Synthetic metabolons for metabolic engineering

Chloe Singleton, Thomas P. Howard and Nicholas Smirnoff*

Biosciences, College of Environmental and Life Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK

* To whom correspondence should be addressed. E-mail: N.Smirnoff@exeter.ac.uk

Received 21 November 2013; Revised 15 January 2014; Accepted 21 January 2014

Abstract

It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular location or minimizing the escape of reactive intermediates. Metabolons can be formed by relatively loose non-covalent protein–protein interaction, anchorage to membranes, and (in bacteria) by encapsulation of enzymes in protein-coated microcompartments. Evidence that non-coated metabolons are effective at channelling substrates is scarce and difficult to obtain. In plants there is strong evidence that small proportions of glycolytic enzymes are associated with the outside of mitochondria and are effective in substrate channelling. More recently, synthetic metabolons, in which enzymes are scaffolded to synthetic proteins or nucleic acids, have been expressed in microorganisms and these provide evidence that scaffolded enzymes are more effective than free enzymes for metabolic engineering. This provides experimental evidence that metabolons may have a general advantage and opens the way to improving the outcome of metabolic engineering in plants by including synthetic metabolons in the toolbox.

Key words: Bacterial microcompartments, cyanogenic glycosides, flavonoids, metabolic engineering, photosynthesis.

Introduction

The concept of ‘synthetic biology’ embraces the idea of redesigning organisms from the ground up. It is enabled by the standardization of DNA parts and experimental procedures that allows automation, reliable output measurements, and robust biological engineering; the thorough characterization of DNA parts so that their behaviour in a given context is predictable; and the further modularization of these parts into devices that perform well-defined functions. This latter concept allows further abstraction in which this information (e.g. DNA sequence, part or device data) is hidden thereby reducing the observable details allowing the researcher to focus on a few key concepts at a time (Freemont and Kitney, 2012). As an example, selectable marker cassettes may be considered devices—nowadays it is unusual for the researcher to look in detail at what resides within these markers, it is known that they confer resistance to a given antibiotic or herbicide and for most of the time that is all that is required. In applying this approach across the board the parts and devices can be used and re-used to provide predictable, highly controlled levels of gene expression to produce regulatory circuits or novel metabolic pathways with predictable outcomes. This approach often requires transformation with multiple genes and most of the examples are currently from readily transformed microorganisms. The effort is aided by improved gene cloning technology and the decreasing cost of synthesizing genes de novo. In bacteria, the ability to produce novel organisms with streamlined genomes, in which the various patches and fixes installed during evolution are replaced or streamlined, has emerged (Gibson et al., 2010) and will allow production of more efficient vehicles for the production of useful end-products. This review will not address the nuts and bolts of DNA manipulation and the problems of expressing multiple transgenes.
in plants at controlled levels in specific cell types but will rather focus on proteins and enzymes and how these might be designed and manipulated more effectively for plant metabolic engineering. Metabolic engineering is well established in microorganisms and this is where synthetic biology approaches first emerged. There are metabolic engineering success stories in plants, for example, expression of carotene biosynthesis genes in rice grain to create ‘golden rice’, multi-vitamin corn (Naqvi et al., 2009), and altered seed lipids (Ye et al., 2000; DellaPenna, 2001; Mayer et al., 2008; Napier and Graham, 2010; Ruiz-Lopez et al., 2014). Metabolic engineering could also be used to improve crop yield by manipulating photosynthesis, starch synthesis, and the production of osmolytes and defensive compounds. However, the result of over-expression of a few judiciously chosen enzymes is often disappointing due to a lack of understanding of metabolic regulation and the possible toxicity of the end-products. Therefore, use of approaches that go beyond enzyme over-expression should be considered. Improved photosynthesis, nutrient use, and stress resistance would not only increase the efficiency of plant production but may also allow for the use of plants as chemical factories. Such synthetic biology approaches are emerging in microbial metabolic engineering and the purpose of this review is to consider one of these approaches—the creation of synthetic enzyme complexes (metabolons) and to assess their potential application in plants.

Metabolons, microcompartments, and metabolic channelling

The term ‘metabolon’ was coined by Srere to describe complexes of enzymes that carry out sequential reactions (Srere, 1987, 2000). This definition is potentially wide and could include stable assemblies of enzymes that carry out complex or vortical series of reactions such as ribosomes (protein synthesis), proteasomes (protein degradation), photosynthetic and respiratory electron transport complexes, ATP synthase, mammalian and fungal fatty acid synthase, polyketide synthases, non-ribosomal peptide synthases, and cellulosomes (cellulose degradation complexes in bacteria) (Hyeon et al., 2013). These multi-protein complexes carry out series of reactions that require intermediates to be shepherded (channeled) precisely. The relatively complex series of reactions required for fatty acid synthesis are located in a dimeric multi-functional fatty acid synthase in mammals and fungi (Voet and Voet, 2004). Similarly, polyketide synthases and non-ribosomal peptide synthases consist of several proteins each with multiple active sites, allowing the synthesis of complex molecules such as antibiotics (Khosla et al., 1999). In the case of the pyruvate dehydrogenase complex, tryptophan synthase, and carbamoyl phosphate synthetase, intermediates are effectively channeled between active sites (Voet and Voet, 2004). Apart from these examples of stable or close complexes, where intermediates are directly shuttled between active sites, the existence of functional metabolons based on loose or transitory enzyme–enzyme interactions is a matter of controversy. The proposed advantages of metabolons include increasing the concentration of intermediates at the active sites of sequential enzymes and minimizing the escape of reactive or potentially toxic intermediates (Srere, 1987; Winkel, 2004; Jørgensen et al., 2005; Moller, 2010; Sweetlove and Fernie, 2013). These possibilities are illustrated in the review by Chen and Silver (2012). The general argument against metabolons providing an advantage is that metabolites diffuse too quickly relative to reaction rates and cell size for there to be a significant concentration of intermediates in the vicinity of the complex. While demonstrating that complexes are likely to occur in vitro is relatively easy, assessing their functionality is much more difficult. To assess the significance of proposed complexes based on protein–protein interaction methods such as pull-downs (e.g. TAP-tagging), surface plasmon resonance and yeast 2-hybrid assays, it is necessary to demonstrate that association occurs in vivo. This is probably best done with fluorescently-tagged proteins using techniques such as Förster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BIFC) (Ohad et al., 2007). However, methods with a higher throughput such as yeast 2-hybrid or pull-downs followed by protein identification using mass spectrometry are ideal for initial screening. There are numerous examples of proposed metabolons in animals and microorganisms (Chen and Silver, 2012; Srere, 1987). Recent examples include glycolysis (Araiza-Olivera et al., 2013; Puchulu-Campanella et al., 2013), the TCA cycle (Mitchell, 1996; Velot et al., 1997; Meyer et al., 2011), amino acid biosynthesis (Islam et al., 2007; Hutson et al., 2011; de Cima et al., 2012), acyl ester biosynthesis (Jiang and Napoli, 2013) and melanin biosynthesis (Sugumaran et al., 2000). While most of the examples involve protein–protein interactions (with the possible inclusion of a membrane-located anchoring proteins), other methods of complex formation have been identified, for example, association of glycolytic enzymes with F-actin (Araiza-Olivera et al., 2013) or targeting of enzymes to lipid droplets (Jiang and Napoli, 2013). In plants, plastoglobuli—lipid inclusions in chloroplasts—have enzymes of isoprenoid biosynthesis and chlorophyll degradation associated with them (Lundquist et al., 2012; Naciri and Bréhélin, 2013) and so could organize enzymes that metabolize lipophilic substrates. Despite the relatively abundant evidence for the physical association of enzymes into metabolons, more definitive evidence that pathway intermediates are effectively channeled (for example, from isotope dilution studies) is very rare (Graham et al., 2007), leading to scepticism about their function.

Given the increasing number of metabolons proposed in other organisms, it is not surprising that the evidence for the association of enzymes into complexes in plants is accumulating. A number of reviews cover this evidence (Winkel, 2004; Jørgensen et al., 2005; Sweetlove and Fernie, 2013). Pathways, or parts of pathways, in which enzymes are associated in complexes include glycolysis and various biosynthesis pathways (polyamines, flavonoids, phenylpropanoids, cyanogenic glycosides, sporopollenin, long-chain alkanes, cyanogenic glycosides, and indole acetic acid). The references and evidence for the existence of enzyme complexes and their functional significance are shown in Table 1 while other examples...
of possible secondary metabolite metabolons have been reviewed elsewhere (Jørgensen et al., 2005). Mining the high throughput Arabidopsis yeast 2-hybrid data should indicate further pathways in which enzymes form complexes (Zhang et al., 2010; Arabidopsis Interactome Mapping Consortium, 2011). It is possible that the search for metabolons in plants could also be guided by the conservation of protein–protein interactions across phylogenetic groups. Clearly, the demonstration of enzyme complexes does not prove that pathway flux is improved or that potentially toxic intermediates are confined. Evidence that this benefit occurs for some pathways was discussed in the previous section. In plants, this level of evidence is sparse. In the case of the association of glycolytic enzymes with the outer mitochondrial membrane, isotope dilution experiments have shown that the addition of unlabelled intermediate has little effect on the specific activity of products produced from a labelled precursor (Giege et al., 2003; Graham et al., 2007). This is key evidence that indicates not only that the enzymes are spatially organized, but that there is also a degree of direct substrate channelling between them. In the case of glycolysis, it is important to note that only a small proportion of the enzymes locate to the mitochondria and, therefore, the effect is local.

The idea that enzymes of the Calvin–Benson cycle may also aggregate into metabolons has been around for some time (Anderson et al., 2006) but their existence remains unproven. The Calvin–Benson cycle, however, does provide an alternative paradigm for the regulation of central metabolism by protein complexes. A well-documented multi-enzyme complex exists between two, non-sequential Calvin–Benson cycle enzymes, phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) that is mediated by the small chloroplast protein CP12 (Wedel and Soll, 1998; Wedel et al., 1997). When PRK and GAPDH are aggregated within this complex they are far less active and more susceptible to allosteric inhibition than their unbound forms. The PRK/GAPDH/CP12 complex, which is present in darkened leaves, is capable of almost instantaneous dissociation (activation) upon illumination, and similar, rapid association (deactivation) upon transfer to darkness (Howard et al., 2008). This process, dependent upon the activity of the photosynthetic electron transport chain and mediated by thioredoxin (Howard et al., 2008; Marri et al., 2009) allows swift, dynamic activation/inactivation of enzyme activity in response to environmental changes. This mechanism provides an alternative function for synthetic metabolic protein complexes in line with the aims of making smarter metabolically engineered pathways that are responsive to cellular demands (Zhang et al., 2012). Despite the lack of strong evidence for a more general Calvin–Benson cycle metabolon, recent detailed flux analysis using 13CO2 labelling in Arabidopsis thaliana provides evidence for discrete pools of metabolites, a feature that could indicate some degree of metabolite channeling within the stroma (Szecowka et al., 2013).

Bacterial microcompartments (metabolosomes/enterosomes) consist of enzymes that are encapsulated in self-assembling protein coats forming particles that are of the order of 100 nm in diameter. They are found in various bacteria and generally contain pathways that have reactive or toxic intermediates, for example, in ethanol, ethanolamine, and propanediol utilization (Kerfeld et al., 2010). Cyanobacterial carboxysomes, which are part of the carbon dioxide concentrating mechanism of these organisms, are a well-known example (Kerfeld et al., 2010; Rae et al., 2013). They contain ribulose bisphosphate carboxylase-oxygenase (RuBisCO) and carbonic anhydrase (CA). The coat proteins form suitably charged pores that allow ingress of substrates (RuBP and bicarbonate). Within the carboxysome, CO2 release from bicarbonate is catalysed by CA and then RuBisCO catalyses the carboxylation of RuBP to form phosphoglyceric acid, the first product of the Calvin–Benson cycle. The localized release of CO2 in the carboxysome outcompetes the oxygenase reaction of RuBisCO which otherwise results in ‘wasteful’ photorespiration (Maurino and Peterhansel, 2010; Bauwe et al., 2012). Protein-coated microcompartments could, therefore, provide another route to controlling or improving metabolic flux and their introduction into C3 chloroplasts, along with bicarbonate transporters, has been suggested as an approach to decreasing photorespiration (Price et al., 2013).

Table 1. Evidence for metabolons and metabolic channeling in plants

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Evidence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis</td>
<td>B, C, D</td>
<td>Giege et al. (2003); Graham et al. (2007)</td>
</tr>
<tr>
<td>Calvin–Benson cycle</td>
<td>A, D</td>
<td>Anderson et al. (2006); Suss et al. (1993); Szecowka et al. (2013)</td>
</tr>
<tr>
<td>Phenylpropanoids</td>
<td>B, C, D</td>
<td>Achnine et al. (2004); Bassard et al. (2012); Rasmussen and Dixon (1999)</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>B, C</td>
<td>Crosby et al. (2011)</td>
</tr>
<tr>
<td>Spermine/spermidine</td>
<td>B</td>
<td>Panicot et al. (2002)</td>
</tr>
<tr>
<td>Indole acetic acid</td>
<td>B</td>
<td>Müller and Weiler (2000)</td>
</tr>
<tr>
<td>Long-chain alkanes</td>
<td>B, C</td>
<td>Bernard et al. (2012)</td>
</tr>
<tr>
<td>Sporopollenin</td>
<td>B, C</td>
<td>Lallemant et al. (2013)</td>
</tr>
<tr>
<td>Glyoxylate cycle</td>
<td>B</td>
<td>Beeckmans et al. (1994)</td>
</tr>
<tr>
<td>Dhurrin (cyanogenic glycoside)</td>
<td>B, C</td>
<td>Nielsen et al. (2008)</td>
</tr>
</tbody>
</table>
Synthetic metabolons

The previous discussion indicates that, while a number of metabolons have been proposed, the evidence that they function in improving metabolic flux is scarce. Perhaps the most direct way to determine the utility of metabolons is to introduce them into cells and to assess their effect on flux or product formation. The possibility of constructing synthetic enzyme complexes has been discussed in a number of recent reviews (Boyle and Silver, 2012; Lee et al., 2012). While there are a number of ways that synthetic enzyme complexes could be assembled, the first approach to have been employed is to assemble enzymes onto a synthetic scaffold protein using protein interaction domains. This makes use of the reasonably high affinity and specific interactions between protein interaction modules and their peptide ligands derived from various scaffolding and signalling systems. A gene encoding a synthetic scaffold protein containing the protein interacting domains separated by spacer sequences in the required order and stoichiometry is synthesized. The enzymes are tagged with the corresponding peptide ligands. This approach has been used to scaffold three enzymes of the mevalonic acid biosynthesis pathway in *E. coli* (Dueber et al., 2009). A synthetic scaffold protein was constructed carrying three high affinity protein interaction domains: the Src homology domain 3 (SH3) from the mouse Crk adapter protein (Wu et al., 1995) the PDZ domain from the α-syntrophin protein from mouse (Schultz et al., 1998), and the GTPase-binding domain (GBD) from the neuronal Wiskott–Aldrich syndrome protein (N-WASP) (Kim et al., 2000). The three enzymes were tagged with their cognate peptide ligands. When expressed together, the ligands reversibly bind to the scaffold protein and form a complex. Scaffolding increased product titre 77-fold compared with unscaffolded enzymes—and with lower overall protein expression (HMG-CoA intermediate is toxic) (Dueber et al., 2009). Similar approaches with a three-step biosynthesis pathway for glucaric acid from glucose in *E. coli* yielded a 5-fold increase in yield of product (Moon et al., 2010). Similarly, in yeast, scaffolding 4-coumarate:CoA ligase and stilbene synthase increased the yield of resveratrol by 5-fold compared with unscaffolded enzymes (Wang and Yu, 2012). For this two enzyme pathway, a fusion protein was also tested but was less effective than scaffolded enzymes perhaps because of folding problems (Zhang et al., 2006).

Scaffolding has also been shown to work *in vitro*. In this case, triose phosphate isomerase, aldolase, and fructose 1,6-bisphosphatase where scaffolded *in vitro* resulting in a 38–48-fold increase in reaction rate for scaffolds free in solution or bound to cellulose, respectively (You and Percival Zhang, 2013). This example used a system based on the cellulosome complex from various cellulose-degrading bacteria. The cellulosome consists of a scaffoldin protein containing dockerin domains to which proteins containing cohesin domains bind. In this example, the enzymes were tagged with three dockerin domains and the scaffold was constructed from the three respective cohesin domains with an N-terminal carbohydrate binding domain. The three dockerin/cohesin domains originated from three different cellulolytic microorganisms.

The factors underpinning increased product titre of these synthetic scaffold complexes have been investigated. Variation in linker length and protein positioning affect yield and support the conclusion that increased enzyme proximity is a key factor (Lee et al., 2012). It is also evident that enzyme stoichiometry within the metabolons is important, revealing an issue for conventional metabolic engineering where enzyme over-expression levels are often not precisely controlled. Although the experiments with synthetic metabolons reveal an advantage, the explanation for this is not obvious. It has been argued that the product of an enzyme is likely to diffuse away very quickly along its concentration gradient because typical enzyme reaction rates are much slower than diffusion (Sweetlove and Fernie, 2013) so that proximity might not provide significantly increased substrate concentration. The actual diffusion rates in the cytoplasm are therefore important. Evidence from the mobility of fluorescently labelled glucose in *E. coli* cells suggests that it diffuses ~10 times more slowly *in vivo* (50 μm² s⁻¹) than in water (400 μm² s⁻¹), reflecting the intense macromolecular crowding of the cytoplasm (Mika et al., 2010). Proteins, being larger, diffuse more slowly: 3–10 μm² s⁻¹ in the cytoplasm. Evidence for the existence of diffusion gradients would be difficult to produce if enzymes are evenly distributed in the cytoplasm but examples where a small molecule is produced in a localized manner suggest that concentration gradients can exist. Firstly, it is well-known that localized release of Ca²⁺ within cells leads to localized high concentration micro-domains (Berridge, 2006). Secondly, hydrogen peroxide is produced locally in some cells by plasma membrane NADPH oxidase, an example being growing pollen tubes where a gradient of hydrogen peroxide forms. Visualized by a ROS-sensitive fluorescent probe, hydrogen peroxide concentration is highest at the tip (Potocký et al., 2007). Therefore, relative to the rate of production and breakdown, diffusion is apparently not fast enough to equilibrate hydrogen peroxide concentration throughout the cell. It is also likely that the diffusion rate of small molecules will depend on their chemical properties (for example, propensity to interact with proteins) as well as size. Interestingly, in a modification of the *in vitro* scaffolding of triose phosphate isomerase, aldolase, and fructose 1,6-bisphosphatase, replacement of the original aldolase with another of lower specific activity removed the advantage of scaffolding (You and Zhang, 2013). This observation shows that the specifics of enzyme kinetics are critical. Modelling of the system is needed to clarify the important factors, particularly to determine if increased local substrate concentration is generally important. Because of relatively rapid diffusion, the size of the complex may also be critical: bigger complexes are predicted to capture and use more of the intermediates (Lee et al., 2012). These authors suggested that 100 nm would be ideal for the scaffolded mevalonate pathway. In this system, since some of the enzymes are multimeric, they could bind to multiple scaffolds producing a larger complex. Another potentially important effect could be the control of pathway branch points and competition between different pathways for the same intermediates. In the latter case, a higher proportion of the product of a scaffolded enzyme
might be passed on to its neighbour than to an unscaffolded competitor. Scaffolding also provides a potential means to control branch points by manipulating protein–protein interactions by signal molecules. As an example, one can envisage that binding sites for pathway products or precursors could be included in a synthetic scaffold such that binding causes conformational changes that alter the distance between the scaffolded enzymes or cause dissociation of the complex. This would be analogous to FRET-based glucose sensors (Jones et al., 2013). There is already evidence that metabolic status can affect the conformation of the ER-bound flavonoid biosynthesis metabolons in plants, potentially directing intermediates down one branch of the pathway or another (Crosby et al., 2011). It is very unlikely that any of the current examples have introduced the more extreme form of substrate channelling shown by enzyme complexes such as tryptophan synthetase where intermediates pass through tunnels lined with amino acid residues of appropriate charge and never enter the external water. Introduction of direct channelling would require more sophisticated protein engineering to create and orientate channels. These examples provide evidence that synthetic scaffolds can improve flux and product formation even though the mechanisms are not entirely clear and even counter-intuitive given the fast diffusion rates of small molecules (Lee et al., 2012; Sweetlove and Fernie, 2013). Nevertheless, the results provide a rationale for the natural occurrence of metabolons.

Since proteins can bind to nucleic acids with high affinity and in a nucleotide sequence-specific manner (e.g. transcription factors), they could also act as scaffolds for enzymes. This has been demonstrated in E. coli for introduced resveratrol, 1,2-propanediol, and mevalonic acid biosynthetic pathways (Conrado et al., 2012). In this example, each enzyme was fused with a DNA binding zinc finger domain. These were expressed in E. coli along with a plasmid containing multiple copies of each zinc finger binding nucleotide sequence. Evidence that the enzymes assembled on the plasmid was obtained and, in each case, product formation was increased over a random scaffold control. Interestingly, the increase in mevalonic acid was much less than the 77-fold reported for protein scaffolds (Dueber et al., 2009). Problems with plasmids will include a sufficient copy number to scaffold available protein and supercoiling. This method is currently not applicable to plants but assembly on RNA scaffolds is a possibility. RNA molecules (aptamers) that fold into specific conformations and with sequences that can specifically bind small molecules and proteins could be used as scaffolds (Delebecque et al., 2011). Application of this approach to hydrogen production in E. coli using ferredoxin and hydrogenase tagged with adapter proteins that bind to specific RNA aptamers resulted in stable scaffolded protein/RNA complexes and increased the rate of hydrogen production by up to 48-fold compared with unscaffolded. Clearly, in this case, electron transfer from reduced ferredoxin to hydrogenase requires very close proximity but, as with protein scaffolds, there is no reason to suppose that this approach would not work for other pathways. A potential problem with expression of RNA in sufficient amounts is stability. However, advantages are the complex 3D structures that RNA can form and the possibility of designing specific protein binding aptamers. This could extend to the possibility of adding riboswitch-like control mechanisms in which small molecules also bind to the RNA scaffold and change its conformation. This could change the distance between scaffolded enzymes and modulate flux according to the concentration of an ‘allosteric’ controlling molecule.

Bacterial microcompartments (BMCs) provide inspiration for another approach to creating synthetic metabolons in which enzymes are encapsulated in self-assembling protein shells (Retterer and Simpson, 2012; Frank et al., 2013). This provides a physical diffusion barrier to pathway intermediates, thus improving local concentration of intermediates, but has the requirement that the shell proteins provide pores for substrate to enter and product to leave. Although the structure of some BMCs is complex, recent work shows that they can be assembled in host bacteria and protein cargo can be encapsulated. Thus, the shell proteins from the propanediol utilization BMC from Citrobacter freundii can be expressed in E. coli to form empty structures (Parsons et al., 2010). Expression of a carboxysome operon from Halothiobacillus neapolitanus, including pore protein, coat protein, CA, and Rubisco in E. coli produced functional carboxysomes (Bonacci et al., 2012). Significantly, the Salmonella enterica ethanolamine utilization (eut) shell protein expressed in E. coli assembles to form a polyhedral structure. These structures could be loaded with enhanced green fluorescent protein fused to an appropriate N-terminal signal sequence (Choudhary et al., 2012). Therefore, in principle, it should be possible to encapsulate multiple enzymes in synthetic BMCs. Utility in metabolic engineering will depend not only on successful assembly and targeting of enzymes but also on understanding how to include entry and exit pores for substrate and product. Clearly, the way is open to attempt assembly of microcompartments in plant cells and the introduction of carboxysome-like compartments into chloroplasts to improve carboxylation efficiency is a potential target. Viral coat proteins offer another source of self-assembling microcompartments. Empty cowpea mosaic virus particle (termed empty virus-like particles, eVLPs) can be assembled in plants by expressing the virus coat precursor protein and a protease that cleaves it into the final form (Saunders and Lomonossoff, 2013). Other approaches to assembling synthetic metabolons could include targeting enzymes to the cytoskeleton (Araiza-Olivera et al., 2013) or using membrane anchored proteins as in the naturally-occurring flavonoid and glycolytic metabolons (Graham et al., 2007; Crosby et al., 2011) that tether the pathway enzymes. In this way metabolons could be targeted to specific membranes perhaps directing transport of products into specific sub-cellular compartments (e.g. the vacuole for storage of potentially toxic products). Positioning might also allow a pathway efficiently to access substrates emanating from an organelle. Micro-compartmentation and localization of signalling complexes is achieved by anchoring complexes to lipid rafts. These are specialized membrane micro-domains that are rich in cholesterol and sphingolipids into which GPI-anchored proteins insert thereby fostering close proximity of proteins (Simons and Ikonen, 1997). The NADPH oxidase
Looking to the future: synthetic metabolons in plants

The potential advantages of metabolons and microcompartments include increased flux (or less enzyme needed to maintain a given flux), containment of potentially toxic or biologically active intermediates, control over enzyme stoichiometry, and the ability to control branchpoints and thereby direct metabolism. Based on the experience of the introduction of metabolons into microorganisms, it is clear that a similar strategy should be considered as part of the plant metabolic engineering toolbox. Since secondary metabolism provides clear examples of enzyme complexes (Jørgensen et al., 2005) it is likely that metabolons will be of particular value in the production of exotic compounds in plants. Pathways that have exotic or reactive intermediates may benefit from channelling. In the future, metabolons could incorporate switching mechanisms as proposed for flavonoid biosynthesis (Crosby et al., 2011) in which metabolic status is sensed causing association or disassociation of the complexes (Michener et al., 2012). It is interesting that, as well as associating into complexes, the enzymes of the flavonoid biosynthesis pathway are under tight transcriptional control suggesting that control of enzyme concentrations as well as complex formation is important in this pathway. The appearance of an array of genetically-encoded fluorescent metabolite sensors also opens the way to monitoring metabolism in cells in ‘real time’ and, in conjunction with flux analysis using labelled substrates, will allow improved understanding of metabolic control and bottlenecks (Berg et al., 2009; Hung et al., 2011; Tantama et al., 2011; Michener et al., 2012; Jones et al., 2013).

The cyanobacterial carboxysome (and algal pyrenoids) are archetypal metabolons which bring about CO₂ concentration at the active site of RuBisCO by bringing carbonic anhydrase (CA) and RuBisCO into close proximity along with a supply of bicarbonate. Therefore, one possible way to improve photosynthesis would be to introduce mechanisms inspired by these systems into C₃ crop plants (Price et al., 2013). This approach could include the introduction of bicarbonate pumps into the chloroplast envelope and arrangement of RuBisCO and CA into scaffolded complexes or even into synthetic carboxysomes. The latter approach should be possible given the recent demonstrations that simple microcompartments can assemble in a host cell and that protein cargo can be included (Choudhary et al., 2012; Lee et al., 2012). The key trick is to ensure that the shell proteins contain suitable pores for the transport of RuBP and bicarbonate into the microcompartment and 3-PGA out while trapping the released CO₂ effectively. An alternative strategy is to explore the utility of scaffolding RuBisCO and CA so that CO₂ is released in close proximity to RuBisCO, thus decreasing oxygenase activity (Singleton, Harmer, Porter, and Smirnoff, unpublished results; http://magic.psrg.org.uk). This approach has theoretical problems because the inherently slow catalytic rate of RuBisCO prevents the effective use of CO₂ before it diffuses away. Other synthetic biology approaches to improving photosynthesis such as expression of carboxysome-like structures in chloroplasts may also emerge in the near future.

Acknowledgements

Funding from the Biotechnology and Biological Research Council (BB/I020004/1 and BB/J004057/1) is gratefully acknowledged.

References

Crosby KC, Pietraszewa-Bogiel A, Gadella TWJ, Winkel BSJ. 2011. Förster resonance energy transfer demonstrates a flavonoid (NOX) complex which includes NOX and various regulatory proteins that control the oxidative burst is an example from animals (Shao et al., 2003) that may also operate in plants (Borner et al., 2003).
metabolon in living plant cells that displays competitive interactions between enzymes. FEBS Letters 585, 2193–2198.

