests were conducted to determine whether they may also be under HY5 control (Fig. 6). Although 1-week-old plants were analysed, compared with 3-week-old plants in a previous experiment, in Col-0 most genes showed the same response to re-illumination. The major difference seems to be the regulation of MAM-L, which was repressed by 90 min re-illumination of 1-week-old plants but induced in 3-week-old plants. The regulation of several genes of GLS biosynthesis was strongly affected in the hy5 mutant. The most pronounced difference was the opposite effect of light on the two genes involved in core GLS biosynthesis (CYP79F1 and CYP79B2), which were induced in Col-0 but repressed in hy5 (Fig. 6). Also SOT18 was up-regulated to a much lower degree in hy5 compared with Col-0, whereas the other SOT genes and MAM-L were regulated in the same way in the two genotypes. The regulation of all ATPS isoforms and APK1 and APK3 was not affected by HY5 disruption. However, strikingly, the MYB factors that are associated with aliphatic GLS biosynthesis were more strongly up-regulated in hy5 than in Col-0. The same was true for APK2 and APK4, indicating that HY5 may act as a transcription repressor as well.
as an activator. $MYB51$ was not regulated by light in either genotype, whereas both $MYB34$ and $MYB122$ were induced to a lower degree in $hy5$. Thus, most genes of the GLS biosynthetic network, but not genes of sulphate assimilation involved in the biosynthesis of PAPS, are light regulated in a HY5-dependent manner.

Discussion

Diurnal variation of sulphur metabolism and GLS biosynthesis in Arabidopsis

Plant physiology and the life cycle are under strong control of diurnal and circadian rhythms. For example, more than a third of $Arabidopsis$ genes are under circadian control.
Key genes of the major pathways of primary metabolism, carbon, nitrate, and sulphate assimilation show clear diurnal and/or circadian rhythmicity (Pilgrim et al., 1993; Kopriva et al., 1999; Zeeman et al., 2007). Much less is known about circadian regulation of secondary metabolism, even though a large number of cytochrome P-450 genes were found to be controlled by the clock (Pan et al., 2009). There is, however, evidence for diurnal variation in levels of GLS in field-grown Brassica oleracea plants (Rosa et al., 1994) which was confirmed under controlled conditions (Rosa, 1997). In the results presented here, a variation in GLS content in Arabidopsis grown under control conditions has been detected, with greater accumulation in the day than in the night. This is surprisingly in contrast to the results with B. oleracea, which showed a significant decrease of GLS content during the day both in field and in controlled conditions (Rosa et al., 1994; Rosa, 1997). On the other hand, the GLS levels agree well with the variation in sulphate uptake, APR activity, sulphate reduction rate, and, most importantly, the GLS biosynthesis rate measured in the same plants. The difference compared with B. oleracea may thus be due to the different developmental stages of plants analysed or due to species-specific variation, possibly linked to the different nature of the major herbivores associated with these species. Diurnal rhythms for a large range of secondary compounds involved in plant–herbivore interactions have been described, some showing higher foliar accumulation in the light, but others, importantly for nocturnal insects, more abundant in the night (De Moraes et al., 2001; Kim et al., 2011).

The various components of sulphur metabolism were to a large extent coordinated throughout the 24h day cycle. Only subtle differences were found between, for example, accumulation of glutathione or GLS and their rates of synthesis (Figs 2, 3). This is confirmed by a high level of correlation between individual components, particularly APR activity and incorporation into thiols, with glutathione and GLS levels (Supplementary Table S4 at JXB online). Only the incorporation in proteins shows a very different pattern and only a weak correlation with sulphate uptake. Interestingly, for both GLS and glutathione, the highest metabolite accumulation seems to be achieved before the period of the highest synthesis rate. This may seem contra-intuitive; however, metabolite levels are not dependent solely on the biosynthesis rate but also on the breakdown of the compound. This has been demonstrated, for example, in the apk2 mutant lacking the major isoform of APR, which shows lower flux through sulphate assimilation without affecting glutathione levels or in apk1 apk2 mutants which showed an increased rate of incorporation into GLS despite much lower GLS levels (Mugford et al., 2011). Interestingly, reduced sulphur seems to be utilized first for synthesis of glutathione and GLS and only in later stages incorporated into proteins (Fig. 2). This corresponds to the results of Koprivova et al. (2000) who showed that after resupply of nitrogen to N-starved plants the glutathione pool was filled before proteins. The diurnal variation of APR (Fig. 3C) agrees with a previous report (Kopriva et al., 1999); however, the amplitude of the cycle was much less in the present study. This is probably caused by the difference in light regime between the studies, short days (10h light) in Kopriva et al. (1999) versus long days (16h light) reported here. Thus, although the transcript level of APR2 is under circadian control (Harmer et al., 2000), the control of APR variation also has to include a component dependent on daylength. The daylength also seem to affect the variation in fluxes, as the significant drop at the end of the night (Fig. 2) was not detected in plants grown in short days (Kopriva et al., 1999).

Sulphate uptake showed a diurnal variation, with the highest rate measured in the second half of the day (Fig. 2A). The maximum rate of sulphate uptake seems to follow after the maximal flux through the pathway. The trigger for such regulation thus could be depletion of sulphate due to increased reduction, as the maximum APR activity was measured in the first half of the day. Indeed, low internal sulphate levels in mutants of the sulphate transporter SULTR1;2 and a FIERY1 gene trigger sulphate deficiency responses, which include induction of sulphate transporters (Lee et al., 2012; Matthewman et al., 2012). The gradual increase in sulphate uptake rate during the light period is very similar to the diurnal regulation of nitrate uptake (Lejay et al., 1999). The variation in nitrate uptake can be explained by changes in expression of the nitrate transporters Nrt1 and Nrt2;1 (Lejay et al., 1999). Also the transcripts of the PHT4 group of phosphate transporters undergo circadian regulation, with a maximum during the day (Guo et al., 2008). Whether the same is true for sulphate transporters still has to be established.

GLS biosynthesis is controlled by light

Diurnal regulation is often connected with light regulation. In sulphur metabolism, APR activity and mRNA levels were shown to decrease strongly when plants were kept in continuous darkness and increased rapidly after re-illumination (Kopriva et al., 1999). The present results show that other components of the pathway are also light regulated. With the exception of ATPS4 and APK4, genes encoding the two enzymes necessary for PAPS biosynthesis (ATP sulphotyrase and APS kinase) were down-regulated upon incubation of plants in prolonged darkness. ATPS4 is the major isoform of ATPS in the roots, while APK4 is a minor plastidic form of APS kinase, so that the lack of light regulation is not entirely surprising (Kopriva et al., 2009). The ATPS and APK genes, including APK4 but not ATPS4, were induced upon re-illumination of dark-adapted plants. This regulation is consistent with regulation of APR and shows a well-coordinated response of the whole pathway to changes in light regime.

Similarly coordinated was the regulation of GLS biosynthetic genes (Fig. 5). It has been shown previously that the expression of genes of GLS biosynthesis is well coordinated, for example repressed by sulphur deficiency (Hirai et al., 2005) or induced in apk1 apk2 mutants (Mugford et al., 2009). Similar coordination of the transcript accumulation is seen in plants with modulated expression of the two groups of MYB factors (Gigolashvili et al., 2007a, b, 2008; Sonderby et al., 2007; Malitsky et al., 2008). The MYB factors themselves are regulated in the same way (Hirai et al., 2005; Mugford et al., 2009), so it appears to be the changes...
in the expression of MYB factors driving the regulation of the downstream transcript abundance. This seems to be true for the light regulation of the aliphatic GLS subset of the network, as the biosynthetic genes were regulated in the same way as the genes for MYB28, MYB29, and MYB76 factors. The genes involved in biosynthesis of indolic GLS, CYP79B2 and SOT16, were co-regulated with the other biosynthetic genes; however, the MYB factors responded to light in a different manner. Nevertheless, mRNA for the main indolic MYB factor, MYB51, was reduced in dark-grown plants, resulting in repression of CYP79B2 and SOT16. This decrease was probably not compensated by the presence of MYB34 and MYB122, which were not affected or were even induced by darkness, respectively, which agrees with the finding that disruption of MYB51 severely reduces transcription of genes for biosynthesis of the indolic GLS (Gigolashvili et al., 2007a). On the other hand, MYB34 was induced by re-illumination and shown previously to induce expression of genes of biosynthesis of indolic GLS (Celanza et al., 2005). It seems, therefore, that unlike the aliphatic group of MYBs, the MYB factors controlling indolic GLS biosynthesis have a specific function in light regulation of their target genes.

The effect of light on GLS biosynthesis, however, was not confined to regulation of gene expression. In agreement with the low transcript levels of GLS biosynthetic genes, the total GLS contents were reduced in plants kept in darkness. The decrease in GLS was not as strong as the reduction in mRNA levels, probably since the turnover of GLS is slower. In line with the induction of gene expression, re-illumination induced GLS biosynthesis that was very low in the dark-incubated plants. The down-regulation of GLS biosynthesis in prolonged darkness is consistent with a decrease in the synthesis rate in the night, particularly in the second half (Fig. 2D). The light induction also seems to be similar to that seen during the day; however, it has to be noted that in the first 4h of re-illumination, the GLS biosynthesis rate was still almost 100-fold lower than during the day (cf. Figs 2D and 4). This is similar to the light regulation of the primary sulphate assimilation. The sulphate reduction rate also decreases in prolonged darkness and is induced by light (Lee et al., 2011). The flux during the first 4h of re-illumination (Lee et al., 2011) was ~8-fold lower than the flux during the day determined in this study. This is partly caused by averaging the flux over the 4h experimental period, with initial rates expected to be particularly low because the necessary enzymes need to be synthesized. The lower rate of GLS biosynthesis compared with sulphate reduction presumably reflects the plants’ needs for cysteine for protein biosynthesis and thus represents further evidence that primary and secondary sulphur metabolism are highly coordinated.

HY5 contributes to regulation of GLS synthesis by light

The induction of APR mRNA by light is at least partly dependent on HY5. HY5 also controls the regulation of SULTR1;2, the major sulphate transporter in the roots. Thus, it was intriguing to test whether the pathway of sulphate assimilation is regulated by HY5 coordinately, particularly as the regulation of ATPS1–ATPS3 (Fig. 5) was very similar to light regulation of APR (Lee et al., 2011). This, however, was not the case; ATPS was regulated by light in the same way in Col-0 and the hy5 mutant (Fig. 6). Different mechanisms of regulation between ATPS and APR, despite catalysing the subsequent steps in the pathway, are not surprising. For example, APR is highly induced by sulphate deficiency but ATPS is repressed (Takahashi et al., 1997; Kawashima et al., 2011). Also the mechanisms of this regulation are different. APR is transcriptionally regulated, whereas ATPS is a target of a sulphur limitation-inducible microRNA, miR395, and is thus down-regulated post-transcriptionally (Kawashima et al., 2011). Given the different mechanisms of regulation of APR and ATPS by sulphate deficiency, it is not surprising that the mechanism of their light regulation differs.

On the other hand, many genes of the GLS biosynthesis network are regulated in a HY5-dependent manner and remarkably several of the MYB factors, too (Fig. 6). Again, the aliphatic and indolic MYB groups were regulated differently; whereas all three aliphatic MYB factors were more strongly induced by light in hy5, the light induction of MYB34 and MYB122 was almost abolished in the mutant. Thus, HY5 acts as a repressor of the aliphatic MYB factors and an activator for the two indolic ones. This is consistent with the influence of HY5 on many regulatory networks not through direct binding but through controlling other transcriptional regulators (Zhang et al., 2011). It seems that GLS biosynthesis is another example of such networks, even though the mechanism of HY5 action is less than clear. While the MYB28, MYB29, and MYB76 genes are induced by light to a higher degree in the hy5 mutant than in Col-0, the target genes SOT18 and CYP79F1 are less strongly up-regulated. The hierarchy of HY5 and the MYB factors in regulation of GLS biosynthesis by light thus still needs to be established.

Altogether, these results show that GLS biosynthesis is regulated by light and shows diurnal variation that is well coordinated with general sulphur metabolism. The transcription factor HY5 seems to be involved in regulating the GLS biosynthetic network. These new data complement and expand the available knowledge on the coordination of primary and secondary sulphur metabolism in Arabidopsis.

Supplementary data

Supplementary data are available at JXB online.
Table S1. Primer sequences used for quantitative real-time PCR.
Table S2. Diurnal variations of individual GLS.
Table S3. Light regulation of individual GLS.
Table S4. Correlation analysis of diurnal variations in levels of sulphur-containing metabolites, fluxes, and APR activity.

Acknowledgements

The work of SHs is supported by the Research Council of Norway (project no. 185017/O10). The work of SK is supported by British Biotechnology and Biological Sciences Research Council (BBSRC).

in the leaves and roots of cabbage seedlings in two constant
1997. Daily variation in glucosinolate concentrations
Rosa EAS.
Trends in Plant Science
Pruneda-Paz JL, Kay SA.
2010. An expanding universe of circadian
23, 349–364.
Arabidopsis
Pilgrim ML, Caspar T, Quail PH, McClung CR.
Plant Molecular Biology 23, 349–364.
Pruneda-Paz JL, Kay SA.
2010. An expanding universe of circadian
Rosa EAS. 1997. Daily variation in glucosinolate concentrations
in the leaves and roots of cabbage seedlings in two constant
temperature regimes. Journal of the Science of Food and Agriculture
73, 364–368.
Rosa EAS, Heaney RK, Rego FC, Fenwick GR. 1994. The
variation of glucosinolate concentration during a single day in young
plants of Brassica oleracea var. Acephala and Capitata. Journal of the
Science of Food and Agriculture 66, 457–463.
Schuster J, Knill T, Reicheit M, Gershzenon J, Binder S.
2006. BRANCHED-CHAIN AMINOTRANSFERASE4 is part of the
chain elongation pathway in the biosynthesis of methionine-derived
glucosinolates in Arabidopsis. The Plant Cell 18, 2664–2679.
Sønderby IE, Geu-Flores F, Halkier BA. 2010. Biosynthesis of
glucosinolates—gene discovery and beyond. Trends in Plant Science
15, 283–290.
Sønderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA,
Kliebenstein DJ. 2007. A systems biology approach identifies a
R2R3 MYB gene subfamily with distinct and overlapping functions in
Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T,
Engler JD, Engler G, VanMontagu M, Saito K. 1997. Regulation of
sulfur assimilation in higher plants: a sulfate transporter induced in
sulfate-starved roots plays a central role in Arabidopsis thaliana.
Proceedings of the National Academy of Sciences, USA 94,
11102–11107.
Traka M, Mithen R. 2009. Glucosinolates, isothiocyanates and
Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A,
Amtmann A, Armengaud P. 2010. Potassium deficiency induces the
biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana.
BMC Plant Biology 10, 170.
Neuenschwander U, Suter M, Brunold C. 1991. Regulation of
sulfate assimilation by light and O-acetyl-L-serine in Lemna minor L.
Plant Physiology 97, 253–258.
1997. Light-dependent modulation of foliar glutathione synthesis and
associated amino acid metabolism in poplar overexpressing
Omirov MD, Papadopoulou KK, Papastyanianou I, Constantinou M, Karpouzas DG, Asimakopoulos I, Ehaltios C. 2009. Impact of
nitrogen and sulfur fertilization on the composition of glucosinolates in
relation to sulfate assimilation in different plant organs of broccoli.
Journal of Agricultural and Food Chemistry 57, 9408–9417.
Pan YH, Michael TP, Hudson ME, Kay SA, Chory J, Schuler MA. 2009. Cytochrome P450 monoxygenases as reporters for circadian-
Passera C, Ghisi R, Ferretti M. 1989. Light-activation of ATP-
sulfurylase in leaves and chloroplasts of Zea mays. Photosynthetica
23, 166–172.
Pilgrim ML, Caspar T, Quail PH, McClung CR. 1993. Circadian
light-regulated expression of nitrate reductase in Arabidopsis.
Plant Molecular Biology 23, 349–364.
Pruneda-Paz JL, Kay SA. 2010. An expanding universe of circadian
Rosa EAS. 1997. Daily variation in glucosinolate concentrations
in the leaves and roots of cabbage seedlings in two constant
Kopriva S.
2008. The transcript and metabolite networks that involve both transcriptional and post-transcriptional