Experimental and bioinformatic characterization of a recombinant polygalacturonase-inhibitor protein from pearl millet and its interaction with fungal polygalacturonases

S. Ashok Prabhu1,2, Ratna Singh2, Stephan Kolkenbrock2,*, Neerakkal Sujeeth3,†, Nour Eddine El Gueddari2, Bruno M. Moerschbacher2, Ramachandra K. Kini1,‡ and Martin Wagenknecht2

1 Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore-570 006, Karnataka, India
2 Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster, Germany
3 Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands

* Present address: Evocatal GmbH, Alfred-Nobel-Str. 10, 40789 Monheim am Rhein, Germany.
† Present address: Bioatlantis Ltd, Kerry Technology Park, Tralee, Ireland.
‡ To whom correspondence should be addressed. E-mail: krk@appbot.uni-mysore.ac.in

Received 11 December 2013; Revised 12 May 2014; Accepted 27 May 2014

Abstract

Polygalacturonases (PGs) are hydrolytic enzymes employed by several phytopathogens to weaken the plant cell wall by degrading homopolymalacturonan, a major constituent of pectin. Plants fight back by employing polygalacturonase-inhibitor proteins (PGIPs). The present study compared the inhibition potential of pearl millet PGIP (Pennisetum glaucum; PglPGIP1) with the known inhibition of Phaseolus vulgaris PGIP (PvPGIP2) against two PGs, the PG-II isoform from Aspergillus niger (AnPGII) and the PG-III isoform from Fusarium moniliforme (FmPGIII). The key rationale was to elucidate the relationship between the extent of sequence similarity of the PGIPs and the corresponding PG inhibition potential. First, a pearl millet pgip gene (Pglpgip1) was isolated and phylogenetically placed among monocot PGIPs alongside foxtail millet (Setaria italica). Upstream sequence analysis of Pglpgip1 identified important cis-elements responsive to light, plant stress hormones, and anoxic stress. PglPGIP1, heterologously produced in Escherichia coli, partially inhibited AnPGII non-competitively with a pH optimum between 4.0 and 4.5, and showed no inhibition against FmPGIII. Docking analysis showed that the concave surface of PglPGIP1 interacted strongly with the N-terminal region of AnPGII away from the active site, whereas it weakly interacted with the C-terminus of FmPGIII. Interestingly, PglPGIP1 and PvPGIP2 employed similar motif regions with few identical amino acids for interaction with AnPGII at non-substrate-binding sites; however, they engaged different regions of AnPGII. Computational mutagenesis predicted D126 (PglPGIP1)–K39 (AnPGII) to be the most significant binding contact in the PglPGIP1–AnPGII complex. Such protein–protein interaction studies are crucial in the future generation of designer host proteins for improved resistance against ever-evolving pathogen virulence factors.

Key words: Computational mutagenesis, electrostatic surface potential, inhibition studies, pearl millet, Phaseolus vulgaris, PGIPs, PGs, protein modelling and docking.
Introduction

Pectin, a galacturonic acid-rich complex polysaccharide found in all plant cell walls (CWs), is composed of homogalacturonan (HG), xylogalacturonan, apio galacturonan, rhamnogalacturonan I, and rhamnogalacturonan II (Vorwerk et al., 2004). HG, a linear homopolymer of α-1,4-linked β-galactopyranosyluronic acid with varying extents of methylation and acetylation, is the most abundant component (Mohnen, 2008). Phytopathogens are known to produce endo- and exo-polypolygalacturonases (PGs) that can breakdown HG (Van den Brink and De Vries, 2011). As a counter stratagem, plants employ polygalacturonase-inhibitor proteins (PGIPs) to modulate PG activity leading to an accumulation of elicitor-active oligogalacturonides (De Lorenzo et al., 2001). PGIPs are CW-bound glycoproteins belonging to the extracytoplasmic leucine-rich repeat (LRR) family of proteins (Shanmugam, 2005). PGIPs are very diverse in their PG-inhibition specificity and potential with varying degrees of inhibition (Gomathi and Gnanamanickam, 2004).

PG-PGIP complexes are considered a model protein–protein interaction system in the backdrop of plant–pathogen interactions (Misas-Villamil and Van der Hoorn, 2008). Although three-dimensional structures of many PGs have been elucidated to date (Pickersgill et al., 1998; Federici et al., 1999; Bonivento et al., 2008), the only PGIP whose crystal structure has been solved is that of PvPGIP2 from Phaseolus vulgaris (Di Matteo et al., 2003). Most of the data available on the PG–PGIP interactions has been a result of studies involving PvPGIP2. Previous studies employed targeted mutation of pg and pgip genes, and investigated the in vitro inhibition behaviour of the protein variants synthesized to identify the amino acid residues involved in the protein–protein interactions (Leckie et al., 1999; Mattei et al., 2001; Raiola et al., 2008). Amide-exchange mass spectrometry in combination with protease protection and fluorescence spectrometric analysis was employed to deduce the amino acids of AnPGII, a PG isoform II from Aspergillus niger, required for interaction with PvPGIP2 (King et al., 2002). The availability of advanced bioinformatic tools for protein homology modelling and docking have been exploited in in-depth analysis of PG–PGIP complexes in silico and found to be in conformity with the experimental results (Lim et al., 2009; Maulik et al., 2009).

In contrast to the magnitude of literature available on dicot PGIPs, information available in case of monocots is meagre. Although PGIPs from wheat and rice have been tested for inhibition against various PGs (Jang et al., 2003; Kemp et al., 2003; Janni et al., 2006, 2013), no efforts have gone into understanding their mode of inhibition and the underlying structural basis of their interaction with PGs. In addition, no attempt has been made towards characterization of PGIPs from millets, small-grained gramineous monocots. Pearl millet [Pennisetum glaucum (L.) R. Br.; synonym: Cenchrus americanus (L.) Morrone], is among the most important cereal crops grown in the semi-arid tropical regions of Africa and the Indian subcontinent (Sehgal et al., 2012).

In the present study, the gene encoding pearl millet PGIP was isolated and expressed heterologously as a maltose-binding protein (MBP) fusion in Escherichia coli. The purified recombinant fusion protein was employed in in vitro inhibition studies against two fungal PGs, AnPGII and FmPGIII (PG isoform III from Fusarium moniliforme isolate PD). PvPGIP2, the most wide-spectrum and potent inhibitor of fungal PGs (Farina et al., 2009), has been shown to inhibit AnPGII (Stotz et al., 2000) and is reported to be ineffective against FmPGIII (Sella et al., 2004). A study of the inhibition profile of pearl millet PGIP against the same two PGs was carried out to elucidate the relationship between the extent of sequence similarity and the corresponding ability to inhibit PG. Furthermore, in the present study, in silico protein modelling, docking, and mutation analyses were carried out to explain the in vitro results, gain an understanding of the underlying structural basis of interaction, and predict the putative amino acids involved. To the best of our knowledge, this is the first report on the production of recombinant PGIP from millets and exploration of its inhibitory potential.

Materials and methods

Plant material

Seeds of pearl millet (P. glaucum) cultivar IP18296, obtained from the International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India, were used in this study. The seeds were germinated on moist germination sheets; 2-d-old seedlings were harvested and stored at –80 °C till further use.

Isolation of nucleic acids

Total RNA and genomic DNA were extracted from 2-d-old pearl millet coleoptiles using a Total Plant RNA Isolation kit (Sigma) and a GeneJET™ Plant Genomic DNA Purification Mini kit (Thermo Scientific), respectively, as per the manufacturer’s instructions.

Isolation and cloning of partial pgip genes

The cDNA was prepared by means of a two-step AMV RT-PCR kit (Qiagen) as per the manufacturer’s instructions, using total RNA from pearl millet coleoptiles as template. For PCR amplification of the partial pgip genes, primers Par1For (5′-TCGGACCTCCTCTCTCACTC-3′)/Par1Rev (5′-ATGCCGCCGTAGATGGCCTTG-3′) and Par2For (5′-TGGCGACTGTA CGACGTCCACTG-3′)/Par2Rev (5′-TGGCCACCTGCCGCGGGATG-3′) were designed based on the consensus region obtained by alignment of known monocot pgip gene sequences (GenBank accession nos AM180652-AM180657, NP_001147231, and XP_002439099) (Clone Manager Professional 9, Sci-Ed software). The amplification using Taq DNA polymerase (Merck Biosciences) resulted in ~400 bp (Pgpgip1p) and ~500 bp (Pgpgip2p) bands, respectively. They were gel purified using a QIAquick Gel Extraction kit (Qiagen), cloned in pTZ57R/T (InSta clone PCR Cloning kit; Fermentas), and sequenced at Eurofins MWG Operon, Germany. Nucleotide BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) searches were performed using default parameters to ascertain the gene identity.

Southern blot analysis

Pearl millet genomic DNA (10 μg) was digested with restriction endonucleases separately: ApoI (New England Biolabs, Germany),
Ahdl, BamHI, EcoRI, HindIII, KpnI, MscI, Nael,SacI, XbaI, and XhoI (Thermo Scientific) and separated electrophoretically on a 0.7% agarose gel as described by Sambrook and Russell (2001). The DNA was transferred to a positively charged nylon membrane (Roche) as per the manufacturer’s instructions. As a hybridization probe, PCR-amplified Pgpgip1 was random-prime labelled using a DIG High Prime DNA Labeling and Detection Starter kit II (Roche). Pre-hybridization, hybridization, and chemiluminescence detection were performed as described previously (Wagenknecht and Meinhardt, 2011). Hybridization was carried out at 63 °C.

Inverse PCR
Pearl millet genomic DNA (3 µg) was digested using Apol (New England Biolabs) and the digest mix was cleaned up using a NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel). A 500 ng aliquot of the cleaned-up digest was self-ligated using a Rapid DNA Ligation kit (Thermo Scientific).

The following two sets of inverse PCR primers, Inv1A (5'-AC GCTTCACTTCAACCTTCTC-3')/Inv1B (5'-TTTGTCGACAGCCT AGGGATG-3') and Inv2A (5'-AGAGGTAGATCTGTGCGGCC-3')/Inv2B (5'-CCGATTTCGC CGGAC-3') were designed based on the Pgpgip1p and Pgpgip2p sequences, respectively. THE PCR was carried out using Phusion® Hot Start High-Fidelity DNA polymerase (Finnzymes) with 30 ng of self-ligated DNA as template. To the blunt-end PCR product of ~2 kb obtained with Inv1A/Inv1B, an ‘A’ overhang was attached using T4 DNA polymerase (Thermo Scientific). It was further cloned in the pGEM-T Easy vector (Promega) and sequenced at Eurofins MWG Operon, Germany.

Sequence assembly
Sequence assembly (Clone Manager Professional 9, Sci-Ed software) was carried out using sequences obtained by inverse PCR and the Pgpgip1p sequence to determine the open reading frame (ORF) (Pgpgip1). Nucleotide BLAST searches were performed to ascertain the gene identity.

Bioinformatic analysis of Pgpgip1
The deduced amino acid sequence of Pgpgip1 (PgPGIP1) was further subjected to various in silico analyses using different bioinformatics tools: the signal peptide was identified using SignalP 4.1 (Petersen et al., 2011) and the targeted protein localization was predicted using WoLF PSORT (Nakat and Horton, 1999). The assignment of domains in PgPGIP1 was performed based on the NCBI conserved domain search analysis (Marchler-Bauer et al., 2011) and on a comparative amino acid sequence alignment with PtgPGIP2 domain architecture (Di Matteo et al., 2003) using the T-Coffee tool (Notredame et al., 2000). The putative N-glycosylation sites were determined using NetNGly 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc/).

The PgPGIP1 and other known monocot and dicot PGIP sequences (protein accession numbers are summarized in Supplementary Table S1 at JXB online) from the National Center for Biotechnology Information database were aligned with MUSCLE version 3.7 (Edgar et al., 2004) and gaps and/or poorly aligned regions were removed with Gblocks version 0.91b (Talavera and Castresana, 2007). A phylogenetic tree was generated using the maximum-likelihood method employed in PhyML version 3.0 aLRT (Anisimova and Gascuel, 2006) on the http://www.phylogeny.fr platform (Dereeper et al., 2008) using default settings. Internal branch consistency was appraised using the bootstrapping method with 100 bootstrap replicates. The tree was rendered using TreeDyn version 198.3 (Chevenet et al., 2006).

The nucleotide sequence upstream of the ORF was submitted to PlantCARE (Lescot et al., 2002) to determine the presence of plant-specific cis-elements.

Construction of the PgPGIP1 and FmPGIP1 expression plasmids
The multistep cloning strategy involved in construction of the PgPGIP1 expression plasmid (pET-22b::MBP–IEGR–PgPGIP1–6×His-Strep-tag® II, where IEGR is the factor Xa protease cleavage site and 6×His is a hexa-histidine tag) (construct E), vector control (pET-22b::MBP–IEGR–6×His-Strep-tag® II) (construct F) and the FmPGIII expression (pET-22b::FmPGIII-Strep-tag® II) (construct G) plasmids have been detailed in Supplementary Table S2 at JXB online (Supplementary Fig. S1 at JXB online provides a pictorial representation of the constructs). Briefly, the Pgpgip1p coding sequence was initially cloned in pET-22b(+) in frame with the vector-encoded 6×His sequence. Then, maleE (MBP-encoding gene), followed by a factor Xa protease recognition site was cloned upstream of pgip, and a Strep-tag® II-encoding sequence was cloned downstream of 6×His, allowing the synthesis of the fusion protein MBP–IEGR–PgPGIP1–6×His–Strep-tag® II. The vector control was generated by eliminating the pgip sequence from construct E. FmPGIII was PCR amplified from the pGEMT-FmPGIIII construct and subcloned upstream of the Strep-tag® II in pET22b(+)-Strep-tag® II, allowing the synthesis of the FmPGIII-Strep II fusion protein. DNA manipulations such as agarose gel electrophoresis and bacterial transformation were carried out using standard protocols (Sambrook and Russell, 2001). Restriction digestion (New England Biolabs), plasmid isolation (InnuPREP Plasmid Mini/Midi kit; Analytik Jena Biosciences), ligation (Rapid DNA Ligation kit; Thermo Scientific), and gel extraction (NucleoSpin® Gel and PCR Clean-up kit; Macherey-Nagel) were carried out using kits according to the manufacturer’s instructions.

Production and purification of PgPGIP1 and FmPGII fusion proteins
Competent E. coli SHUFFLE® T7 Express [pLysSRARE2] was transformed with the above-described constructs. Expression was carried out in 2 L batch cultures incubated for 24 h at 26 °C using auto-induction solutions ‘M’ and ‘5052’ as described by Studier (2005). The total protein was extracted by a freeze–thaw cycle inducing the lysozyme-mediated autolysis of the cells. Additionally, sonication on ice at 40% amplitude, three times for 1 min each (10 s on/10 s off cycles) on a Branson Digital Sonifier 250-D (G. Heinemann Ultraschall- und Labortechnik, Germany) was performed. The soluble protein was obtained as supernatant by centrifugation of the cell lysate at 40,000 g for 30 min at 4 °C.

All purification steps were carried out at 10 °C on a FPLC system (AKTAExplorer; GE Healthcare, Freiburg, Germany). A flow rate of 1 ml min⁻¹ was maintained throughout. The protein peaks were pooled appropriately after each purification step and concentrated using centrifugal concentrators (Vivaspin™20; Sartorius). The intermediate buffer exchanges and desalting steps were carried out using 5 ml HiTrap columns (GE Healthcare).

The fusion protein MBP–IEGR–PgPGIP1–6×His–Strep-tag® II (rPgPGIP1) was purified in two steps. In the first step, Strep-tag® II-based affinity purification was performed on a 1 ml Strep-Tactin Superflow Plus Cartridge (Qiagen) using 50 mM NaH₂PO₄, 300 mM NaCl (pH 8.0) as loading/wash buffer and loading buffer containing 2.5 mM β-desthiobiotin (pH 8.0; IBA Lifesciences) as elution buffer according to the manufacturer’s instructions. The desalted eluates were reconstituted in cation-exchange column loading/wash buffer (buffer A: 50 mM NaH₂PO₄, pH 8.0) and subjected to purification on a 1 ml RESOURCE Q Cartridge (GE Healthcare). The matrix-bound proteins were eluted (buffer B: 50 mM NaH₂PO₄, 1 M NaCl, pH 8.0) by applying a stepwise NaCl gradient [0–22% (buffer A to B) in 15 min, held for 2 min; 22–24% in 5 min, held for 2 min; 24–28% in 5 min, held for 2 min; 28–100% in 20 min] to resolve the desired protein from contaminating proteins. The rPgPGIP1 eluted at 22–24% NaCl held for 5 min.

Recombinant FmPGIII-Strep-tag® II (rFmPGIII) and the vector control MBP–IEGR–6×His–Strep-tag® II (rVC) were purified.
by single-step affinity purification on a Strept-Tactin Superflow Plus Cartridge as described above.

Protein production and purification were monitored by immunoblot analysis of extracted proteins using Strept-Tactin–horseradish peroxidase conjugate as probe (IBA Lifesciences). The chemiluminescence detection of blots was carried out as described previously (Wagenknecht and Meinhardt, 2011). The protein concentration of different samples was determined using a BCA protein assay kit (Pierce) with BSA as the standard.

PGIP activity assays

ArnPGII (5 ng; kind gift from Mr. Madhusudhan, University of Mysore, Mysore, India) and $t_{Fm}Pn$PGIII (36 ng) were incubated separately in a reaction volume of 200 ml with 0.1 mg ml$^{-1}$ of polygalacturonic acid substrate (Sigma) at 30 °C in 50 mM sodium acetate buffer (pH 4.2 and 4.6, respectively). PG activity was determined by reducing end-group analysis according to Anthon and Barrett (2002). PGIP activity was assayed by measuring the activity of the PGs pre-incubated with t_{Pg}PGIP1 for 20 min at 30 °C. PGIP activity was expressed as the percentage reduction in the number of reducing ends (in µkat mg$^{-1}$ of protein) liberated by PGs in the presence and absence of PGIP. rVC served as the control.

The effect of various parameters such as inhibitor concentration (0.316–12.64 nM t_{Pg}PGIP1), substrate concentrations (0.025–0.25 mg ml$^{-1}$) and pH (3.5, 4.0, 4.5, and 5.0) on enzyme inhibition was determined. The kinetic parameters were computed by fitting the Michaelis–Menten equation on initial rate experimental data by non-linear fitting using OriginPro7 (Originlab). In separate experiments, the temperature and pH stability of t_{Pg}PGIP1 were studied by pre-incubating them separately for 1 h at temperatures ranging from 20 to 100 °C, and for 16 h at pH values of 2.0–11.0 at 4 °C, respectively, after which they were reconstituted in the appropriate assay buffer and their inhibition potential was assayed at 30 °C. All experiments were performed twice each in triplicate. The data of a representative experiment was subjected to Tukey’s honestly significantly different (HSD) test following analysis of variance at P<0.05.

Homology modelling of PglPGIP1 and FmPGII

The initial homology models of P_gPGIP1 and F_mPGII were generated using the MODELLER 9.12 package (Eswar et al., 2006), with the X-ray crystallographic structures of P_vPGIP2 (Protein Data Bank identity (PDB ID): 1OOG) and endo-polygalacturonase I (F_mPGI) from *F. moniliforme* isolate FC-10 (PDB ID: 1HG8) serving as templates, respectively. The quality of the generated models was assessed using the Verify3D server (Eisenberg et al., 1997). Post-refinement of structural models was carried out using the KoBoMIN server (Rodrigues et al., 2012), and further geometric accuracy of the constructed models was evaluated using MolProbity 4.02b (Davis et al., 2007). The obtained models were further energy minimized using GROMACS 3.0 (Lindahl and Hess, 2001) with a GROMOS96-53a6 force field to remove geometric inaccuracies and steric clashes with 1000 steepest descent steps terminated at the convergence of maximum force <1000 kJ mol$^{-1}$.

Electrostatic charge distribution analysis

The adaptive Poisson–Boltzmann Solver program (Unni et al., 2011) was employed to calculate the electrostatic distribution of the following individual proteins and complexes: P_gPGIP1, ArnPGII, F_mPGII, P_gPGIP1–ArnPGII and P_gPGIP1–F_mPGII. PyMOL version 1.2r3pre (PyMOL Molecular Graphics System; Schrödinger, LLC) was used for the visualization of the surface representation.

Docking and energy minimization

To obtain accurate conformations of P_gPGIP1–ArnPGII and P_gPGIP1–F_mPGII protein complexes, the docking simulation was carried out in two steps; in the first step, the protein pairs were subjected to GRAMM-X (Tovegirechko and Vakser, 2006) for the initial global search of conformation of the two proteins in complex form and subsequently, such output was resubmitted to the Rosetta 3.4 server (Lyskov and Gray, 2008) for further optimization of docking results based on rigid body orientation and side-chain conformation. The three-dimensional structure of A_nPGII (PDB ID: 1CZF) used in the present docking study was retrieved from the PDB, Research Collaboratory for Structural Bioinformatics.

For energy minimization, molecular dynamics simulations at room temperature were carried out using GROMACS 3.0 (Lindahl and Hess, 2001) with a GROMOS96-53a6 force field for bound P_gPGIP1–ArnPGII and P_gPGIP1–F_mPGII complexes. Protein in complexed form was immersed in a cubic waterbox of space water model with box edges 1 Å from the complexed protein periphery. The overall electric charge of the system was compensated. The system was pre-equilibrated, which involved minimization using the steepest descent method. A molecular dynamics simulation was performed at constant volume and temperature for 1 ns. Snapshots were collected every 2 ps.

Protein–protein interaction map

Hydrogen bond, ionic, and hydrophobic interactions across protein–protein interfaces were determined by the Protein Interaction Calculator (PIC) server (Tina et al., 2007). Interactions were visualized and analyzed using molecular modelling programs PyMOL 1.6 and CHIMERA 1.8 (Pettersen et al., 2004).

Computational mutagenesis

Computational alanine-scanning mutagenesis was carried out using the Robetta alanine-scanning server (Kim et al., 2004) in order to identify the energetically favourable amino acids at the interface that are important in the stability of the P_gPGIP1–ArnPGII complex. This program scans the protein–protein interface for the ‘hotspots’ and evaluates the changes in the binding free energy of the complex by replacing each of the interface residue with alanine at the binding region.

The relative free energy of binding ($\Delta G_{binding}$) was calculated as follows:

$$\Delta G_{binding} = G_{binding_wild_type} - G_{binding_mutant}$$

Positive values of $\Delta G_{binding}$ higher than 1 kcal mol$^{-1}$ indicate that replacement by alanine is predicted to destabilize the complex.

Results and discussion

Isolation of pearl millet pgip genes

Initially, two partial pgip sequences: P_gpgip1p (407 bp, GenBank accession no. GU474543.1) and P_gpgip2p (497 bp, GenBank accession no. JQ425039), which shared a nucleotide sequence identity of 84%, were isolated from pearl millet using primers based on the consensus sequence of known monocot pgips. PGIPs from the same plant, irrespective of whether they are of monocot or dicot origin, share significant identity (Favaron et al., 2000; Ferrari et al., 2003; Janni et al., 2006).

An in vivo PCR approach was employed for the isolation of the complete pgip coding sequence. For this, a Southern blot analysis was performed to identify appropriate restriction endonucleases for template preparation. About 10 enzymes were tested; however, they did not or only partially cut the...
Characterization of a PGIP from pearl millet

Bioinformatic analysis of Pglpgip1

The bioinformatic characterization of Pglpgip1 was carried out to understand the domain architecture of the deduced protein, its phylogenetic position among known PGIPs, and nature of cis-regulatory motifs upstream of the ORF. Only 130 (37%) amino acids were identical between PglPGIP1 and PvpPGIP2; however, they were found to have a global alignment score of 95 (Supplementary Fig. S4 at JXB online). A putative signal peptide of 27 aa was identified (Fig. 1) for possible apoplastic localization (82% affirmative), which is crucial in plant defence against the invading microbial PGS encountered at the CW (Di Matteo et al., 2003). A central domain was detected in PglPGIP1, which contained 10 imperfect LRRs of an ~24 aa residue consensus sequence characteristic for PGIPs, xLxLxx. NxxLxx_GxxIPxxLxxLxxL (Di Matteo et al., 2003). The pearl millet PGIP also contained two putative β-sheets, B1 and B2, and also the 3₁₀-helix similar to PvpPGIP2. The central LRR domain has been shown in PvpPGIP2 to fold into a right-handed superhelix and is connected to the B1-sheet through loops or β-turns. The B2-sheet is a unique feature not found in other LRR proteins (Di Matteo et al., 2003). In PglPGIP1, the central domain was flanked by short N- and C- terminal regions with conserved C residues as reported for PvpPGIP2, known to be involved in disulfide linkages necessary for the structural integrity of the protein (Di Matteo et al., 2003). Seven putative N-glycosylation sites were predicted by NetNGly1.0 with a consensus sequence of N-x-S/T (where x is any amino acid except P), for N-glycosylation. Of the seven sites, positions 85 and 297 were conserved in all four rice PGIPs (OspPGIP1-4) and both wheat PGIPs reported previously (Janni et al., 2006). N297 was the lone residue to be conserved even in PvpPGIP2, whose glycosylation positions have been experimentally mapped (Mattei et al., 2001). N288 was conserved in all rice and wheat PGIPs except in OspPGIP1. N258 was conserved in OspPGIP2 and OspPGIP3, whereas N177 was conserved only in the latter.

Phylogenetic analysis of the deduced protein, PglPGIP1, and other available monocot and dicot PGIP sequences using the maximum-likelihood approach clearly showed monocot and dicot PGIPs forming separate clusters (Fig. 2). PglPGIP1, was placed among the monocot PGIPs but the millet PGIPs...
formed a separate branch. PgLPGIP1 was found to share from 50% to just over 60% identity with most monocot PGIPs. The identity with dicots was, however, between 35 and 47%.

Earlier evaluation of cis-regulatory elements of various plant pgip genes in silico detected elements responsive to light, wounding, salicylic acid, abscisic acid, fungal elicitors, ethylene, and various other motifs with unknown functions (Kumar et al., 2009; Lu et al., 2012). The 1078 bp sequence upstream of the Pglpgip1 ORF was analysed in silico for the identification of cis-elements and showed the presence of numerous important regulatory motifs. The consensus motif sequences and their respective functions retrieved from PlantCARE have been summarized in Supplementary Table S3 at JXB online (Supplementary Fig. S5 at JXB online shows the position of the cis-elements in the upstream sequence). The presence of elements responsive to plant stress hormones (e.g. ACGT-containing abscisic acid response element, TC-rich repeats, TCA element, CGTCA motif, ethylene response elements) and anoxic stress (anaerobic response element) indicates a role for PGIP in pearl millet’s response to biotic and abiotic stress. In bean cultivar ‘Pinto’, PvPpgip2 was found to be upregulated in response to wounding, oligogalacturonides, glucan derived from Phytophthora megasperma f. sp. glycinea and salicylic acid (D’Ovidio et al., 2004). A slightly higher accumulation of poplar Pdpigip4 transcripts was observed over that of Pdpigip2 transcripts at 1 and 4h after treatment with salicylic acid and H₂O₂, respectively (Cheng et al., 2008). However, similar expression levels were reported for both pgip genes in case of methyl jasmonate treatment. In Chinese cabbage, pgip expression levels were increased in response to abiotic stresses such as water-logging, salt, cold treatment, and mechanical wounding (Ahsan et al., 2005). Significant

Fig. 2. Phylogenetic tree showing the affiliation of PgLPGIP1 among other known monocot and dicot PGIPs. The deduced amino acid sequences of PgLPGIP1 and other known PGIP sequences obtained from GenBank were aligned using MUSCLE version 3.7, curated using the Gblocks version 0.91b, and then submitted to PhyML version 3.0 aLRT for phylogenetic analysis, and the tree was rendered using TreeDyn version 198.3. The position of PgLPGIP1 is highlighted by a box. The branch support values are represented at branch points and the branch length scale is shown below the tree. The protein accession numbers are summarized in Supplementary Table S1.
numbers of elements were found to be responsive to light (e.g. Box 1, G-Box, Specificity protein 1). The effect of light on transcription as well as post-transcriptional processes in plant growth and development has been reported previously (Gilmartin et al., 1990). Plant defence genes have also been proposed to be circadian regulated, and biotic stress responses have been shown to be modulated by a light-sensing network in *Arabidopsis* (Mullineaux et al., 2000; Genoud et al., 2002; Wang et al., 2011). A plant’s ability to acclimatize to changes in quality and intensity of light has been found to be critical in mounting an effective response against invading pathogens (Kulheim et al., 2002). Given the presence of numerous light-responsive elements in *Pglpgip1* and other known *pgip* genes, and the fact that *pgip* genes are known to be induced by both biotic and abiotic stresses, the relationship between light-induced *pgip* expression and plant defence makes perfect sense.

Production of recombinant PglPGIP1 and FmPGIII

*rPg*PGIP1 was produced in order to assess its potential inhibition against fungal PGs (*FmPGIII* and *AnPGII*). Our initial attempts to synthesize these proteins in eukaryotic expression systems such as *Nicotiana benthamiana* and *Pichia pastoris* were not successful (data not shown). Furthermore, *PglPGIP1* production in *E. coli* faced protein solubility and purification problems. Hence, several solubility and affinity purification fusion tags were tried out for the soluble production and purification of *PglPGIP1* (data not shown). The N-terminal MBP and C-terminal Strep-tag® II combination of solubility and affinity purification tags, respectively, were found to be optimal for its expression in *E. coli* SHUffeII® T7 Express (pLysSRARE2) and efficient purification. *FmPGIII* expression faced no solubility issues, and hence only a C-terminal Strep-tag® II was incorporated for purification purpose. Expression with pET-22b::MBP-IEGR-*PglPGIP1-6xHis-Strep-tag® II in *E. coli* SHUffeII® T7 Express (pLysSRARE2) and purification of the resulting recombinant fusion protein by coupling an anion-exchange column downstream of Strep-Tactin Superflow Plus affinity matrix resulted in a homogenous pure protein, *rPg*PGIP1, of 79.1 kDa (Supplementary Fig. S6A at *JXB* online). The two-step purification resulted in 505- and 1323-fold purification with protein recoveries of 37 and 33%, respectively.

The single-step affinity purification of *FmPGIII* and *rVC* on a Strep-Tactin Superflow Plus Cartridge resulted in relatively homogenous pure proteins of 37.9 kDa (Supplementary Fig. S6A) and 46.3 kDa (Supplementary Fig. S6B), respectively. Single-step purification of *FmPGIII* resulted in 320-fold enrichment with a protein recovery of 72%.

Immunoblot analysis confirmed the synthesis and successful purification of the recombinant proteins (Supplementary Fig. S6). In addition, tandem mass spectrometric analysis of trypsin-digested peptides of purified recombinant proteins was carried out. Subsequent correlation of the resulting spectral data using SEQUEST algorithm (Eng et al., 2008) against a database containing information on theoretical digest of the respective fusion proteins confirmed their identity (data not shown).

In *vitro* inhibition profile of *rPgPGIP1*

The *in vitro* inhibition of *rPgPGIP1* against *AnPGII* and *rFmPGIII* was carried out in order to compare it with the known inhibition profile of *PvPGIP2* against the same two PGs. Intact MBP–*PgLPGIP1* fusion protein was employed in the inhibition studies as protease factor Xa digestion for cleaving off MBP resulted in random degradation of protein (data not shown). *rPgPGIP1* displayed a differential activity profile against the fungal PGs used in the present study, with only a partial inhibition observed against *AnPGII* (Fig. 3A) and no inhibition against *rFmPGIII*. Hence, the effect of various parameters on *AnPGII* inhibition by *rPgPGIP1* has been presented below. The *rVC*, as expected, showed no inhibition of either enzyme. Possibly, the lack of glycosylation of *PglPGIP1* produced in *E. coli* could be a factor responsible for the limited inhibition observed.

PvPGIP2 has been reported to competitively inhibit *FmPGI* by binding at its substrate-binding site (Leckie et al., 1999), whereas *FmPGIII*, which shares 91.7% amino acid identity with *FmPGI*, evaded inhibition by the same PGIP (Sella et al., 2004). Although a structural explanation is lacking, an attempt was made to explain the observed effect using amino acid sequence alignment. The chief difference between the *FmPGIII* and *FmPGI* consist of one short stretch of substitutions in the N-terminal region and five substitutions, two of which are close to the active site. These polymorphic sites may have led to subtle changes in the protein structure, thus preventing the accessibility of the substrate-binding site of *FmPGIII* for interaction with *PvPGIP2* (Sella et al., 2004). As mentioned earlier, although sharing 37% amino acid identity, the global alignment score of *PglPGIP1* and *PvPGIP2* is very high due to the degeneracy of residues in the LRR domain. Hence, lack of potency of *PglPGIP1* against *FmPGIII* is understandable. Assessment of the *PglPGIP1–FmPGI* interaction could further be useful for a deeper comparative profiling of inhibition with *PvPGIP2*.

Effect of inhibitor concentration on *AnPGII* activity

No inhibition was observed at the lowest *rPgPGIP1* concentration tested, but a gradual increase in inhibition was observed with increasing inhibitor concentration (Fig. 3A). A significant increase in inhibition was observed at *rPgPGII* concentrations of 0.632, 1.26, and 3.16 nM with inhibition being 7, 16, and 26%, respectively. However, a further increase of the *rPgPGII* concentration (up to 6.32 and 12.64 nM) resulted in marginally increased inhibition reaching a value of 28% at most. PGIP concentrations of 3.16 nM and/or 1.26 nM were used in further studies.

Although the pattern of inhibition of both *rPgPGIP1* and *PvPGIP2* against the same two PGs was similar, bean PGIP showed complete inhibition against *AnPGII* at concentrations lower than that used in the present study (Leckie et al., 1999; Sella et al., 2004). As observed in the present study, such partial inhibitions of various PGs have been reported in several PG/PGIP systems (Gomathi and Gnanamanickam, 2004). PGIPs from cotton showed 50
and 25% inhibition against PGs from *Aspergillus niger* and *Verticillium dahlia*, respectively (James and Dubery, 2006). Wheat PGIP, on the other hand, showed just over 5% inhibition of PGs from *A. niger* and *F. moniliforme* (Kemp et al., 2003). PGIPs are very diverse in their inhibition specificity and potential, i.e. PGIPs isolated from a single plant can inhibit different PGs, the inhibitors isolated from different plants have been found to inhibit the same PG, some PGIPs have the ability to inhibit a multitude of PGs, and the degree of inhibition has also been found to vary greatly (Gomathi and Gnanamanickam, 2004). PGIPs have also been noted to have the potential to inhibit in vitro the PGs of those microbes that are non-pathogenic or to which they are generally not exposed, as in our case (Gomathi and Gnanamanickam, 2004). The presence of PGIPs with different inhibition potentials could be a ploy employed by the host ensuring the accumulation of elicitor-active oligogalacturonides.

Fig. 3. AnPGII inhibition assay. (A) Effect of inhibitor concentration. AnPGII (5 ng) was assayed with and without inhibitor (rPgPGIP1/rVC) over a concentration range of 0.316–12.64 nM and a graph with the enzyme activity over inhibitor concentration was plotted. (B) pH optimum. AnPGII (5 ng) was assayed with and without inhibitor at a concentration (rPgPGIP1/rVC) of 3.16 nM and a graph with the enzyme activity over pH units was plotted to determine the pH optima of inhibition. (C) pH stability. AnPGII (5 ng) was assayed with and without inhibitor pre-incubated for 16 h at pH values of 2.0–10.0 at 4 °C upon reconstitution in the assay buffer [at a concentration (rPgPGIP1/rVC) of 3.16 nM] and a graph with the enzyme activity over pH units was plotted to determine the pH stability of inhibitor. (D) Temperature stability. AnPGII (5 ng) was assayed with and without inhibitor pre-incubated for 1 h at temperatures ranging from 20 to 100 °C [at a concentration (rPgPGIP1/rVC) of 3.16 nM] and a graph with the enzyme activity over temperature was plotted to determine the temperature stability of inhibitor. The data points are means of a single experiment carried out in triplicates. Results are shown as means±standard error. Means designated with the same letter are not significantly different according to Tukey's HSD test at *P*<0.05.

Mode of AnPGII inhibition

The control protein, rVC (1.26 and 3.16 nM) had no effect on the kinetic parameters of *AnPGII* (Table 1). rPgPGIP1 (1.26 and 3.16 nM), however, was found to decrease the *V*_max without affecting the *K*_m of *AnPGII*. Hence, the mode of inhibition was established to be non-competitive in nature. PGIPs depending on the PG are known to employ competitive, non-competitive, and mixed modes of inhibition, thus indicating that PGIPs are capable of recognizing different structural motifs in its various protein partners (Sicilia et al., 2005). PGIPs from different sources have been shown to display similar as well as different inhibition kinetics against the same enzyme. For example, *BcPG* from *Botrytis cineria* was competitively inhibited by pear PGIP but in a mixed mode by the inhibitor from bean (Abu-Goukh and Labavitch, 1983; Sicilia et al., 2005). However, *AnPGII* was non-competitively inhibited by PGIPs of tomato and bean (Stotz et al., 2000), as in our case.
Table 1. The kinetic parameters of AnPGII with and without rVC and rPglPGIP1

<table>
<thead>
<tr>
<th></th>
<th>K_m (mg ml$^{-1}$)</th>
<th>V_{max} (pkat mg$^{-1}$ protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnPGII</td>
<td>0.091</td>
<td>28.5</td>
</tr>
<tr>
<td>AnPGII+rVC (1.26nM)</td>
<td>0.091</td>
<td>28.5</td>
</tr>
<tr>
<td>AnPGII+rVC (3.16nM)</td>
<td>0.092</td>
<td>28.6</td>
</tr>
<tr>
<td>AnPGII+rPglPGIP1 (1.26nM)</td>
<td>0.092</td>
<td>24.3</td>
</tr>
<tr>
<td>AnPGII+rPglPGIP1 (3.16nM)</td>
<td>0.091</td>
<td>21.3</td>
</tr>
</tbody>
</table>

pH optima of AnPGII inhibition

The AnPGII inhibition by rPglPGIP1 (3.16nM) over a pH range of 3.5–5.0 showed the pH optima for inhibition to be between 4.0 and 4.5 with 25% and 22% inhibition, respectively (Fig. 3B). However, no inhibition was observed at pH 3.5 and 5.0. The pH optima for inhibition of *A. niger* PG by PGIP-I and PGIP-II of guava fruit was determined to be 4.2, whereas that for PGIP-III was 4.4 when assayed over a pH range of 4.0–5.5 (Deo and Shastri, 2003). A study involving interaction of *PvPGIP2* with five isoforms of *A. niger* PGs (AnPGI, AnPGII, AnPGA, AnPGB, and AnPGC) showed *PvPGIP2* to greatly reduce the activity of three of the PG isoforms—AnPGI, AnPGII, and AnPGB—at all tested pH values. For AnPGA and AnPGC, *PvPGIP2* displayed inhibition only at pH 4.75 and below pH 4.2, respectively. At pH 5.0, however, *PvPGIP2* was found to activate the two PG isoforms (Kemp et al., 2004). This diversity of PGIP activity in different pH environments is crucial in countering the multitude of PGs encountered from various pathogens with different pH optima. In addition, such differential PGIP activity has been proposed to be involved in mounting a better host defence response through the generation of a steady-state concentration of biologically active oligogalacturonides (Kemp et al., 2004).

pH and thermal stability of rPglPGIP1

rPglPGIP1 (at 3.16nM) was found to be stable over a wide range of pH values from 4.0 to 8.0 (Fig. 3C). The inhibition potential decreased by approximately 50% at pH 3.0 and 9.0, with no observed inhibition at other tested pH values. Guava PGIPs were reported to be stable only over a narrow pH range of 2.0–4.0 (Deo and Shastri, 2003), but the PGIP from chilli retained >50% activity at pH 3.0 and 8.0 (Shivashankar et al., 2010).

rPglPGIP1 (at 3.16nM) was found to be equally active from 20 to 50 °C (Fig. 3D). The activity dropped very slightly to 22% at 60 °C and significantly at 70 and 80 °C to 11 and 3%, respectively. No inhibition was observed beyond this temperature. Earlier studies on thermal tolerance of the protein have shown it to be relatively thermostable. PGIPs from ‘Bartlett’ pear (Abu-Goukh et al., 1983) and orange (Barmore and Nguyen, 1985) retained significant activity at 60 °C. The latest study on PGIP isolated from tomato was found to retain partial inhibitory activity, even at 100 °C (Schacht et al., 2011).

In silico analysis of PglPGIP1–AnPGII and PglPGIP1–FmPGIII complexes

In silico protein modelling, docking, and computational mutagenesis studies were carried out to account for the differential behaviour of pearl millet PGIP against *AnPGII* and *FmPGIII*, and for the limited similarity in the inhibition of PglPGIP1 and *PvPGIP2* against the same two PGs. It was necessary to predict the underlying structural basis of interaction as the two PGIPs share an amino acid identity of just 37%.

Homology modelling of PglPGIP1 and FmPGIII

The initial homology models of *PglPGIP1* (Supplementary Fig. S7A at JXB online) and *FmPGIII* (Supplementary Fig. S7B) were generated using already known structures of *PvPGIP2* (PDB ID: 1OGQ) and *PfPGI* (PDB ID: 1HG8) serving as templates, respectively. The quality of the models was assessed using Verify3D. Scores predicted for each residue of our constructed model were >0.1, indicating that all of the residues were located in favourable structural environments. After post-refinement with the KoBAMIN program, the final models were revalidated using MolProbity. In the present study, the MolProbity score for both the models was >85%, representing a good quality model. Summarized results from KoBAMIN and MolProbity are given in Supplementary Table S4 at *JXB* online. Models further energy minimized using GROMOS96-53a6 force field to remove any local strains were finally used for the docking studies.

Docking studies of PglPGIP1–AnPGII and PglPGIP1–FmPGIII complexes

To predict the conformation and the putative interactions between *PglPGIP1* with *AnPGII* and *FmPGIII*, two different protein–protein docking programs, GRAMM-X and Rosetta 3.4, were used. Firstly, using GRAMM-X, fast-Fourier-transformation-based unrestrained rigid body docking was performed, which generated the top 10 solutions of the complexes. In the absence of the detailed data on the binding mode or mutational studies on *PglPGIP1*, we selected the docked complex based on the present *in vitro* inhibition studies, as well as available experimental evidence from *PvPGIP2* interactions with the two enzymes (Leckie et al., 1999; Federici et al., 2001; King et al., 2002; Di Matteo et al., 2003; Sella et al., 2004; Maulik et al., 2009; Benedetti et al., 2011). For further optimization, selected models from GRAMM-X were subjected to Rosetta 3.4. This docking algorithm searches a set of conformations from a given starting conformation for
the optimal fit between the two partners. It employs a Monte Carlo search followed by simultaneous optimization of side-chain conformations. The resulting ‘decoys’ obtained from the docking simulations were ranked using an energy function dominated by van der Waals interactions, an implicit solvation model and an orientation-dependent hydrogen bonding potential. Selection of the best docked conformation obtained from Rosetta 3.4 was based on: (i) docking score being an overall measure of the energy of the complex; (ii) an interface score representing the score of the complex minus the total score of each partner in isolation; and (iii) involvement of any residues in the interaction evident from the experimental studies from PvPGIP2. The best docked conformations of the PgLPGIP1–AnPGII and PgLPGIP1–FmPGIII complexes are shown in Fig. 4, and the docking and interface scores are presented in Supplementary Table S5 at JXB online.

From the docked protein complexes, it was suggested that AnPGII (Fig. 4A) and FmPGIII (Fig. 4B) both interact with PgLPGIP1 at its concave surface, but their binding orientations differ. The residues at the β-strand/β-turn motif of the central LRR domain constitute the solvent-exposed concave surface of the PGIP and this region determines the binding specificity for PGs (Kobe and Deisenhofer, 1994). LRRs are known to be versatile protein recognition domains present in over 14,000 proteins (Matsushima and Miyashita, 2012). In case of the PgLPGIP1–AnPGII complex, the concave site of PgLPGIP1 interacts with the N-terminal site of AnPGII, whereas in the PgLPGIP1–FmPGIII complex, the concave site of PgLPGIP1 interacts with the C-terminal site of FmPGIII. The substrate-binding site in FmPGIII appeared to be more exposed compared with that of AnPGII. In terms of the docking score, binding of PgLPGIP1 with AnPGII was predicted to be stronger in comparison with FmPGIII. These in silico results are consistent with the in vitro outcomes. Interaction of PvPGIP2 with AnPGII and FmPGI showed some residues important for interaction with one PG to be dispensable for interaction with the other, suggesting that different but overlapping subsets of residues are vital in binding different ligands (Leckie et al., 1999). The molecular docking simulation of the BcPG1–PvPGIP2 complex showed the B1-sheet of PvPGIP2 to interact with the N-terminus of BcPG1, and the active site of BcPG1 was partially buried by the PvPGIP2 C-terminus (Sicilia et al., 2005). Analysis of the PvPGIP2–FmPG1 (now referred to as FpPG) complex showed the residues present at both the convex and concave side of the PGIP N-terminus to be involved in interaction with the loops surrounding the active site of the PG (Benedetti et al., 2011). These studies further demonstrated the structural flexibility and the versatility of PGIP binding interactions with the various PGs.

Evaluation of protein–protein interactions in PgLPGIP1–AnPGII and PgLPGIP1–FmPGIII complexes by PIC analysis

Energy-minimized PgLPGIP1–AnPGII and PgLPGIP1–FmPGIII complexes were analysed using the PIC server to predict all possible types of interactions at the protein–protein interfaces, and the putative amino acid residues involved were mapped (Table 2). It was apparent from the data that the protein–protein contacts in both complexes were mediated through all types of interactions, i.e. ionic, hydrophobic, and hydrogen bonds, whereas the ionic and hydrophobic interactions were predominating at the surface. However, in the docked as well as energy-minimized structures, the PgLPGIP1–AnPGII complex was found to have a stronger binding interaction than that recorded in the PgLPGIP1–FmPGIII complex.

Electrostatic surface charge distribution on PgLPGIP1, AnPGII, and FmPGIII individually, and the PgLPGIP1–AnPGII and PgLPGIP1–FmPGIII complexes

To illustrate the charge distributions of molecules, a three-dimensional electrostatic surface potential was generated separately on PgLPGIP1 (Fig. 5A), AnPGII (Fig. 5B), and FmPGIII (Fig. 5C), as well as on the PgLPGIP1–AnPGII (Fig. 5D) and PgLPGIP1–FmPGIII (Fig. 5E) complexes. The surface comparison of AnPGII and FmPGIII suggested that the structures not only differed with respect to charge distribution but also differed in shape. This difference in the surface potential of the individual enzymes was also reflected in their predicted differential binding
interactions with \textit{Pgl}PGIP1. Once again, the \textit{Pgl}PGIP1–\textit{An}PGII complex was more compact than \textit{Pgl}PGIP1–\textit{Fm}PGIII, with the active site cleft of \textit{Fm}PGIII exposed to a greater extent, which further explicated the \textit{in vitro} results. This is consistent with an earlier report that electrostatic and van der Waals interactions play a significant role in the proper recognition and discrimination of PGs by PGIPs (Maulik \textit{et al.}, 2009).

Analysis of \textit{Pgl}PGIP1–\textit{An}PGII interaction by computational alanine-scanning mutagenesis

The residues at the \textit{β}-strand/\textit{β}-turn motif of \textit{Pv}PGIP2 have been shown to interact with \textit{An}PGII at the D110 \textit{α}-helix, opposite the substrate-binding site, which fits perfectly with the non-competitive mode of inhibition (Stotz \textit{et al.}, 2000). To identify the hotspot residues involved in the interaction of \textit{Pgl}PGIP1 and \textit{An}PGII, which also follows the non-competitive mode of inhibition, a computative alanine-scanning mutagenesis was performed over all interface residues and changes in the binding free energy were calculated upon alanine substitution of residues at protein–protein interfaces.

Table 2. Protein interaction analysis of \textit{Pgl}PGIP1–\textit{An}PGII and \textit{Pgl}PGIP1–\textit{Fm}PGIII complexes using the PIC

The residue pairs involved in the interacting complexes, sorted according to the type of interaction, are shown (the PGIP residue numbering followed excludes the putative signal peptide).

<table>
<thead>
<tr>
<th>Hydrophobic interactions</th>
<th>\textit{In \textit{Pgl}PGIP1–\textit{An}PGII complex}</th>
<th>\textit{In \textit{Pgl}PGIP1–\textit{Fm}PGIII complex}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Pgl}PGIP1</td>
<td>\textit{An}PGII</td>
<td>\textit{Pgl}PGIP1</td>
</tr>
<tr>
<td>F54</td>
<td>Y190</td>
<td>W105</td>
</tr>
<tr>
<td>M100</td>
<td>W85</td>
<td>W243</td>
</tr>
<tr>
<td>I102</td>
<td>W85</td>
<td>L268</td>
</tr>
<tr>
<td>W105</td>
<td>A43</td>
<td>A306</td>
</tr>
<tr>
<td>F124</td>
<td>P56</td>
<td>I332</td>
</tr>
<tr>
<td>F129</td>
<td>A40</td>
<td></td>
</tr>
<tr>
<td>A172</td>
<td>P56</td>
<td></td>
</tr>
<tr>
<td>V175</td>
<td>A36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Side-chain H-bonding interactions</th>
<th>\textit{In \textit{Pgl}PGIP1–\textit{An}PGII complex}</th>
<th>\textit{In \textit{Pgl}PGIP1–\textit{Fm}PGIII complex}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T28</td>
<td>S234</td>
<td>R153</td>
</tr>
<tr>
<td>H79</td>
<td>T64</td>
<td>D222</td>
</tr>
<tr>
<td>N145, N147</td>
<td>E83</td>
<td>N266</td>
</tr>
<tr>
<td>S195</td>
<td>E54</td>
<td>T332</td>
</tr>
<tr>
<td>Q219</td>
<td>E54</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ionic interactions</th>
<th>\textit{In \textit{Pgl}PGIP1–\textit{An}PGII complex}</th>
<th>\textit{In \textit{Pgl}PGIP1–\textit{Fm}PGIII complex}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D31</td>
<td>R233</td>
<td>D56</td>
</tr>
<tr>
<td>D42</td>
<td>K124</td>
<td>K269</td>
</tr>
<tr>
<td>D50</td>
<td>K127</td>
<td></td>
</tr>
<tr>
<td>R74</td>
<td>E83, E84</td>
<td></td>
</tr>
<tr>
<td>L77</td>
<td>D62</td>
<td></td>
</tr>
<tr>
<td>H79</td>
<td>D62</td>
<td></td>
</tr>
<tr>
<td>D126</td>
<td>K39</td>
<td></td>
</tr>
<tr>
<td>R240</td>
<td>E54</td>
<td></td>
</tr>
</tbody>
</table>

From the existing experimental data on \textit{Pv}PGIP2, the amino acids H104, Y105, Y107, D131, V152, F201, Q224, and K225 have been reported to be important in interaction with \textit{An}PGII (Leckie \textit{et al.}, 1999; Casasoli \textit{et al.}, 2009; Spinelli \textit{et al.}, 2009; Benedetti \textit{et al.}, 2011). Alignment of \textit{Pv}PGIP2 and \textit{Pgl}PGIP1 sequences identified \textit{Pgl}PGIP1 residues T99, M100, I102, D126, N147, Q196, Q219, and I220, respectively, at positions corresponding to the \textit{Pv}PGIP2 residues mentioned above. Interestingly, computational mutagenesis predicted six of them to be hotspot residues significantly involved in interaction, except for I102 and I220, with $\Delta \Delta G_{\text{binding}}$ values of 0.61 and 0.87 kcal mol$^{-1}$, respectively (Fig. 6A). In addition, all the identified residues could be pinned down to the \textit{β}-strand/\textit{β}-turn solvent-exposed region except for D31, N145, and R240 found localized at the N-terminus, LRR-4 and LRR-8 in the central domain (Fig. 1), respectively.

The information on \textit{An}PGII residues involved in interaction with PGIPs is very limited. Studies on conformational changes in \textit{An}PGII–HG–\textit{Pv}PGIP2 using amide-exchange mass spectrometry identified four residues (E95, Q104, D110, and I139) to be involved in \textit{Pv}PGIP2 binding (King \textit{et al.}, 2002). The residues were found to lie opposite the substrate-binding site around the underside of the barrel near the D110 \textit{α}-helix, consistent with the reported non-competitive mode of inhibition. However, the docking pose and protein–protein interaction analysis as well as the computational alanine-scanning mutagenesis of the \textit{Pgl}PGIP1–\textit{An}PGII complex (Fig. 6A, B) identified that the N-terminal region of \textit{An}PGII interacts with the concave surface of \textit{Pgl}PGIP1. Many of the identified residues were found to be localized mainly at the small \textit{α}-helix, and \textit{β}-strands of \textit{β}-sheet PB1 at the N-terminus of \textit{An}PGII away from the substrate-binding surface, which again is consistent with the observed non-competitive mode of inhibition.

Most residues of \textit{Pgl}PGIP1 and \textit{An}PGII identified by protein–protein interaction analysis as involved in interaction were also identified as significantly important upon computational alanine-scanning mutagenesis (Table 2 and Fig. 6). The D126 (\textit{Pgl}PGIP1)–K39 (\textit{An}PGII) interaction was predicted by alanine mutation studies to be the most significant binding contact in the \textit{Pgl}PGIP1–\textit{An}PGII complex.

The above results predicted the preferential use of very similar motif regions in PG recognition by the two PGIPs with few identical amino acids. \textit{Pv}PGIP2 shares 99 and 88% identity with \textit{Pv}PGIP1 and \textit{Gm}PGIP3, respectively, at the amino acid level. However, assessment of their inhibition against \textit{An}PGII and \textit{Fm}PGI, unexpectedly showed \textit{Pv}PGIP2 and \textit{Gm}PGIP3 to share similar inhibition profiles, but \textit{Pv}PGIP2 and \textit{Pv}PGIP1 did not (Leckie \textit{et al.}, 1999; D’Ovidio \textit{et al.}, 2006). Docking studies of these complexes proposed that not just sequence similarity but also conservation of key structural features are crucial in preserving the function mediated by appropriate protein–protein interactions (Maulik \textit{et al.}, 2009). Even though \textit{Pgl}PGIP1 and \textit{Pv}PGIP2 employed similar motifs for interaction with \textit{An}PGII at non-substrate-binding sites, they engaged different regions of \textit{An}PGII. Subtle differences in the overlapping
residues as well as recruitment of additional, completely different amino acids could be responsible for the observed binding disparity.

In silico alanine mutation studies predicted D126 (PglPGIP1)–K39 (AnPGII) interaction as the single most important binding contact in the PglPGIP1–AnPGII complex. This could be important as the D126 position is an evolutionarily conserved residue in PGIPs. The importance of a single amino acid in protein–protein interaction has been observed earlier. *PvPGIP1* gained the ability to inhibit *FmPGII* through a single amino acid substitution of K224 into the corresponding amino acid of *PvPGIP2*, a Q (Leckie et al., 1999). Hence, *in silico* analysis of the PglPGIP1–AnPGII complex is a good starting point for further experimental mutational

![Fig. 5.](image) Electrostatic surface potential of individual proteins and protein complexes. Electrostatic potential maps of PglPGIP1 (A), AnPGII (B), FmPGIII (C), PglPGIP1–AnPGII (D), and PglPGIP1–FmPGIII (E) complexes on which surface colours are fixed at red (–5) or blue (+5). Marked regions display the difference in charge distributions in surface maps of the individual proteins.

![Fig. 6.](image) Computational alanine mutagenesis of PglPGIP1–AnPGII interface residues. The plot displays the contribution of individual interacting residues from PglPGIP1 (the PGIP residue numbering followed excludes the putative signal peptide) (A) and AnPGII (B) in the stability of the PglPGIP1–AnPGII complex. Interface residues were defined as those residues with a side chain having at least one atom within a sphere with 4 Å radius of an atom belonging to the other partner in the complex and binding hotspots defined as those residues that show $\Delta\Delta G_{\text{binding}} > 1$ kcal mol$^{-1}$. This could be important as the D126 position is an evolutionarily conserved residue in PGIPs. The importance of a single amino acid in protein–protein interaction has been observed earlier. *PvPGIP1* gained the ability to inhibit *FmPGII* through a single amino acid substitution of K224 into the corresponding amino acid of *PvPGIP2*, a Q (Leckie et al., 1999). Hence, *in silico* analysis of the PglPGIP1–AnPGII complex is a good starting point for further experimental mutational
analysis to arrive at the actual residues involved in protein–protein interactions.

In conclusion, the present study, together with earlier literature, suggests that the PG–PGIP interactions are complex, and structural and mutational analyses of various PG–PGIP complexes would be needed before a comprehensive generalized conclusion could be drawn about structure–function correlation. Pearl millet is afflicted by many fungal and bacterial diseases. Downy mildew disease alone accounts for annual production losses in the range of 20–40% (Singh, 1995). Such protein–protein interaction studies will be crucial from the perspective of generation of designer host proteins with improved combat potential against the ever-evolving pathogen virulence factors.

Supplementary data

Supplementary data are available at JXB online.

Supplementary Table S1. List of plant PGIPs used in the protein phylogenetic analysis.

Supplementary Table S2. Construction of Pg/PGIP1, vector control and FnPGIII expression plasmids for expression in Escherichia coli SHuffle® T7 Express (pLysSRARE2).

Supplementary Table S3. Upstream sequence analysis of the Pglpigs1 gene.

Supplementary Table S4. Refinement of Pg/PGIP1 and FnPGIII models.

Supplementary Table S5. Docking and interface scores of Pg/PGIP1–AnPGII and Pg/PGIP1–FnPGIII complexes.

Supplementary Fig. S1. Pictorial representation of the Pg/PGIP1, vector control and FnPGIII expression plasmids for expression in Escherichia coli SHuffle® T7 Express (pLysSRARE2).

Supplementary Fig. S2. Southern blot analysis of pearl millet total DNA.

Supplementary Fig. S3. Nucleotide and derived amino acid sequences of the pearl millet Pglpigs1 gene.

Supplementary Fig. S4. Alignment of Pg/PGIP1 and PvPGI2 sequences using the T-Coffee multi-alignment tool.

Supplementary Fig. S5. Upstream cis-regulatory elements in the Pglpigs1 gene.

Supplementary Fig. S6. Purification of recombinant Pg/PGIP1, vector control and FnPGIII fusion proteins synthesized in Escherichia coli SHuffle® T7 Express (pLysSRARE2).

Supplementary Fig. S7. Homology modelling of Pg/PGIP1 and FnPGIII.

Acknowledgements

The first author is grateful to the Department of Biotechnology, Government of India, European Molecular Biology Organisation, Germany and Professor Dr. Bruno M. Moerschbacher for the financial support in the form of fellowships. We thank Mr. Madhusudhan and Professor Francesco Favaron for PGs and clones. We also thank Professor Dr. Dirk Prüfer and his group for transient protein expression studies in tobacco.

References

Characterization of a PGIP from pearl millet

