Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

Yuepeng Song1,2, Min Tian1,2, Dong Ci1,2, and Deqiang Zhang1,2,*

1 National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China
2 Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, PR China

* To whom correspondence should be addressed. E-mail: DeqiangZhang@bjfu.edu.cn

Received 13 September 2014; Revised 15 November 2014; Accepted 10 December 2014

Abstract

Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes.

Key words: DNA methylation, flower development, gene expression, microRNA, Populus.

Introduction

Cytosine methylation functions as an important epigenetic regulator of transposon silencing, heterochromatin organization, genomic imprinting, and gene expression (Zhang et al., 2006; Suzuki et al., 2008). Plant genomes have high, and highly variable, levels of cytosine methylation (Vaughn et al., 2007), including interspersed methylated and non-methylated regions (Suzuki et al., 2008; Zemach et al., 2010). Roughly 30% of DNA methylation occurs in genic regions, but the majority of DNA methylation occurs in intergenic regions, in heterochromatin at pericentromeric and subtelomeric repeats, and at rDNA clusters (Zhang et al., 2006). The relationship between DNA methylation and gene expression has been extensively studied. It appears that different methylated regions in genes have different effects on the regulation of gene expression. Analysis in Arabidopsis thaliana revealed that gene methylation in promoter regions generally associates with a greater degree of tissue-specific expression, whereas methylation in transcribed regions associates with higher levels of expression (Zhang et al., 2006). By contrast, Vining et al. (2012) found that, in poplar, gene body methylation associated more with
a repression of transcription than did promoter methylation. This divergence might be affected by gene length and, in addition, by local epigenetic modification (Zilberman et al., 2007; Vining et al. 2012). These studies show that gene length might be closely associated with the DNA methylation level, pattern, and the regulation of gene expression. Previous studies have focused on the cytosine methylation of genic regions, but the regulatory relationship between methylation and elements of intergenic regions remains unclear.

As important elements encoded by loci in the intergenic regions of the genome, miRNAs are short, non-coding RNA molecules that range from ~20–24 nt, and negatively regulate gene expression at the transcriptional and/or post-translational levels by degrading or inhibiting the translation of target mRNAs (Chen, 2010). According to the data in the miRbase database, the poplar genome contains more than 400 miRNA genes. In humans, miRNAs participate in the regulation of about two-thirds of genes (Friedman et al., 2009; Peter, 2009). Furthermore, transcription factors and epigenetic modification also regulate the expression of miRNA genes (Bracken et al., 2008; Vrba et al., 2010). For example, aberrant DNA methylation of miRNA promoters resulted in repressed expression in many cancer types (Li et al., 2011). Down-regulation of the tumour suppressors miR355 and miR125b via aberrant DNA methylation is associated with increased malignancy or metastatic potential in breast cancer, illustrating the importance of the DNA methylation-mediated regulation of miRNAs in cancer (Png et al., 2011).

DNA methylation and miRNA gene expression may have a complex interaction in plants. Arabidopsis miRNAs include canonical, ~21 nt miRNAs, and DCL3-dependent 24 nt variants referred to as long miRNAs, lmiRNAs (Wu et al., 2010). The 21 nt RNAs generally repress expression of their target gene through mRNA cleavage, while lmiRNAs can direct cytosine DNA methylation at their own loci in cis and at their target genes in trans, resulting in transcriptional gene silencing (Wu et al., 2010). Compared with protein-coding genes, miRNA genes are smaller and located in intergenic regions that may show differences in epigenetic modification and regulation of gene expression. However, DNA methylation of miRNA genes in plants remains poorly explored, particularly on the whole-genome scale.

Trees, with their long life spans and generation times, have to acclimate to different environments and are, therefore, models of interest for epigenetic studies (Hamanishi and Campbell, 2011). Poplar has been widely recognized as a model tree because of its available genome sequence, extensive transcriptome data and various molecular tools (Tuskan et al., 2006; Jansson and Douglas, 2007). Poplar epigenomics research used HPLC to detect changes in global DNA methylation under stress conditions (Gourcilleau et al., 2010; Raj et al., 2011). Recently, with the development of next-generation sequencing techniques, research using high-resolution epigenomic methods has detected tissue-level variation in DNA methylation (Vining et al., 2012; Lafon-Placette et al., 2013). These studies used different methods to examine DNA methylation, including whole-genome shotgun bisulphite sequencing (WGsBs), Methylated DNA immunoprecipitation (MeDIP) sequencing, and DNase I-MeDIP sequencing. Among these methods, the comprehensive DNA methylation analysis technique of whole-genome bisulphite sequencing provides single-base resolution, good coverage of regions with low CpG density, and information on cis co-methylation (Laird, 2010). Thus whole-genome bisulphite sequencing is an ideal method for global methylation analysis.

Andromonoecious poplars and gynomonoecious poplars have been found in natural poplar populations. Unlike female and male poplars, which produce separate female and male flowers, andromonoecious poplars produce both male and hermaphrodite catkins, which include female and male flowers next to each other in bisexual flowers (Fig. 1A; see Supplementary Fig. S1A at JXB online). By contrast, gynomonoecious poplars produce female and hermaphrodite catkins, which include female and male flowers in a cup-shaped structure (see Supplementary Fig. S1B at JXB online). Our previous studies showed sex-specific DNA methylation and candidate gene expression in female and male flowers of andromonoecious poplar (Song et al., 2012). In order to investigate whether DNA methylation affects the expression of miRNA and protein-coding genes at the whole-genome level, a comprehensive analysis of the poplar methylome, microRNAs, and transcriptome was conducted here, using male and female flowers from andromonoecious poplar. Methylated miRNA genes were identified and it was shown that their methylation patterns differ between miRNA and protein-coding genes. Correlation analysis showed a negative correlation between DNA methylation and miRNA gene expression. Moreover, it was shown that DNA methylation regulates a set of important flowering-related miRNA genes and their targets.

Materials and methods

Plant materials
Observation of flower morphology identified 17 unrelated andromonoecious clones and 23 gynomonoecious clones in a natural population of 460 29-year-old unrelated individuals, representing almost the whole geographic distribution of Populus tomentosa in China. Three andromonoecious clones (‘2–14’, ‘3605’, and ‘5103’), as biological replicates, were used in the methylome, microRNA, and transcriptome analyses. For sampling, female and male flowers were dissected from the hermaphrodite catkins at the last phase of flower development, before pollination (25 February). To enhance the reliability and association of methylome, microRNA, and transcriptome data, DNA, total RNA, and miRNA were simultaneously extracted from flowers using different extraction kits. Comparison of the female and male flower libraries of andromonoecious clones was used to identity differentially methylated regions, expressed miRNAs, and expressed genes. The methylation and expression of candidate gene were validated in female and male flowers of gynomonoecious poplar, and in male poplar flowers and female poplar flowers, to validate the relationship of DNA methylation levels and bisexual flower development in poplar.

Bisulphite sequencing
Genomic DNAs were isolated using the Plant Genomic DNA Purification Kit (Zexing Inc., China). DNA was fragmented
The relationship of DNA methylation and transcriptional regulation

by sonication with the Diagenome sonicator to a mean size of approximately 250 bp, followed by DNA repair of blunt ends, 3′-end addition of dA, and adaptor ligation according to the manufacturer’s instructions (Illumina, San Diego, US). Adapter-ligated genomic DNA ranging from 120–170 bp was isolated and subjected to sodium bisulphite conversion using the EpiTect Bisulfite kit (Qiagen, Valencia, CA). Conversion efficiency was approximately 99% using HPLC detection (see Supplementary Table S1 at *JXB* online). Bisulphite-treated DNAs were PCR amplified with 16 cycles. The resultant DNAs were used for paired-end sequencing with a read length of 101 nt for each end, using the ultra-high-throughput Illumina Hiseq2000 as per the manufacturer’s instructions.

To verify the bisulphite sequencing data, primers specific for different methylated regions were designed using the Methyl Primer Express (v1.0) software (Herman *et al.*, 1996). According to the detailed procedure of Trap-Gentil *et al.* (2011), methyl-sensitive PCR (MS-PCR) was performed using bisulphite-treated DNA as templates, and was carried out for 25 cycles. PCR products were cloned into pMD18-T (Takara BioInc., Tokyo, Japan), and three positive clones for each individual were selected for sequencing. Primer sequences and annealing temperatures are listed in Supplementary Table S2 at *JXB* online.

Bioinformatic and statistical analyses

Raw data quality control reports were generated by FastQC Tools (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). High quality sequencing reads (Q >20) from female and male flowers were trimmed to 101 nt and mapped to the *P. trichocarpa* v2.2 reference genome (http://www.phyozome.net/popalr.php). The Bismark alignment tool (http://www.bioinformatics.babraham.ac.uk/projects/bismark/) was used for sequence alignment and methylation sites calling with default parameters. HashMatch was used to identify reads that align to multiple locations. To eliminate the bias produced by the alignment of duplicates generated by PCR, a de-duplication step was used to remove reads mapping to the same position of the reference genome. The coverage of cytosine sites and methylation levels were calculated in different conditions, such as different samples and on different chromosomes. Methylation level is defined as follows:

\[
\text{Absolute methylation level} = \frac{\text{Total methylation level of mCs}}{\text{Total sequence length of the calculated region}}
\]

Fig. 1. The approaches used to obtain methylome, miRNA, and transcriptome data. (A) Description of the plant material and methylome, miRNA, and transcriptome approaches. The pictures show the procedure to isolate female and male flowers of andromonoecious poplar. The left red arrow shows the female flower and the right red arrow shows the male flower. (B) Summary of bisulphite sequencing samples and results. (C) Summary of the methylation ratio in different CG contexts between female and male flowers. (D) Summary of methylation on different chromosomes between female and male flowers. DMR represents differentially methylated regions.
To detect differentially methylated sites, Fisher’s Exact Test was used to test cytosine sites of female and male flowers with a minimum coverage of \(>2 \). Minimum coverage represents the minimum threshold value of sequencing depth required to identify the differentially methylated sites between samples. To identify the most sites that are differentially methylated, two was chosen as the minimum threshold value of sequencing depth. After that, sliding windows and ANOVA were adopted to call differentially methylated regions (DMRs). The same coverage regions in all samples was used for identifying DMRs. Considering that the length of the DMR cannot be predicted before calling the DMRs, the size of the sliding window was set to 1 000bp, representing part of the continuous DMR sampling results. After that, those windows with probabilities of less than 0.05 were merged into larger regions to estimate the mean and variance of entire methylation regions. In these regions, ANOVA was used again to filter DMRs with \(P<0.05 \) (called candidate DMRs).

To analyse the distribution of methylation sites on different regions of the poplar genome, repeats sequences were detected by RepeatMasker (http://www.repeatmasker.org/) using the \(P. \) trichocarpa genome as the reference. Gene annotation from the Phytozome poplar genome v2.2 (http://www.phytozome.net/poplar.php) was used. After methylated reads were mapped to the reference genome, the difference in percentage of reads aligned to repeats and genes were compared. Genes with methylation at promoters, and/or within annotated transcribed regions were compared to archival microarray expression data in order to determine the correlation between methylation and expression. Pearson’s correlation analysis \((r_p)\) and evaluation of the statistical significance of methylation level and gene expression was performed as described by Lafon-Placette et al. (2013). Chi-squared homogeneity tests were used to evaluate the effects on mapping distribution.

Gene and miRNA expression data analysis

Three independent replicates at the final phase of flower development were used for each sample. Fresh tissue samples of flowers for RNA extraction were collected from the three andromonoecious poplars. Total RNAs were amplified, labelled, and purified using the GeneChip 3’IVT Express Kit (Affymetrix, Santa Clara, CA, US) following the manufacturer’s instructions, to obtain biotin-labelled cDNA. One-channel chip hybridizations were performed by Shanghai Bio using the Affymetrix Genechip Poplar Genome Array. The chip hybridization results were scanned with a GeneChip Scanner 3000 and were normalized with the MAS 5.0 algorithm, and Gene Spring Software 11.0. The quality assurance/quality control measures had an average background of \(<100\). Genes with more than a 2-fold change in the female flower compared with the male flower were selected. The fold-change analysis data were filtered by \(t \)-test \((P<0.05)\), and gene expression pattern hierarchical clustering analysis was conducted using the complete linkage clustering \((\text{Cut off}=0.6, \text{Exponent}=2)\) Cluster program. To avoid false positives, the \(q \)-value for the minimum false discovery rate at which the test may be called significant was calculated. Genes differentially expressed between the female and male flowers were selected at a \(q \)-value of \(<0.05\).

For miRNA analysis in our study, total RNA was isolated from female and male floral tissue by a modified CTAB method (Chang et al., 1993) with isopropanol instead of lithium chloride for RNA precipitation. Extracted RNA was used for small RNA (sRNA) library construction. The sRNAs were sequenced using an Illumina HiSeq 2000 at the Shanghai Bio Institute. Sequencing reads were aligned to the \(P. \) trichocarpa genome v2.2 using SOAP v2.21 (Li et al., 2008). Sequences with a perfect match were used to BLAST against GenBank (http://www.ncbi.nlm.nih.gov/GenBank/) and Rfam v11.0 (http://rfam.sanger.ac.uk/) databases for annotation. rRNAs, tRNAs, snRNAs, and snoRNAs were removed in sequencing reads. The remaining un-annotated sRNAs were searched against miRBase 19.0 with a maximum of two mismatches allowed to identify conserved miRNAs (Griffiths-Jones et al., 2008). To predict novel miRNAs, miRCat (http://srna-tools.cmp.uea.ac.uk/plant/cgi-bin/srna-tools.cgi?rm=inputform&tool=mircat) was used to explore the secondary structures, DCL1 cleavage sites, and minimum free energies of the un-annotated sRNA tags that could be mapped to the \(P. \) genome. miRNA expression was compared between female and male libraries. To determine which miRNAs were differentially expressed. The expression levels of miRNAs within each library were normalized to get the expression in transcripts per million mapped reads. miRNA target genes were predicted using psRNATarget with settings: Maximum expectation \(<2.0\), length for complementarity scoring \(<20\), and target accessibility \(<20\).

5′-RACE

RNA Ligase-Mediated 5′-RACE (RLM-RACE) was performed with the First Choice RLM-RACE Kit (Ambion, Austin, TX), as described by Song et al. (2013b). PCR was performed with 5′ adaptor primers and 3′ gene-specific primers using cDNA as the template (see Supplementary Table S3 at JXB online). The RACE products were gel-purified, cloned, and sequenced.

Gene functional enrichment analysis

The annotation information for differentially expressed genes was obtained from GenBank and KEGG (http://www.genome.jp/kegg). For enrichment analysis, the Biological Process (BP) branches of Gene Ontology (GO) were used. Applying the true-path rule, a gene annotated with a particular GO term was also annotated with all its parents. GO terms of BP were tested for statistical significance of enrichment using the cumulative hypergeometric test (Song et al., 2013a). To adjust for multiple comparisons, a Benjamin–Hochberg false discovery rate (FDR) \(q \)-value \((\text{Benjamini} \text{–} \text{Hochberg}, 1995)\) was calculated from the \(P \) values, and a \(q \) value threshold of 0.01 was used for significance. The graph was visualized using Cytoscape (Shannon et al., 2003).

Gene expression analysis by qRT-PCR

The quantitative PCR amplifications were performed according to Song et al. (2012). The real-time PCR primer pairs are shown in Supplementary Table S4 at JXB online. The efficiency of the primer sets was calculated by performing real-time PCR on several dilutions of first-strand cDNAs. The different primer sets amplified with similar efficiencies. The specificity of each primer set was checked by sequencing PCR products (Zhang et al., 2010). The results obtained for the different phases were standardized to the levels of the \(PtACTIN \) and \(UBQUITIN \) transcripts, which have stable expression during floral development (Song et al., 2013a).

Results

DNA methylation sequence data

After removing low-quality and duplicate reads, ~76–83 million uniquely mapped high-quality reads were obtained for each line (Fig. 1B). After calling methylation sites, 22 785 332 and 24 381 556 methylated cytosines (mCs), on average, were identified in male and female flower libraries, accounting for 14.7% and 13.8%, respectively, of all covered cytosines throughout the reference genome (Fig. 1C). The percentages of cytosines within differentially methylated regions (DMRs) were identified in female and male flower libraries, accounting for 14.7% and 13.8%, respectively, of all covered cytosines throughout the reference genome (Fig. 1C). The percentages
of mCs in CG, CHG (with H being A, C, or T) and CHH contexts were 45.8%/47.9% (male/female), 21.6%/21.4% (male/female), and 5.8%/3.6% (male/female), respectively (Fig. 1C).

Mapping of bisulphite sequencing reads to the genome

After filtering, 7 392 809 (female) and 8 098 028 (male) reads were mapped on the *P. trichocarpa* v2.2 reference genome including protein-coding genes, microRNA genes, repeat elements, and intergenic regions. Mapped reads account for only 9.7% and 11.6% of male and female sequencing reads, respectively. Among the mapped reads, it was found that 74.1% of total sequence reads mapped to intergenic sequences, similar methylation patterns to the results observed in *A. thaliana* and *Oryza sativa* (Zhang et al., 2006; Li et al., 2012). It was also found that 10.1% of methylated reads mapped to repeats and 15.1% mapped to genes, but these differences were not statistically significant (Fig. 2A). At the scaffold level, among all 19 chromosomal scaffolds, methylated reads showed a significantly biased distribution: fewer reads than expected, based on scaffold sizes, mapped to scaffolds 4 ($\chi^2=4.36$, $P < 0.05$), 9 ($\chi^2=6.74$, $P < 0.01$), and 14 ($\chi^2=5.47$, $P < 0.05$) and more reads mapped to scaffolds 12 ($\chi^2=5.76$, $P < 0.05$), 15 ($\chi^2=6.41$, $P < 0.05$), and 17 ($\chi^2=4.82$, $P < 0.05$) (see Supplementary Fig. S2 at *JXB* online).

Mapping of bisulphite sequencing reads to genes

15.1% of the bisulphite sequencing reads were mapped to 66.8% of the v2.2 model genes (27 636 protein-coding genes and 113 miRNA genes), in the body regions and/or in the 5' and 3' flanking regions (±2 kb). 95.7% of these reads were mapped to coding genes and 4.3% to miRNA genes (Fig. 2B). Most of methylated regions were enriched in the protein-coding gene body regions (64.5%), with exons and introns accounting for 56.3% and 23.5% of the reads, respectively (Fig. 2C, D). 7.4% and 9.6% of protein-coding genes were methylated in the 5' and 3' flanking regions (±2 kb), respectively. Only 2.8% of the protein-coding gene body and

Fig. 2. Classification of methylation sites on different regions of protein-coding genes and microRNA genes. (A) Pie chart representing the proportion of regions covering v2.2 gene models, repeats or intergenic loci in the whole-genome bisulphite sequencing fraction. (B) Pie chart representing the proportion of protein-coding genes and microRNA genes in the whole-genome bisulphite sequencing fraction. (C) Venn diagram showing the percentage of protein-coding genes with differentially methylated regions. Protein-coding genes include the protein-coding gene body, 2 kb 5' flanking regions, and 2 kb 3' flanking regions. (D) Venn diagram showing the percentage of protein-coding gene bodies with differentially methylated regions. Protein-coding gene bodies include the protein-coding gene exon and intron. (E) Venn diagram showing the percentage of miRNA genes with differentially methylated regions. miRNA genes include the miRNA gene body, 2 kb 5' flanking regions, and 2 kb 3' flanking regions. (F) Venn diagram showing the number of protein-coding genes and microRNA genes with sex-specific DNA methylation.

The relationship of DNA methylation and transcriptional regulation | 1895
flanking regions were methylated simultaneously (Fig. 2C). By contrast, most miRNA genes were methylated in the flanking regions including 36.6% and 24.1% in 5′ and 3′ flanking regions, respectively. Only 3.3% of miRNA genes were only methylated in gene bodies. 10.8% of miRNA gene bodies and flanking regions were methylated simultaneously (Fig. 2E).

Compared with different length protein-coding genes, miRNA genes showed significantly lower cytosine methylation levels (see Supplementary Fig. S3 at *JXB* online). In protein-coding genes, the average cytosine methylation level including all three cytosine methylation contexts (CG, CHG, and CHH) showed relative higher coverage in the 5′ and 3′ flanking regions, decreased dramatically at the borders of the genes, and increased to a peak in the central part of the gene body. CG (~16.54–46.89%) showed the highest methylation and CHG (~15.69–20.24%) showed the lowest. By contrast, in miRNA genes, the average methylation levels of all three cytosine methylation contexts showed relatively higher coverage in the 5′ and 3′ flanking regions, decreased dramatically at the transcription start site, and remained lowest in the transcribed regions. CHH (5.91%~6.04%) showed the highest levels and CG (4.79%~5.64%) showed the lowest levels (Fig. 3; see Supplementary Fig. S4 at *JXB* online).

Methylation levels in different contexts between female and male flowers

The three cytosine methylation contexts showed significantly different methylation levels between female and male poplar flowers. CHH showed the highest methylation levels and CHG showed the lowest methylation levels. CHH methylation levels were higher in male flowers than in female flowers (Fig. 4A); CG did not differ between female and male flowers. By contrast, CHG showed site-specific methylation on C(T/A)G in male flowers and C(A/T)G in female flowers while CHH showed site-specific methylation on C(A/T)(A/T) in male flowers and C(A/C) (A/T) in female flowers. CHH methylation was principally enriched in intergenic regions and was significantly higher in male flowers than in female flowers. By contrast, CG methylation was mainly located in gene bodies and was not significantly different between female and male flowers (Fig. 4B).

Methylated regions were categorized by the genome feature of different tissues including promoter regions and the gene body of the protein-coding gene and miRNA genes. Among the protein-coding genes, the gene body of the andromonoecious poplar was the most frequently methylated (~31.5–48.5%). The percentage of methylated gene bodies was significantly higher in female flowers than in male flowers (Fig. 5). In the andromonoecious poplar, the promoter of miRNA genes was the most frequently methylated (~90–96%) and the fraction of methylated promoters was significantly higher than the fraction of methylated gene bodies in both female and male flowers (Fig. 5).

Regulatory roles of DNA methylation and miRNAs in gene expression

It was found that genes with intermediate expression levels tended to have higher methylation levels in the two tissues.
than those genes with higher or lower expression levels. At the genome level, a significant negative correlation was confirmed between miRNA gene expression and methylation ($r=-0.79$, $P<0.05$). Next, the expression levels of protein-coding genes and miRNA genes with different methylation statuses were compared. Among the protein-coding genes, methylated genes were significantly repressed to different levels. Protein-coding genes with methylated sites enriched in the 3’ flanking regions and on both the 5’ and 3’ flanking regions were repressed more than genes with methylated sites enriched in the 5’ flanking regions and the gene body (Fig. 6A). Among the miRNA genes, expression of the miRNA genes with methylated sites enriched in the 5’ regions, 3’ flanking regions, or both 5’ and 3’ flanking regions, were significantly repressed ($P<0.05$) (Fig. 6B). In addition, since DNA methylation has strand specificity, the effects of methylation on the plus and minus
strands were compared. It was found that methylation on the minus strand had a stronger correlation with repression of gene expression than methylation on the plus strand, both in protein-coding and miRNA genes ($r_m=-0.89$, $r_p=-0.71$, $P<0.01$, see Supplementary Fig. S5 at JXB online).

Among the 113 methylated miRNA genes (see Supplementary Excel S1 at JXB online), eight belong to the 24 nt long miRNAs (lmiRNAs). Of these, five lmiRNAs came from the miR478 gene family (miRNA478a, b, j, k, and u), and the others from miR474b, 481e, and 1449 (Table 1). Forty-three targets (including different transcript variants) of these microRNAs were predicted using psRNATarget tools (see Supplementary Excel S2 at JXB online). To confirm the regulatory patterns of these miRNAs and targets, 5′-RACE was used on a flower mRNA library to detect the cleavage products of the predicted targets but, for 17 targets, no cleavage products were found. Next, bisulphite sequencing was used to examine the status of DNA methylation at these predicted targets. Among these targets, it was found that 10 targets were methylated within 65 nt regions around the target sites (Table 1). These targets include miR1449 targets Potri.004G081200 and Potri.005G236500, the miR474b target Potri.011G001100, the miR478a and miR478b co-targets Potri.005G229000 and Potri.009G011200, the miR478j and miR478k co-targets Potri.001G284000 and Potri.016G032700, the miR478u target Potri.006G070000, and three miR481e targets Potri.013G108200, Potri.013G118500, and Potri.003G120800. Although no cleavage products were found, the expression of these target genes was still negatively associated with lmiRNA gene expression (see Supplementary Table S5 at JXB online). Moreover, Potri.003G120800, an miR481e target, which has four transcript variants, was methylated in two regions flanking splice sites. Potri.006G070000, an miR478u target, which has three transcript variants, was only methylated in one splice site flanking region (see Supplementary Fig. S6 at JXB online).

Gene ontology analysis of methylated genes and miRNA targets

Gene ontology (GO) analysis was used to characterize functionally the differentially methylated genes that had cytosine DNA methylation (5mC) in different gene regions. The GO terms of protein-coding genes with 5mC enrichment in the 5′ and 3′ flanking regions were enriched in DNA packaging, chromosome organization, the nitrogen compound metabolic process, the biosynthetic process, and the regulation of the cellular process for the biological process as well as
DNA methylation patterns and target genes of eight lmiRNAs

Percentages represent relative cytosine methylation levels in these regions.

<table>
<thead>
<tr>
<th>No.</th>
<th>Genome location</th>
<th>Female flower</th>
<th>Male flower</th>
<th>Target genes</th>
<th>Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5' Flanking regions</td>
<td>Gene body</td>
<td>3' Flanking regions</td>
<td>Gene body</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR478a</td>
<td>Chr12:7133508-7133603</td>
<td>21.3%</td>
<td>16.4%</td>
<td>34.5%</td>
<td>Potri.009G011200a</td>
</tr>
<tr>
<td>miR478b</td>
<td>Chr12:7130082-7130177</td>
<td>38.1%</td>
<td></td>
<td>74.4%</td>
<td>Potri.005G229000a</td>
</tr>
<tr>
<td>miR478j</td>
<td>Chr06:2596810-2596868</td>
<td></td>
<td>31.1%</td>
<td>13.7%</td>
<td>Potri.017G120500</td>
</tr>
<tr>
<td>miR481a</td>
<td>Chr11:10598914-10599109</td>
<td>31.1%</td>
<td>Potri.004G044800a</td>
<td>Cleavage</td>
<td></td>
</tr>
<tr>
<td>miR481b</td>
<td>Chr12:7133508-7133603</td>
<td>21.3%</td>
<td>Potri.013G108200</td>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td>miR481c</td>
<td>Chr12:7133508-7133603</td>
<td>21.3%</td>
<td>Potri.005G236500</td>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td>miR481d</td>
<td>Chr12:7133508-7133603</td>
<td>21.3%</td>
<td>Potri.008G221700</td>
<td>Cleavage</td>
<td></td>
</tr>
<tr>
<td>miR1449</td>
<td>Chr02:24046728-24046842</td>
<td>5.9%</td>
<td>Potri.011G001100a</td>
<td>Cleavage</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. DNA methylation patterns and target genes of eight lmiRNAs

oxireductase activity, nucleic acid binding, and ion binding for molecular function (see Supplementary Fig. S7 at JXB online). The GO terms of the protein-coding genes with 5mC enrichment in the gene body were enriched in fundamental processes known to be affected by methylation, including the primary metabolic process, the macromolecular metabolic process, and the cellular metabolic process for the biological process as well as transferase activity, hydrolase activity, nucleoside binding, and nucleotide binding for molecular function (see Supplementary Fig. S8 at JXB online). GO classification of the targets of the methylated miRNA genes showed that signal transducer activity, nucleoside binding, nucleotide binding, and transferase activity were enriched in GO terms of molecular function. In the biological process, programmed cell death, the cellular macromolecular metabolic process, the protein metabolic process, and the carbohydrate metabolic process terms were also enriched.

DNA methylation and expression of floral development-related miRNAs and their targets

Eleven known miRNAs related to flower development were detected in our bisulphite sequencing data, including miR156, miR159, miR164, miR169, miR172, and miR319. miR156l and k showed different methylation patterns in both female and male flowers (see Supplementary Table S6 and Supplementary Fig. S9 at JXB online). Both the 5' and 3' flanking regions of miR156l showed male-specific methylation and the miR156k gene body showed female-specific methylation. However, the expression of miR156l and k showed higher expression in female flowers than in male flowers. miR159a and miR319f were only methylated in the 5' flanking regions in male flowers, and these genes were repressed in male flowers. Two members of the miR164 gene family were identified, miR164a and miR164e, which showed significantly higher methylation levels in male flowers than in female flowers and repressed expression in male flowers. Both the 5' and 3' flanking regions of miR164a were only methylated in male flowers and CHH methylation levels were higher than CpG and CHG levels. Three members of the miR169 gene family, miR169u, q and t, were also detected in the bisulphite sequencing data. miR169u and t were methylated in the 5' flanking regions in male flowers and miR169q was methylated in the gene body regions in female flowers; all of these miRNA genes were repressed in male flowers. miR172b showed different methylation and expression levels in female and male flowers (Fig. 7; see Supplementary Table S10 at JXB online). However, miR172i showed female-specific methylation in the 3' flanking regions and was repressed in female flowers.

The microarray data for the expression of targets of these miRNA genes were also examined (see Supplementary Table S6 at JXB online). The results showed that SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL), a target of miR156, was repressed in female flowers. NUCLEAR TRANSCRIPTION FACTOR Y, and ALPHA (NFYA), targets of miR169, were repressed in female flowers. miR172 was repressed in female flowers, and its target APETALA 2 (AP2) was induced. Three MYB genes (MYB33, MYB65,
and *MYB101* and four TCP genes (*TCP2, 3, 10, and 24*), targets of miR159 and miR319, respectively, were highly expressed in male flowers. Two targets of miR164, *CUP-SHAPED COTYLEDON (CUC1)* and *CUC2*, were induced in male flowers. Subsequently, real-time quantitative PCR was used to confirm the expression of miRNA target genes. The expression of all target genes was negatively correlated with the levels of a given miRNA, in accordance with the gene-silencing function of miRNAs (see Supplementary Fig. S11 at *JXB* online).

Validation of bisulphite sequencing and mapping

Among differentially methylated miRNA and target gene sequences, 41 regions were selected (9 036 bp in total) representing a variety of methylation patterns to confirm using the method of Trap-Gentil *et al.* (2011) (see Supplementary Table S2 and Supplementary Fig. S12 at *JXB* online). This validation suggested that bisulphite sequencing is an effective, stable, and reproducible technology for the detection of methylation sites in the poplar genome. To verify the results of cDNA microarray and microRNA sequencing, candidate protein-coding and miRNA genes representing a variety of functional categories and expression patterns were also selected for qRT-PCR analysis to validate the transcriptome data (see Supplementary Table S4 and Supplementary Fig. S11 at *JXB* online). The results showed that these genes have the same expression tendency as observed in the microarray data, although some absolute expression levels were different between the two analytical platforms, suggesting that the expression data are reproducible and reliable.

In order to verify the methylation pattern of miR172b in bisexual flowers, miR172b methylation was measured in gynomonoecious, andromonoecious, and normal poplar (Fig. 7A). The results showed that the relative methylation level of...
miR172b was 53.47% in andromonoecious and gynomo-
noecious female flowers which was significantly higher than
in male flowers (23.8%). In poplar, the relative methylation
level of miR172b was 23.3% and 21.15% in female and male
flowers, respectively. Although three SNPs also have been
detected in miR172b flanking regions, a significant associa-
tion of these SNP sites with candidate gene expression was
not detected (see Supplementary Fig. S13 at JXB online).

Discussion

Distribution and preference of methylation

The coverage efficiency of reads mapping was 9.7% and 11.6%
in male and female flower sequencing reads, respectively. This
is higher than coverage in *P. trichocarpa* shoot apical meris-
tematic cells and closer to 10% coverage in poplar apices, but
significantly lower than DNA methylation in the male and
female flowers of *P. trichocarpa* (27% in female flowers and
31.6% in male flowers) (Vining *et al.*, 2012; Lafon-Placette
et al., 2013). Thus, the lower coverage of methylated reads
observed in andromonoecious poplar might be tissue-spe-
cific. Second, our study used a *P. tomentosa* genotype, not
P. trichocarpa Nisqually-1, which was used as a reference for
reads assembly and mapping. The genetic variability between
P. tomentosa and *P. trichocarpa* might be a reason for the low
mapping ratios. Finally, our observation that 14.45% of anno-
tated protein-coding genes are methylated is consistent with
the methylation levels of different tissues in *P. trichocarpa*,
suggesting that most of the variation might come from non-
coding regions. It is, therefore, speculated that whole-genome
bisulphite sequencing might detect more intergenic regions
which show a high degree of variation, compared with the
sequences detected by MeDIP-seq or microarray techniques.

At the scaffold level, although no positive correlation was
established between the number of mapped reads and the
scaffold size of the *P. trichocarpa* v2.2 genome, methylated
reads showed a significantly biased distributions on scaf-
dfolds 12, 15, and 17, by contrast with methylated reads of
poplar shoot apical meristematic cells, which showed sig-
ificantly biased distributions on 8, 9, 14, and 17 scaffolds
(Lafon-Placette *et al.*, 2013). Nonetheless, our results support
the hypothesis that tissue-specific DNA methylation exists
in poplar. Our results showed that 113 miRNA genes (~28.2%
of all known miRNA genes of plants) are methylated in pop-
lar, suggesting that miRNA genes are also extensively meth-
ylated in plants. In protein-coding genes, it was found that
methylation is lowest near the transcription start and stop
sites and increases in the gene body but, in miRNA genes,
the gene body showed significantly lower methylation levels.
In general, gene length is an important factor for the distri-
bution of DNA methylation (Zilberman *et al.*, 2007; Lafon-
Placette *et al.*, 2013). Thus, smaller gene size might be the
main reason for low methylation levels in the gene bodies of
miRNA genes.

Lafon-Placette *et al.* (2013) reported that contexts that
contain at least two cytosines were enriched for non-CG con-
texts in shoot apical meristematic cells. This is inconsistent
with our results that non-CG contexts tend to have cytosines
and adenine. Also, different frequently methylated sites
were enriched in male and female flowers, suggesting that
frequently methylated sites show some tissue specificity.
Moreover, different sequence types, including protein-coding
genes, rDNA, and transposable elements, showed different
levels and context preferences of methylation (Lafon-Placette
et al., 2013). In this study, different levels and context types
of methylation were observed between protein-coding genes
and miRNA genes, supporting the hypothesis that the prefer-
ce for different methylation contexts depends on the type of
sequences.

DNA methylation and gene expression

Several studies have demonstrated that upstream sequence,
gene body, and downstream sequence methylation is nega-
tively correlated with transcription (Zhang *et al.*, 2006; Vining
et al., 2012). Our results support this notion, as expression
of downstream-methylated and upstream and downstream-
methylated genes was significantly repressed compared with
unmethylated genes. The interaction of RNA-binding pro-
teins with 5′- or 3′-untranslated regions (UTRs) of mRNAs
plays an important role in translational regulation (Mazumder
et al., 2003). The interactions between 5′- or 3′- UTRs medi-
ated by proteins result in the formation of an RNA loop that
can increase translational efficiency and tends to be regulated
by the 3′ UTR (Mazumder *et al.*, 2003; Szostak and Gebauer,
2012). Multi-species analysis indicated that 3′ UTRs are sub-
stantially longer than 5′ UTRs, indicating that the 3′ UTRs
have important functions in regulating gene expression
(Kuersten *et al.*, 2003). Similarly, in our study, downstream-
methylated genes showed significantly lower expression than
upstream and gene body methylated genes, suggesting that
downstream methylation might provide a stronger contribu-
tion to the regulation of gene expression. By contrast, in our
study, expression of protein-coding genes with only promoter
and gene body methylation did not significantly differ from
unmethylated genes. This could be explained because the
expression data were generated by microarray, which might
inhibit the integration of methylome and transcriptome data,
suggesting that further studies will require methylome/trans-
scriptome studies on a single platform.

DNA methylation has strand specificity and strand-biased
methylation occurs under environmental stress and in different
regions of the genome (Ros and Kunze, 2001; Luo and Preuss,
2003). Under stressful environmental conditions, seedlings have
enhanced strand-specific methylation, established during devel-
opment and heritable over several days of seedling growth. For
example, the *Arabidopsis* centromeric heterochromatin shows
strand-biased methylation, suggesting that methylation might
play important roles in centromere activity (Luo and Preuss,
2003). For transposable elements, the activator-dissociation
transposition preferentially transposes from a non-methylated
DNA strand, showing strongly chromatid selectivity (Ros and
Kunze, 2001). These strand biases in methylation could modu-
late the transcript abundance of genes, transposons, and inter-
genic transcripts (Lister *et al.*, 2008). Thus, in this study, the
plus and minus strands for methylation and gene expression analysis were separated at the whole-genome scale. The results showed that methylation on the minus strand has a stronger correlation with repression of gene expression than methylation on the plus strand, for both coding and microRNA genes, suggesting that minus strand methylation might have an important role in regulation of gene expression. Although a significant correlation between minus strand methylation and gene repression was detected, it is believed that these are minimal estimates of the strength of these associations. Strand-specific transcript sequencing, which was not used in our current study, could increase the resolution and reduce the bias of our transcript mapping (Lister et al., 2008). Thus, strand-specific transcript sequencing might be required for further strand-biased methylation analysis.

Previous studies have observed that the tissue-specific differentiation of gene expression relates to DNA methylation in plants, indicating that DNA methylation may play an important role in directing or maintaining differential gene expression, though its extent appears modest (Wang et al., 2009; Vining et al., 2012). Our results showed consistent tissue-level patterns, implying that differential methylation of miRNA genes might play a crucial role in directing or maintaining bisexual flower development-related gene expression of andromonoecious poplar.

In plants, DNA methylation is closely associated with miRNA gene expression. Miguel and Marum (2011) indicated that heterochromatin undergoes DNA hypomethylation resulting in the transcriptional activation of specific transposable elements accompanied by the production of 21 nucleotide smRNAs. miRNAs modulate their target gene expression by mRNA cleavage (Llave et al., 2002) or by repressing translation (Chen, 2004; Lanet et al., 2009). LmiRNAs can direct cytosine DNA methylation at their own loci in cis and at their target genes in trans, resulting in transcriptional gene silencing (Wu et al., 2010). It was found that ten targets of eight miRNAs had lower methylation levels and increased expression, together with increased methylation of the miRNA genes, suggesting that these target genes might be regulated by the release of lmiRNA-directed DNA methylation. DNA methylation also plays an important role in the regulation of splicing events and thus in the final constitution of the protein sequence (Sati et al., 2012). Our data showed that DNA methylation occurred on the different transcripts of target genes, implying that the patterns and levels of DNA methylation might regulate the ratios of different transcripts.

Flower development-related miRNA genes were extensively regulated by DNA methylation

Previous studies indicated that miR172 and miR156 are critical for the juvenile to adult phase change and the vegetative to reproductive transition in flowering plants (Lauter et al., 2005; Gandikota et al., 2007). miR156 expression showed a complementary temporal pattern to seven SPL targets during vegetative development (Wu and Poethig, 2006; Wu et al., 2009). Two miR156 targets, SPL9 and SPL10, positively regulate miR172 expression by binding to sequences in the regulatory region (Wu et al., 2009). In our study, a decrease in miR172b expression was correlated with an increase in miR156l and k expression in female flowers, indicating that the indirect regulation of miR172 by miR156 exists in poplar as well. Also, our results showed no significant association of three SNP sites in candidate regions with candidate gene expression, suggesting that these mutations sites do not affect candidate gene expression. Also, miR156l, k, and miR172b are differentially methylated in male and female flowers, suggesting that DNA methylation might function mainly as a regulatory factor in flower development affecting gene expression in andromonoecious poplar. miR172 represses AP2 in the centre of the flower, which is crucial for the proper development of the reproductive organs and for the timely termination of floral stem cells (Chen, 2004; Luo et al., 2013). Our results showed that miR172b is repressed via methylation in the carpel (whorl 4) of andromonoecious poplar flowers, suggesting that methylation might be a key factor for hermaphrodite flower development.

Members of the miR164 gene family function as crucial factors in lateral organ separation, organ boundary formation, and lateral organ proliferation, via their regulation of a subset of NAC transcription factors (Nag and Jack, 2010). CUC1 and CUC2 belong to the NAC gene family and function in meristem maintenance and lateral organ separation (Aida et al., 1997). In ccm1 mutants, the sepals fuse slightly, and the cotyledons fuse to form a single cup-shaped structure, suggesting that CUC genes affect the formation of lateral organ boundaries by suppressing cell growth between lateral organs (Laufs et al., 2004; Jones-Rhoades et al., 2006). Our results showed that miR164a and e are specifically methylated in male flowers, leading to an increase in CUC1 and CUC2 expression, correlated with the decrease in miR164a expression. This might help to explain why boundaries between and within whorls of organs in male flowers are completely established, compared with female flowers.

The miR159 family targets MYB33, MYB65, and MYB101/DUO POLLEN1 (DUO1) (Millar and Gubler, 2005). Arabidopsis myb33 myb65 DUO1 mutants show tapetum hypertrophy and pollen abortion, implying that those genes have crucial functions in anther development. A decrease in MYB33 gene expression would cause anther defects, male sterility, and delayed flowering (Achard et al., 2004; Schwab et al., 2005). Our results showed that miR159 is repressed via DNA methylation, leading to a higher expression level of MYB33 in male flowers, implying that DNA methylation might protect the normal development of anthers and pollen in male flowers of andromonoecious poplar. miR319 and miR159 evolved from a common ancestor and have distinct expression patterns (Li et al., 2011), but they target different genes and have different functions in plant development (Palatnik et al., 2007). miR319 targets several TCP transcription factor genes that control leaf and flower growth (Ng et al., 2009; Luo et al., 2013). In this study, it was observed that miR319 and miR159 have distinct DNA methylation and expression patterns. Combined with the above analysis, it is speculated that DNA methylation might function as an important factor for the maintenance of miR319 and miR159 expression patterns and regulate their overlapping functions.
In antirrhinum and petunia, miR169 can activate C-class genes by modulating its target NF-YA transcription factors to control the development of reproductive organs (Cartolano et al., 2007). NF-YA binding affects enhancement and maintenance of AG transcription (Hong et al., 2003), and AG interacts genetically with other homeotic genes to specify carpel and stamen identity (Ng et al., 2009). Our results showed that the miR169/NF-YA module also exists in poplar and is regulated by DNA methylation, but the relationship of this module with hermaphrodite flower development of andromonoecious poplar is still unclear.

Conclusion

Our observation that protein-coding genes are methylated is consistent with the methylation levels in *P. trichocarpa*, but less than 10% of reads could be mapped on the reference genome, supporting our speculation that most of the variation in methylation between *P. tomentosa* and *P. trichocarpa* might come from non-coding regions. So, the de novo assembly of the *P. tomentosa* genome might help to improve our results in the future. Regarding the distribution of methylation sites, miRNA and protein-coding genes have significantly different methylation patterns. It is speculated that gene sizes might be the major reason for the low methylation levels in miRNA gene body regions. Statistical analysis implied that downstream and minus strand methylation might provide a stronger contribution to the regulation of gene expression. DNA methylation not only affects microRNA gene expression via the modification of microRNA body and flanking regions, but also results in transcriptional gene silencing via the modification of target genes of lmiRNAs, implying that DNA methylation, microRNAs, and gene expression show various interactions.

Our study confirmed that the indirect regulation of miR172 by miR156 exists in poplar as well and that miR156l, k, and miR172b are differentially methylated in male and female flowers, implying that DNA methylation might play an important role in hermaphrodite flower development-related gene expression of andromonoecious poplar. However, more evidence should be gathered from future transgenic experiments to examine the mechanisms by which DNA methylation affects flower development.

Accession numbers

The sequencing and gene expression data reported here are available in NCBI with the SRA database accession numbers SRS557950 and SRS561387 and the GEO accession number GSE38432.

Supplementary data

Supplementary data can be found at *JXB* online.

Supplementary Table S1. The conversion ratio of bisulphite on poplar genomic DNA.

Supplementary Table S2. List of primers used for bisulphite sequencing of candidate genes.

Supplementary Table S3. Primers for 5′ RACE mapping of miRNA cleavage sites.

Supplementary Table S4. Information on real time-PCR primer sequences.

Supplementary Table S5. lmiRNA and their target genes expression patterns.

Supplementary Table S6. miRNA and target gene expression.

Excel S1. Summary of methylation patterns and levels on microRNA gene regions.

Excel S2. Different transcript variants were targeted by lmiRNA.

Supplementary Fig. S1. The pictures show the phenotype of male, female, and gynomonoecious poplar flowers.

Supplementary Fig. S2. Chromosome-level view of methylation between female and male flowers.

Supplementary Fig. S3. DNA methylation levels of genes of different sizes.

Supplementary Fig. S4. Histogram of DNA methylation patterns in different genomic regions.

Supplementary Fig. S5. Correlation analysis between strand-specific DNA methylation levels and gene expression.

Supplementary Fig. S6. Flanking regions of splice sites were methylated.

Supplementary Fig. S7. 5′ and 3′ flanking regions of methylated genes for statistically enriched GO terms in the ‘Biological process’ ontology.

Supplementary Fig. S8. Gene body methylated genes for statistically enriched GO terms in the ‘Biological process’ ontology.

Supplementary Fig. S9. Heat map indicating differentially expressed microRNA genes in female and male flowers of andromonoecious poplar.

Supplementary Fig. S10. Gene content in a region with methylation differences between female and male flowers.

Supplementary Fig. S11. Candidate miRNAs and their target gene expression patterns.

Supplementary Fig. S12. Correlation analysis of DNA methylation level detected by candidate sequence bisulphite sequencing and whole genome bisulphite sequencing.

Supplementary Fig. S13. The positions of single nucleotide polymorphisms.

Acknowledgements

This work was supported by grants from the following sources: the Forestry Public Benefit Research Program (No. 201304102), Fundamental Research Funds for Central Universities (No. TD2012-01), the Project of the National Natural Science Foundation of China (No. 31170622, 30872042), and Funds for Training Excellent Talent of Beijing City (No. 2013D000904000004). The authors would like to thank Professor Chung-Jui Tsai from The University of Georgia for critical reading of the manuscript. We are grateful for the sequence information produced by the US Department of Energy Joint Genome Institute (http://www.jgi.doe.gov). The authors have no conflict of interest to declare.

References

