RESEARCH PAPER

RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening

Benzhong Zhu, Yongfang Yang, Ran Li, Daqi Fu, Liwei Wen, Yunbo Luo* and Hongliang Zhu*

Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

* To whom correspondence should be addressed. E-mail: hlzhu@cau.edu.cn or lyb@cau.edu.cn

Received 16 February 2015; Revised 16 February 2015; Accepted 1 April 2015

Abstract

Recently, long non-coding RNAs (IncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of IncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of IncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel IncRNAs and understand the function of IncRNAs in tomato fruit ripening. Here it is reported that 3679 IncRNAs were discovered from wild-type tomato and ripening mutant fruit. The IncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato IncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of IncRNAs from other model plants. It was also observed that 490 IncRNAs were significantly up-regulated in ripening mutant fruits, and 187 IncRNAs were down-regulated, indicating that IncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic IncRNAs, IncRNA1459 and IncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that IncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening.

Key words: Fruit ripening, functional analysis, long non-coding RNA, RNA-seq, tomato, VIGS.

Introduction

Although genome-wide transcriptome sequencing has revealed that ~90% of eukaryotic genomes are transcribed (Wilhelm et al., 2008), only 1–2% of the genome encodes proteins (Birney et al., 2007), suggesting the presence of a large proportion of non-coding RNAs (ncRNAs). The ncRNAs are classified as housekeeping ncRNAs and regulatory ncRNAs (Kim and Sung, 2012). The ‘housekeeping’ ncRNAs include rRNAs, tRNAs, small nuclear RNAs (snRNAs), and small nuclear RNAs (snRNAs), whereas the ‘regulatory’ ncRNAs refer to small ncRNAs and long non-coding RNA (IncRNAs) (Kim and Sung, 2012; Zhu and Wang, 2012). Small ncRNAs, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), have been well studied in the last decade, as they are essential for post-transcriptional and transcriptional regulation in eukaryotes (Bonnet et al., 2006; Cuperus et al., 2011; Simon and Meyers, 2011). In contrast, IncRNAs are less characterized so far. It is generally believed that IncRNAs are >200 nucleotides in length and mainly transcribed by RNA polymerase II (Pol II), which are always capped, polyadenylated and frequently spliced (Ulitsky and Bartel, 2013). A few IncRNAs are generated by plant-specific Pol V, capped at the 5′ end and lacking apparent poly(A) tails.
These lncRNAs function as a scaffold for the RNA-directed DNA methylation (RdDM) pathway (Kim and Sung, 2012; Wierzbicki et al., 2012). In addition, Pol III is also involved in production of lncRNAs (Wu et al., 2012). With the development of next-generation sequencing, thousands of lncRNAs have been identified in model plants, such as Arabidopsis thaliana (Ben et al., 2009; Liu et al., 2012; Zhu et al., 2013; Wang et al., 2014), Medicago truncatula (Wen et al., 2007), Triricum aestivum (Xin et al., 2011), Oryza sativa (Li et al., 2007), and Zea mays (Boerner and McGinnis, 2012; Li et al., 2014). However, the function of lncRNAs has not been fully studied to date. Recently, the regulation mechanism of vernalization in Arabidopsis by COOLAIR (cool-assisted intronic non-coding RNA) and COLDAIR (cold-assisted intronic non-coding RNA), two species of lncRNAs transcribed from Flowering Locus C, has been illustrated (Swiezewski et al., 2009; Heo and Sung, 2011; Sun et al., 2013). LncRNAs also function as endogenous target mimics (eTMs) for a few miRNAs, which provide a new mechanism for regulation of miRNA activity (Franco-Zorrilla et al., 2007; Rymarquis et al., 2008; Wu et al., 2013). LDMAR (long-day-specific male-fertility-associated RNA) plays an essential role in photoperiod-sensitive male sterility of rice (Ding et al., 2012).

As part of the human diet, tomato has been domesticated for a few centuries (Rambal et al., 2014). Today, tomato is the seventh most important crop species (after maize, rice, wheat, potatoes, soybeans, and cassava) and is the second most consumed vegetables in the world (after potatoes and before onions) (Bergougoux, 2014). Fleshy fruit ripening of tomato is a specific morphological trait that is not present in other model plants (Bergougoux, 2014), which means that tomato has become a model organism for basic research and applied purposes, in particular as a model system for investigations into the regulation of fruit ripening (Gapper et al., 2013; Bergougoux, 2014). However, the number, expression pattern, and characteristics of lncRNAs in tomato are still largely unknown. Therefore, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening.

Ripening inhibitor (rin) is one of the most famous tomato mutants that completely abolishes the normal ripening process (Vrebalov et al., 2002) and thus is widely used as an excellent genetic tool in the study of fruit ripening. Rin was clearly elucidated as a master regulator (transcription factor) of fruit ripening to control most major ripening-related processes (Martel et al., 2011; Kumar et al., 2012; Qin et al., 2012; Fujisawa et al., 2013). In this study, a comprehensive set of lncRNAs from wild-type and rin mutant tomato fruit was identified using paired-end strand-specific RNA sequencing (ssRNA-Seq). In total, 3679 putative lncRNAs were discovered and were found to be distributed in every tomato chromosome; 85.1% of lncRNAs were transcribed from intergenic regions. Tomato lncRNAs are shorter, and harbour fewer exons and less coding potential than the protein-coding genes. Compared with wild-type tomato, a lot of lncRNAs showed significantly differential expression in the rin mutant. Moreover, down-regulation of the expression of some novel intergenic lncRNAs (lncRNA1459 and lncRNA1840) in wild-type tomato fruit induced an obvious delay of fruit ripening. These results strongly suggested that lncRNAs play an important role in the regulation of tomato fruit ripening. The findings provide new insight into the study of fruit ripening.

Materials and methods

Plant materials and growth conditions

Wild-type AC (Solanum lycopersicum cv. Ailsa Craig) and rin (cv. Ailsa Craig, backcross parent) tomato were grown in the greenhouse under standard greenhouse conditions (26 °C under 16h lighting, followed by 8h darkness at 20 °C), with regular additions of fertilizer and supplementary lighting when required. To collect AC fruits, they were tagged at anthesis, and harvested at the immature green (IM), mature green (MG), breaker (BR), pink (PK), and red-ripe (RR) stages, which occurred at means of 37, 42, 46, 51, and 56 days post-anthesis (DPA), respectively. Fruits of the rin mutant were picked at the BR stage. Immediately upon harvesting, the pericarp was manually dissected, frozen in liquid nitrogen, and stored at ~80 °C. Wild-type MicroTom (S. lycopersicum cv. MicroTom) were also planted for virus-induced gene silencing (VIGS) in tomato fruits.

Paired-end strand-specific RNA sequencing

Total RNA was extracted from the fruits of AC and the rin mutant at the BR stage (two biological replicates per genotype combined from 10 fruits each) using DeTRna reagent (EarthOx, CA, USA) according to the manufacturer’s protocol. The RNA concentration and purity were measured using an NAS-99 spectrophotometer (ATCGene, NJ, USA). The RNA integrity was checked by agarose gel electrophoresis. Genomic DNA was removed from extracted total RNA by DNase treatment. Due to some lncRNAs lacking the poly(A) tail, total RNA was treated to remove rRNA, retaining lncRNA both with and without a poly(A) tail. The quality of the RNA and lack of contaminating rRNA were confirmed using the Agilent 2100 Bioanalyzer. Four strand-specific RNA libraries with an insert size of ~250–500 nucleotides were prepared according to a UTP method (Parkhomchuk et al., 2009), and submitted to the Beijing Genomics Institute (BGI, Shenzhen, China) for 100 bp paired-end sequencing on the Illumina HiSeq 2000, at a depth of ~70 million reads per library (for statistics on read counts, see Table 1). The data for this article have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/) under accession number SRP04432.

Assembly of RNA transcripts

Sequencing reads were quality checked and trimmed to remove barcode and adaptor sequences. To rule out rRNA, all reads were aligned to plant RNA sequences by the Short Oligonucleotide Analysis Package (SOAP2: http://soap.genomics.org.cn/soapaligner.html). Information on plant rRNA was extracted from the NCBI Non-Redundant (NR) data set (http://www.ncbi.nlm.nih.gov/). The clean reads from each library were aligned with the tomato reference genome (SGN release version SL2.50; ftp://ftp.sgn.cornell.edu/tomato_genome) using TopHat (version 2.0.8; http://ccb.jhu.edu/software/tophat/index).

Table 1. Summary of read counts

<table>
<thead>
<tr>
<th>Library</th>
<th>Raw reads</th>
<th>Clean reads</th>
<th>Unique clean reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-1</td>
<td>67 698 420</td>
<td>66 797 294 (98.7%)</td>
<td>17 958 549</td>
</tr>
<tr>
<td>AC-2</td>
<td>69 782 776</td>
<td>68 165 431 (97.7%)</td>
<td>17 642 249</td>
</tr>
<tr>
<td>rin-1</td>
<td>70 137 108</td>
<td>69 247 044 (98.7%)</td>
<td>20 094 985</td>
</tr>
<tr>
<td>rin-2</td>
<td>72 264 600</td>
<td>70 614 398 (97.8%)</td>
<td>18 771 302</td>
</tr>
</tbody>
</table>
Bioinformatic analysis for identification of lncRNA

The assembled transcripts were compared with the tomato genome annotated protein sequences (SGN release version ITAG2.4; ftp://ftp.sgn.cornell.edu/tomato_genome) using BlastX. The non-redundant transcripts having significant alignment ($P < 1.0E-10$, identity $> 90\%$, coverage $> 80\%$) with tomato proteins were excluded. For size selection, perl scripts were used to extract transcripts larger than 200 nucleotides. For the open reading frame (ORF) filter, a perl script was developed to pick up the transcripts that had short ORFs (< 100 amino acids). Since a real lncRNA does not have an ORF, a putative ORF of the lncRNA candidate is defined by the longest consecutive codon chain of the lncRNA. Furthermore, to filter the transcripts containing a known protein domain, transcripts were aligned to the Protein database of KEGG (Kyoto Encyclopedia of Genes and Genomes), the NR data set, COGs (NCBI Phylogenetic classification of proteins encoded in complete genomes), and Swiss-Prot (Swiss-Protein database) using BlastX ($P < 1.0E-5$, identity $> 90\%$, coverage $> 80\%$). Moreover, the resulting transcripts above were uploaded to the Coding Potential Calculator (CPC) (Kong et al., 2007) to test the protein-coding potential. Only transcripts that did not pass the protein-coding score test were considered for the next step of the analysis. To rule out housekeeping ncRNAs (including tRNAs, snRNAs, and snoRNAs), all resulting transcripts were aligned to housekeeping ncRNA databases, including tRNA and snRNA sequences collected from the NCBI; and snoRNAs from the Plant snoRNAs Database (version 1.2; http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snonrna/home). LncRNA candidates that have significant alignment ($P < 1.0E-10$, identity $> 90\%$, coverage $> 80\%$) with housekeeping lncRNAs were excluded from further analyses. To rule out miRNA precursors, putative IncRNAs were aligned against tomato miRNA precursors from miBase (Version 21) (Kozomara and Griffiths-Jones, 2014) and from the Tomato Functional Genomics Database (TFGD). LncRNAs that have significant alignment ($P < 1.0E-10$, identity $> 90\%$, coverage $> 80\%$) with miRNA precursors were excluded. Finally, the remaining transcripts were considered as tomato IncRNAs, and are listed in Supplementary Table S1 available at JXB online.

Localization of lncRNAs and protein-coding genes in tomato genome

A diagram was generated to show the localization and abundance of lncRNAs and protein-coding genes in the tomato genome by the program Circos (Krzywinski et al., 2009). Centromere locations were according to the report from the Tomato Genome Consortium (2012).

Classification of IncRNAs

According to the locations relative to the nearest protein-coding genes, the annotated lncRNAs was subdivided into four categories: (i) lncRNAs without any overlap with other protein-coding genes are classified as intergenic lncRNAs (lincRNAs); (ii) lncRNAs totally in the same protein-coding loci are classified as intragenic lncRNAs; (iii) lncRNAs with some overlap with genes on the same strand, are classified as overlap lncRNAs; and (iv) antisense lncRNAs overlapping with exons of a protein-coding transcript on the opposite strand. Perl scripts were developed to classify these four categories.

Distribution of transcript length and exon number of lncRNAs and protein-coding genes in tomato

In terms of transcript length and exon number, IncRNAs and protein-coding genes were analysed. Transcript length categories were <300, 300–400, 400–500, 500–600, 600–700, 700–800, 800–900, 900–1000, and >1000 nucleotides. Exon number categories were: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and >10. The proportion of different kinds of lncRNAs and protein-coding transcripts was calculated.

RNA extraction and reverse transcription

Total RNA was isolated from fruit samples using DeTRNA reagent (EarthOx, CA, USA). The RNA concentration and purity were measured using a NAS-99 spectrophotometer (ATCGene, NJ, USA). The RNA integrity was checked by agarose gel electrophoresis. Genomic DNA was removed from extracted total RNA by DNase treatment. A 2 μg aliquot of total RNA was used for cDNA synthesis using a TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix kit (Trans, Beijing, China) with random primer.

Quantitative reverse transcription–PCR (qRT–PCR) qRT–PCR was performed using SYBR Green PCR Master Mix with a real-time PCR System CFX96 (Bio-Rad, CA, USA). qRT–PCR conditions were as follows: 95°C for 10min, followed by 40 cycles of 95°C for 15s and 60°C for 30s. Fluorescence changes of SYBR Green were monitored automatically in each cycle, and the threshold cycle (Ct) over the background was calculated for each reaction. Samples were normalized using Actin, and the relative expression levels were measured using the $2^{-\Delta\Delta C_{t}}$ analysis method. Three biological replicates were performed, and the reactions were performed in triplicate for each run. Student's t-test was used to determine whether the qRT–PCR results were statistically different from two samples ($^*P<0.05$; $^{**}P<0.01$). Duncan's multiple range test was used for three samples ($P<0.01$). Oligonucleotide primers used are listed in Supplementary Table S2 at JXB online.

VIGS of tomato fruits

VIGS of MicroTom fruit was performed using Tobacco rattle vius (TRV) according to a previous study (Fu et al., 2005). IncRNA fragments and RIN fragments of 300–500bp were anlysed using the VIGS tool (http://solgenomics.net/tools/vigs) to avoid off-target silencing and then amplified from tomato cDNA with PCR. A pTRV2-lncRNA or RIN construct was generated by inserting the EcoRI-digested PCR fragment of IncRNA or RIN into the pTRV2 vector. Agrobacterium strain GV3101 containing pTRV1, pTRV2, and pTRV2-lncRNA vectors were grown at 28°C in LB medium (pH 5.6) containing 10mM MES and 20 μM acetoxyarginine with kanamycin, gentamycin, and rifampicin antibiotics. After shaking for 12h, cultures were harvested and resuspended in infiltration buffer (10mM MgCl$_2$, 200 μM acetoxyarginine, 5% sucrose) to a final OD$_{600}$ of 1.0. Resuspensions of pTRV1 and pTRV2 or pTRV2-lncRNA were mixed at a ratio of 1:1 and left at room temperature for 3h. Agrobacterium was infiltrated into the carpopodium of fruits with a 1ml syringe. Tomato fruits infiltrated with pTRV1
and pTRV2 were used as controls. Each inoculation was carried out three times, and each time six different plants were infiltrated. When the VIGS phenotype was visible, different sections of tomato fruits were collected and stored at −80 °C.

RNA isolation, digestion, and RT–PCR

Poly(A)-enriched [poly(A)^+] and poly(A)-depleted [poly(A)] RNAs were isolated from total RNAs of tomato fruit using an Oligotex mRNA Mini Kit (Qiagen, CA, USA). For RNA digestion, total RNAs from tomato fruits were divided into each of four tubes and were treated as follows. First, the RNAs were incubated for 1 h at 37 °C with or without enzymes: tube 1 and tube 2 with buffer only; tube 3 with T4 polynucleotide kinase (New England Biolabs, MA, USA); and tube 4 with 5′ pyrophosphohydrolase (New England Biolabs). After ethanol precipitation, RNAs in tube 1 were incubated for 1 h at 37 °C with buffer only, whereas RNAs in the other three tubes were incubated with 5′ to 3′ exoribonuclease, XRN-1 (New England Biolabs), for 1 h at 37 °C. The RNAs were extracted before being subjected to RT–PCR.

cDNA synthesis was performed on total RNAs, poly(A)^+ poly(A), and different RNA digestion fractions using a Transcript One-Step gDNA Removal and cDNA Synthesis SuperMix kit (Trans, Beijing, China) with random primers. PCR was performed using EasyTaq PCR SuperMix (Trans) with PCR system T-100 (Trans, Beijing, China) with random primers. PCR was performed using EasyTaq PCR SuperMix (Trans) with PCR system T-100 (Bio-Rad). PCR conditions for RIN, IncRNA1459, or IncRNA1840 were as follows: 94 °C for 3 min, followed by 30 cycles of 94 °C for 20 s, 55 °C for 30 s, and 72 °C for 20 s. All PCR data presented are representative of three independent experiments. Oligonucleotide primers used are listed in Supplementary Table S1 at JXB online. RIN served as a positive control for poly(A)^+ RNAs. PCR with genomic DNA was used as a positive control. Reverse transcription which is performed in the absence of reverse transcriptase served as a negative control.

Results

Genome-wide discovery of IncRNAs in tomato fruit

Paired-end ssRNA-Seq has become a powerful tool for the discovery of IncRNA (Ilott and Ponting, 2013), but also facilitates identification of transcript orientation. To identify IncRNAs in tomato fruits, paired-end ssRNA-Seq of transcripts from AC and rin fruits at the BR stage was performed in two biological replicates. A total of ~28 million clean reads was obtained (Table 1; Fig. 1). A total of 38 159 unique transcripts were assembled from high-throughput RNA-Seq data from AC and rin fruits (Fig. 1).

To distinguish IncRNA candidates, six sequential stringent filters to the 38 159 transcripts were employed (Fig. 1). First, these transcripts were filtered with tomato coding gene sequences. Almost 48% (18,407) of transcripts were coding genes, and the remaining 52% (19,752) of transcripts might be non-coding, which was consistent with other studies showing that ncRNAs were widely transcribed (Heo et al., 2013). It is generally believed that IncRNAs are longer than 200 nucleotides in size and might have a short ORF but not be able to encode polypeptides longer than 100 amino acids (Boerner and McGinnis, 2012; Liu et al., 2012; Li et al., 2014; Shuai et al., 2014). This filter was then applied to the 19,752 transcripts, and 5430 transcripts were recovered (Fig. 1). The transcripts that might encode conserved protein domains were further filtered by comparing them with the four protein databases (KEGG, NR, COGs, and Swiss-Prot), and 4976 transcripts were obtained (Fig. 1). Next, the CPC was used to assess the protein-coding potential in order to eliminate 1252 possible coding transcripts (Fig. 1). After employing four stringent criteria, 3724 transcripts were considered as putative IncRNAs. Because housekeeping ncRNA (tRNAs, snRNAs, and snoRNAs) and miRNA precursors are two specific species of IncRNAs that function differently from other IncRNAs, the putative IncRNAs were next aligned to comprehensive sets of housekeeping ncRNAs and miRNA precursors sequences (for details, see the Materials and methods) to filter out 20 and 25 transcripts, respectively (Fig. 1). Thus, a total set of 3679 transcripts (3981 isoforms) were obtained and defined as tomato IncRNAs (Fig. 1).

IncRNAs were widely transcribed from every tomato chromosome

Next the IncRNAs were mapped onto the recently released tomato reference genome (Tomato Genome Consortium, 2012). A Circos plot clearly showed that tomato IncRNAs were not evenly distributed across chromosomes (Fig. 2A). Similar to protein-coding genes, IncRNAs have lower densities in the pericentromeric heterochromatin regions than in the euchromatin (Fig. 2A). This result suggested that IncRNAs may share similar features of transcription with the protein-coding genes. In addition, some IncRNAs were transcribed from loci much closer to the telomeres than protein-coding genes. For instance, some IncRNAs were generated from the ends of chromosomes #1 and 3 (Fig. 2A).

According to the locations relative to the nearest protein-coding genes, IncRNAs were further classified into four types: intergenic, intragenic, overlap, and antisense IncRNAs (Fig. 2B). Whereas 5.2% and 8.6% of the IncRNAs either overlapped with genes or were transcribed from inside genes (most from introns), the majority of IncRNAs (85.1%) were located in intergenic regions (Fig. 2B). This observation is consistent with previous studies (Li et al., 2014), further indicating that the type of IncRNA was termed as long intergenic non-coding RNA. In addition, only a small portion (1.1%) of IncRNAs are antisense of protein-coding genes. This result is unexpected as a previous study suggested that there were many antisense IncRNAs in Arabidopsis (Wang et al., 2014). Interestingly, the numbers of the four types of IncRNAs from Watson and Crick strands were similar (Fig. 2B).

Tomato IncRNAs are shorter and contain fewer exons than the protein-coding genes

Previous studies have shown that both plant and animal IncRNAs are shorter and harbour fewer exons than protein-coding genes (Pauli et al., 2012; Li et al., 2014; Shuai et al., 2014). To determine whether tomato IncRNAs share these features, the distribution of length and exon number of 3679 IncRNAs were analysed compared with all tomato predicted protein-coding transcripts (34,726 genes from the SL2.50 genome). Figure 3A shows that ~78% of IncRNAs ranged in size from 200 to 1000 nucleotides, with only 22%
Long non-coding RNAs in tomato fruit

Interplay between miRNAs and lncRNAs is one of the important functional patterns seen for lncRNAs (Yoon et al., 2014). LncRNAs could be targeted by miRNAs (Shuai et al., 2014) and could also function as eTMs of miRNAs (Wu et al., 2013). To examine whether lncRNAs are bona fide targets for miRNAs, all of the 3679 lncRNAs we checked using psRNATarget and psRobot. Only three miRNA targets were identified (Fig. 4A). The recovery of a small number of miRNA targets probably resulted from the low expression level of lncRNAs that were not detected by RNA-Seq. Of these three miRNA targets, lncRNA504 was the target of syl-miR6024 that was involved in plant immunity (F. Li et al., 2012). LncRNA3613 was the target of sly-miR5304 that has been only identified in solanaceous plants (Gu et al., 2014). In addition, lncRNA3294 was the target of sly-miR169 that is engaged in drought tolerance of tomato (Zhang et al., 2011).

Although eTMs are suggested to be widespread in Arabidopsis (Wu et al., 2013), here only three eTMs from lncRNAs were predicted (Fig. 4B). LncRNA246 was the eTM of sly-miR399, a miRNA that plays an important role in regulating phosphate homeostasis (Kuo and Chiou, 2011). LncRNA1127 is the eTM of sly-miR390-3p, which accumulates more than sly-miR390-5p (Kravchik et al., 2014). Interestingly, in the case of sly-miR6024, it not only targeted lncRNA504 but also was targeted by the eTM of lncRNA3444 (Fig. 4).

Identification of ripening-related lncRNAs

Because the rin mutant showed a strong non-ripening phenotype compared with AC, it was hypothesized that there might be some novel ripening-related lncRNAs present in rin. Bioinformatics analysis revealed that 3530 of the 3679 tomato lncRNAs were accumulated in both AC and rin (Fig. 5A). Only 23 and 126 lncRNAs were expressed specifically in AC or rin, respectively (Fig. 5A). To identify further ripening-related lncRNAs, the levels of lncRNAs were compared between AC and rin. A total of 677 lncRNAs were significantly differentially expressed between AC and rin. Compared with AC, 490 of 677 lncRNAs were up-regulated in rin, and the other 187 lncRNAs were down-regulated (Fig. 5B). To investigate whether these differentially expressed lncRNAs are engaged in fruit ripening, 10 of them were arbitrarily selected, five from a highly up-regulated group and five from a down-regulated group. The differences in their expression levels observed by RNA-Seq were experimentally validated by qRT–PCR (Fig. 6). In addition, the fold change in the lncRNA expression level of qRT–PCR and RNA-Seq was closely correlated ($R^2=0.76$, $P<0.001$) (Supplementary Fig. S1 at JXB online). These results indicated that these lncRNAs were indeed ripening-related lncRNAs in tomato fruits, further suggesting that these lncRNAs are likely to play some roles in fruit ripening.

Silencing of novel ripening-related intergenic lncRNAs greatly delayed the ripening of fruits

Compared with AC fruits, accumulation of intergenic lncRNA1459 and lncRNA1840 was lower in the rin mutant.
than in AC (Fig. 6A). It was hypothesized that lncRNA1459 and lncRNA1840 may regulate the ripening process of tomato fruits. To test this hypothesis, VIGS was performed to silence lncRNA1459 and lncRNA1840 in Micro-Tom fruits. VIGS of RIN was used as a positive control. Intriguingly, 2 or 3 weeks after infiltration, compared with TRV control fruits (already

Fig. 2. Distribution and classification of 3679 tomato IncRNAs. (A) Genome-wide distribution of tomato IncRNAs compared with that of protein-coding genes. Chromosomes 0–12 (SL2.50 genome) are shown with different colours and in a circular form as the outer thick track. The inner chromosome scale (Mb) is labelled on each chromosome. White circles show approximate centromere locations. On the second track (outer to inner), each vertical blue line reports the location of IncRNAs throughout the whole tomato genome. For the next two tracks, the abundance of IncRNAs and protein-coding genes in physical bins of 10 Mb for each chromosome are shown by blue and red columns, respectively. (B) Classification of tomato IncRNAs according to its genomic position and overlap with protein-coding genes. Numbers of IncRNAs in the Watson or Crick strand for each of the four main classes were labelled on the columns (intergenic, intragenic, overlap, and antisense IncRNAs). The proportion of the four kinds of IncRNAs was calculated. A scheme of the position of the IncRNA (black box) relative to neighbouring genes (black empty box) is shown at the bottom.
ripening) (Fig. 7A, D), tomato fruits injected with TRV-\textit{RIN}, TRV-lncRNA1459, or TRV-lncRNA1840 showed partial ripening, with a ripening section (red) and a non-ripening section (green or yellow) (Fig. 7B–D, E–G). Semi-quantitative PCR analysis suggested that a recombinant virus could spread from carpopodiums to fruits (Supplementary Fig. S2 at JXB online), and then induce the VIGS of lncRNAs or \textit{RIN} in tomato fruits. For positive VIGS control, the expression of \textit{RIN} was decreased to 20\% in the yellow section of tomato fruits (Fig. 7H). Compared with TRV control fruits, the transcript level of lncRNA1459 in the green sections of TRV-lncRNA1459 fruits was dramatically decreased by 65\% (Fig. 7I). On the other hand, the expression of lncRNA1459 in the red sections of TRV-lncRNA1459 fruits was comparable with that in TRV control fruits. Similarly, the level of lncRNA1840 in yellow sections of TRV-lncRNA1840 fruits decreased to 18\% compared with TRV control fruits (Fig. 7J). Therefore, the non-ripening phenotype of TRV-lncRNA1459 or TRV-lncRNA1840 fruits clearly resulted from the silencing of lncRNA1459 or lncRNA1840. The result strongly suggested that the two novel lncRNAs were involved in the regulation of tomato fruit ripening and might play an essential role in fruit ripening.

Features of lncRNA1840 and lncRNA1459 transcripts

For further characterization of lncRNA1840 and lncRNA1459, the expression pattern of these lncRNAs during fruit ripening was first explored. The transcripts of
lncRNA1840 accumulated to a high level at the IM stage, and then the expression levels dropped to the lowest at the MG stage. As the fruit became red, lncRNA1840 increased rapidly up to the RR stage (Fig. 8A). However, expression of lncRNA1459 increased during fruit ripening, peaking at the PK stage (Fig. 8B). The transcriptional patterns of both lncRNA1840 and lncRNA1459 indicated that they were ripening related.

Most lncRNAs are transcribed by Pol II, and polyadenylation is part of the maturation process of Pol II-dependent transcripts. In order to determine whether lncRNA1840 or lncRNA1459 has a poly(A) tail, total RNAs of tomato fruits were separated into poly(A)$^+$ and poly(A)$^-$ fractions followed by the detection of lncRNAs by RT–PCR. As shown in Fig. 8C, RIN was detected only from total and poly(A)$^+$ RNA, which is a positive control of poly(A)$^+$ RNA. lncRNA1840 and lncRNA1459 were also detectable from total and poly(A)$^+$ RNAs, but not from poly(A)$^-$ RNAs, suggesting that these two lncRNAs had poly(A) tails and might be Pol II-dependent transcripts.

Normally, 5’ initiating nucleotides of Pol II transcripts have 7-methylguanosine caps. To determine the 5’ end structure of lncRNA1840 and lncRNA1459, various enzymatic treatments of total RNAs were performed. Total RNAs were treated with 5’ pyrophosphohydrolase (RppH), which decaps RNA and converts the 5’ 7-methylguanylate cap or 5’ triphosphate to 5’ monophosphate, or T4 polynucleotide kinase (PNK), which adds a 5’ phosphate group to 5’ hydroxyl RNAs. The RNAs were then digested with XRN-1, a 5’ to 3’ exoribonuclease that acts on RNAs only with a 5’ monophosphate group. Next, random primed RT–PCR was conducted on these treated RNA samples to detect lncRNA1840 and lncRNA1459. As shown in Fig. 8D, lncRNA1840 and lncRNA1459 comparable with RNAs with no treatment, suggesting that lncRNA1840 and lncRNA1459 did not have a 5’ monophosphate group (Fig. 8D). Furthermore, dramatic reduction in the abundance of lncRNA1840 and lncRNA1459 was only found in RNAs treated with RppH followed by XRN-1 (Fig. 8D),
and lncRNA1840 and lncRNA1459 were polyadenylated (Fig. 8C), together indicating that lncRNA1840 and lncRNA1459 might have a 5′ 7-methylguanylate cap, but not a 5′ triphosphate group.

Discussion

A reliable list of lncRNAs from tomato fruits

Recent studies revealed that lncRNAs exert a crucial role in various biological processes of plants (Zhang and Chen, 2013). Although many lncRNAs have been identified from model plants, such as Arabidopsis (Ben et al., 2009; Liu et al., 2012; Zhu et al., 2013; Wang et al., 2014), wheat (Xin et al., 2011), and maize (Boerner and McGinnis, 2012; Li et al., 2014), much work still remains to be done with tomato. In the present study, a total of 3679 lncRNA loci (3981 isoforms) were identified in tomato, a model plant for study of fruit ripening (Fig. 1). Although the strict criteria pipeline for identification of tomato lncRNAs is similar to that used in previous studies in plants (Ben et al., 2009; Boerner and McGinnis, 2012; Zhu et al., 2013; Li et al., 2014; Shuai et al., 2014), there are several advantages to the present list of lncRNAs. (i) The lncRNAs should include some tomato lncRNAs that lack polyadenylation as the RNA-Seq data were obtained from RNAs that were depleted only of rRNA, but not of non-polyadenylated RNAs. In line with this, many lncRNAs without poly(A) tails have recently been identified from poly(A)–RNA-Seq in Arabidopsis (Di et al., 2014). (ii) Another ubiquitous limitation for recent lncRNA studies is that strand information from RNA-Seq data was missing (Li et al., 2012; Kumar et al., 2013; Shuai et al., 2014). Here, the strand-specific RNA-Seq allowed easy identification of the transcription orientation of lncRNAs, thus providing a useful resource for further functional analysis.

There are also some limitations to the list of tomato lncRNAs obtained. (i) Due to the inherent limitations of using 100 bp paired-end RNA-Seq, it is difficult to obtain the complete sequences for all predicted tomato lncRNAs. (ii) Normally, 1–2% of the genome encodes proteins (Birney et al., 2007); however, 48% of the assembled transcripts had significant homology with tomato protein-coding genes from the first filter of strict criteria (Fig. 1). These results indicated that the RNA-Seq was not deep enough to recover tomato lncRNAs fully. (iii) Some previously characterized lncRNAs have the potential to encode peptides longer than 100 amino acids, such as HOTAIR (HOX transcript antisense RNA), XIST (X-inactive specific transcript), and KCNQ1OT1.
(KCNQ1 overlapping transcript 1) (Li et al., 2014). However these type of lncRNAs could not meet the relatively strict criteria used here for definition as lncRNAs and thus were probably filtered out in the screening.

In summary, although some tomato lncRNAs might be excluded due to the sequencing limitations and strict bioinformatics criteria, a relatively robust and reliable list of tomato lncRNAs is provided. The list of lncRNAs will probably be very useful for other researchers.

Differential expression of lncRNAs was related to fruit ripening

Transcriptomic sequencing on different varieties of tomato revealed the presence of a large number of ncRNAs (Tomato Genome Consortium, 2012; Aoki et al., 2013). Previous studies have already shown that small RNAs are involved in the regulation of tomato fruit (Moxon et al., 2008; Mohorianu et al., 2011; Zuo et al., 2012; Karlova et al., 2013). Differential accumulation of small RNAs during tomato fruit ripening indicated that the regulation mechanism of small RNAz for fruit ripening would be complicated. Furthermore, degradome sequencing of tomato fruit revealed that a number of miRNA targets were genes which were previously already characterized as important factors in tomato fruit ripening (Karlova et al., 2013). For example, the target of miR156/157 is Colorless Non-Ripening (CNR) (Karlova et al., 2013), an epigenetic mutation of which could inhibit tomato fruit ripening (Manning et al., 2006). The target of miR172 is APETALA2 (AP2) (Karlova et al., 2013), which is a negative regulator of tomato fruit ripening (Chung et al., 2010; Karlova et al., 2011). In contrast, ripening-related lncRNAs have not been as comprehensively identified and functionally examined in tomato. The present RNA-Seq data and further qRT–PCR analysis revealed that many lncRNAs were significantly differentially expressed in the rin mutant compared with AC (Figs 5, 6). The result clearly suggested that lncRNAs might be involved in the regulation of tomato fruit ripening.

Functional identification of ripening-related lncRNAs is critical

Because the transcription machinery is not perfect, there are large numbers of spurious RNAs that might be by-products (Struhl, 2007). Recently many studies discovered thousands of lncRNAs from many plant species; however, they did not suggest that they are functional because ‘lncRNA’ is only a name for transcripts. The current dogma is that a few lncRNAs are functional and most are not (Ulitsky and Bartel, 2013); therefore, functional identification and assignment would be important for these lncRNAs. Due to the numbers of ripening-related lncRNAs that were identified in the present study, a rapid and high-throughput method would be necessary for their functional characterization.

VIGS is a widely used tool to identify gene function in tomato fruit development and ripening (Fu et al., 2005; Manning et al., 2006; Orzaez et al., 2006, 2009; Quadrana et al., 2010).

Fig. 8. Features of lncRNA1840 and 1459. Analysis of expression of lncRNA1840 (A) and lncRNA1459 (B) during fruit ripening. Actin expression values were used for internal reference. The relative level of lncRNA transcripts was normalized to that at the IM stage of AC fruits where the amount was arbitrarily assigned a value of 1. Error bars indicate ±SD of three biological replicates, each measured in triplicate. IM, immature green; MG, mature green; BR, breaker; PK, pink; RR, red-ripe stage. (C) Determination of the 3′ end structure of lncRNAs. Random-primed RT–PCR was performed on total RNAs, poly(A)+, and poly(A)− RNAs from tomato fruits to detect novel lncRNAs. (D) Analysis of the 5′ end structure of lncRNAs. Total RNAs from tomato fruits were treated (+) or not (−) with various enzymes and subjected to random-primed RT–PCR to detect specific lncRNAs. RppH, 5′ pyrophosphohydrolase; XRN-1, 5′ to 3′ exoribonuclease; PNK, polynucleotide kinase. −RT, reverse transcription was performed in the absence of reverse transcriptase. Transcript from Rin was detected by RT–PCR as a control for poly(A)+ RNA and capped RNA. PCRs with genomic DNA were used as positive controls. The amplification region of Rin primers contained one intron which results in a larger PCR product of DNA template than the others.
et al., 2011; Fantini et al., 2013; Lange et al., 2013) because it is an easy, rapid, reliable, and transformation-free method (Senthil-Kumar and Mysore, 2011; Lange et al., 2013). In addition, partial sequence information of one transcript is sufficient to silence itself by VIGS. Here it was demonstrated that VIGS is a powerful tool to study IncRNAs too. VIGS of IncRNA1459 and IncRNA1840 in tomato fruits resulted in a delay of fruit ripening (Fig. 7), taken together with the expression patterns of these two IncRNAs during fruit ripening (Fig. 8), provides strong evidence that IncRNA1459 and 1840 are functional in fruit ripening regulation.

Capping RNA is critical for RNA interactions with many nuclear and cytoplasmic proteins, and plays essential roles in RNA stability, splicing, nucleocytoplasmic transport, and translation initiation to regulate RNA accumulation (Topisirovic et al., 2011). Also, polyadenylation of RNA is important for nuclear export, translation, and stability of RNAs (Elkon et al., 2013). End structure analysis of IncRNA1840 and IncRNA1459 indicated that they might be Pol II-dependent transcripts with 5’ caps and 3’ poly(A) tails (Fig. 8C, D), which is very helpful for further functional characterization of these two IncRNAs in the future. This study sheds new light on the regulation of fruit ripening, which might trigger more comprehensive studies on tomato IncRNAs. It would be necessary to investigate further the functional motifs and target genes of IncRNAs in tomato, which would help to elucidate fully the regulatory mechanisms of IncRNAs on fruit ripening.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Expression levels as determined by RNA-Seq and qRT-PCR are highly correlated.

Figure S2. Semi-quantitative PCR detection of recombinant TRV RNA in uninjected tomato fruits with infiltrated carpopodiums.

Table S1. List of IncRNAs of tomato.

Table S2. Primers used in the study.

Acknowledgements

We wish to thank Dr S.P. Dinesh-Kumar (University of California at Davis) for providing the pTRV1 and pTRV2 vector, and Dr Xuiren Zhang (Texas A&M University) and Dr Xiuying Liu (Chinese Academy of Science) for stimulating discussions and critical review of the manuscript. We also thank T. Wang, R. Li, C. Gao, S. Li, and Z. Ju for technical assistance. This work was supported by a grant from the Chinese Universities Scientific Fund (2014RC006) to HZ.

References

