Supplementary Information

Early penguin fossils, plus mitochondrial genomes, give a firm calibration point for avian evolution

Kerryn E Slack^{•1,2}, Craig M Jones^{•3}, Tatsuro Ando^{•4}, G. L.(Abby) Harrison¹, R. Ewan Fordyce⁴, Ulfur Arnason² and David Penny¹

 ¹ Allan Wilson Center for Molecular Ecology and Evolution Institute of Molecular BioSciences Massey University Palmerston North New Zealand

 ² Division of Evolutionary Molecular Systematics Department of Cell and Organism Biology University of Lund Solvegatan 29
S-223 62 Lund Sweden

³ Institute of Geological and Nuclear Sciences Lower Hutt New Zealand

⁴ Department of Geology, University of Otago Dunedin New Zealand

* These authors contributed equally to this work.

Description of the oldest fossil penguins, genus Waimanu

Age determination

The Waipara Greensand yields microfossils (foraminifera, radiolaria and calcareous nannofossils) ^{1,2,3} (Jenkins 1971; Strong 1984; Hollis and Strong 2003) indicating a wholly Paleocene age, clearly younger than the K/T boundary⁴ (Vajda et al. 2001). The Greensand lies within the local (New Zealand) Teurian stage. The top of the Waipara Greensand marks the Teurian - Waipawan local stage boundary, which is correlated internationally with the Paleocene - Eocene boundary⁵ (Cooper 2004).

The stratigraphically lowest stem-penguin, CM zfa 35 (fossil record number M34/f453, holotype of *Waimanu manneringi*), provides a well-preserved calcareous nannofossil assemblage. The sample includes two key age-diagnostic taxa, *Chiasmolithus bidens* and *Hornibrookina teuriensis*. Based on the latest correlations of New Zealand sequences to the international timescale⁵ (Cooper 2004: Fig 11.1, 11.4, 11.10), these nannofossils indicate that the age is high in the lower Teurian local stage. Of note, the top of the range of *Hornibrookina teuriensis* is lower Selandian, no younger than about 60.5Ma. The overlap of *Chiasmolithus bidens* and *Hornibrookina teuriensis* indicates an age of about 60.5-61.6Ma.

Matrix from the holotype of *W. tuatahi*, OU 12651 (fossil record number M34/f138), produced Paleocene dinoflagellates including *Palaeocystodinium golzowense* and *Deflandrea foveolata* (G.J. Wilson, personal communication); the former indicates local Teurian Stage, Paleocene, while the latter indicates the *Deflandrea foveolata* zone, roughly Selandian or early Late Paleocene⁵, 58-60 Ma (Cooper 2004: Fig 11.5). Such an age is consistent with known origin from the middle to upper Waipara Greensand. The other specimens of *W. tuatahi*, CM zfa 34 (M34/f454) and CM zfa 33 (M34/f455), produced no age-diagnostic fossils; based on superposition and known age of overlying strata, they are from the upper Waipara Greensand and no younger than Late Paleocene. There is no reason to propose that they are significantly different in age from the holotype of *W. tuatahi* (OU 12651, M34/f138).

Mitochondrial genomes and phylogenetic analysis

Mitochondrial Genomes: Material and Methods

DNA was extracted from muscle or liver using High Pure[™] PCR Template Purification Preparation Kit (Roche). In order to avoid amplifying nuclear copies, mitochondrial DNA was amplified first as two main fragments from 8-12.3Kb, using the Expand[™] Long template PCR kit (Roche). This could leave small gaps that were covered by fragments > 3.5Kb that had extensive overlap with the longest fragments. The long-range PCR fragments were used as template for short-range PCR reamplifications (1~2kb). We used the Fasta search in the GCG program (Wisconsin Package, version 10.0) to search our primer database for appropriate targets for primer walking. Where possible, primers from Kocher⁶, Cooper⁷ or Sorensen⁸ were used. Otherwise, new primers were designed using Oligo®4.03 (National BioSciences, Inc.). Sequencing

reactions were done according to standard protocols and run on a 377 ABI Applied BioSystems DNA sequencer. Some rechecking was done on an ABI 3730. Sequences were checked and assembled using Sequencher[™] 4.1 (Gene Codes Corp).

Mitochondrial Genomes: Selection of taxa

In addition to the three mt genomes reported here, 15 other neognath taxa are included in the analyses: chicken (*Gallus gallus*; GenBank accession number X52392), quail (*Coturnix japonica*, AP003195), redhead duck (*Aythya americana*; AF090337), greater white-fronted goose (*Anser albifrons*, AF363031), magpie goose (*Anseranas semipalmata*; AY309455), rook (*Corvus frugilegus*; Y18522), village indigobird (*Vidua chalybeata*; AF090341), gray-headed broadbill (*Smithornis sharpei*; AF090340), rifleman (N Z wren, *Acanthisitta chloris*; AY325307), buzzard (*Buteo buteo*, AF380305), peregrine falcon (*Falco peregrinus*; AF090338), ruddy turnstone (*Arenaria interpres*, AY074885), blackish oystercatcher (*Haematopus ater*, AY074886), Oriental white stork (*Ciconia boyciana*; AB026193), and little blue penguin (*Eudyptula minor*, AF362763). In addition, seven paleognaths (five ratites and two tinamou) were included. They are, Great spotted kiwi (*Apteryx haastii*, AF338708); emu (*Dromaius novaehollandiae*, AF338711); double-wattled cassowary (*Casuarius casuarius*, AF338713); ostrich (*Struthio camelus*, Y12025); greater rhea (*Rhea americana*; AF338713); great tinamou (*Tinamus major*, AF338707); and elegant crested-tinamou (*Eudromia elegans*, AF338710). This gives a total of 25 avian mt genomes.

Within the Neoaves, an owl and a parrot were omitted. In the current dataset both are isolated taxa in the Neoavian portion of the tree⁹ and their positions are still a little unstable – though none come within the seabird/shore bird group that is the focus of this study. The owl and parrot can group together weakly, or the owl comes close to the passerines, and the parrot towards the falconiforms group. We are in the process of sequencing a barn owl (*Tyto*), an African parrot (lovebird, *Agapornis*) and a forest falcon (*Micrastur*) (www.awcmee.massey.ac.nz/mt_genomes). Based on previous experience of improved taxon sampling^{9,10}, we expect that these new sequences will help stabilize the position of both the owls and parrots. Once again, parrots and owls are not the focus here, rather it is the time of origin of modern seabird and shore bird lineages and whether they predate the decline of hesperornids, ichthyornids and pterosaurs.

Six reptiles were used as outgroups: American alligator (*Alligator mississippiensis*; Y13113), eastern painted turtle (*Chrysemys picta*; AF069423), green turtle (*Chelonia mydas*; AB012104), blue-tailed mole skink (*Eumeces egregius*; AB016606), common iguana (*Iguana iguana*; AJ278511) and spectacled caiman (*Caiman crocodylus*; AJ404872).

Mitochondrial Genomes: Phylogenetic analysis

In previous work^{11,12,13} we found that RY-coding of nucleotide data both increases the proportion of changes on internal branches of the tree (treeness) and decreases the differences in nucleotide composition

(Relative Compositional Variability, RCV). Consequently this is our preferred method of analysis of animal mitochondrial data, and the tree reported here (Figure S2) has the third codon positions recoded as R & Y. The full data set is available from www.awcmee.massey.ac.nz/downloads.

Dating estimates were made on the tree shown in Figure Suppl_3 using the program packages PAML and Multidivtime. However, because of limitations of the dating program, third codon positions (3rd cdp) could not be analyzed as transversions (RY-coded). Two variants of the 25 bird + 6 reptile protein-coding + RNA dataset were therefore analyzed: one without 3rd cdp (8582 nucleotides [nt]) and one with 3rd cdp coded as nt data (11709 nt). The T3: (Thornian Time Traveler version <u>http://abacus.gene.ucl.ac.uk/</u>; see also Yang & Yoder¹⁴) of the Multidivtime program package¹⁵ was used to estimate divergence times. Multidivtime uses Markov chain Monte Carlo (MCMC) procedures for Bayesian estimation of evolutionary divergence times and rates. The program baseml in the PAML version 3.14beta package¹⁶

(http://abacus.gene.ucl.ac.uk/software/paml.html) was used to estimate base frequencies, the ratio of within to between group substitution rates (kappa) and the relative substitution rate of each category (r values) under the F84 plus discrete gamma model (ncatG = 8). These values were used in the Multidivtime program est_branches to estimate branch-lengths for the specified tree (ingroup only) and to produce a variance-covariance matrix for the branch-length estimates. The multidivtime program was then used to estimate divergence times (plus standard deviations and 95% confidence intervals) for each node in the tree (without assuming a molecular clock).

We estimated both the prior (no data) and posterior distribution of divergence times, analyzed the dataset both with and without third codon positions and constrained the three calibration points to different extents. We also ran the same analysis five times (Fig Suppl_2) with different random seed numbers to check that the results were similar, therefore indicating convergence of the MCMC. Table S1 summarizes our estimates of avian divergence times.

Three calibration points were used (indicated in bold in table S1): 1. The divergence between magpie goose and (duck, goose): lower bound set at 66 MY in all analyses, upper bound set at 66 MY in FIXED analyses and unconstrained in VARIABLE analyses; 2. The divergence between penguin and stork: lower bound set at 62 MY in all analyses, upper bound set at 62 MY in FIXED analyses and unconstrained in VARIABLE analyses; 3. The divergence between emu and cassowary: when used the lower bound was set at 30 million years (MY) and upper bound at 35 MY. Note that the in the 'variable' analyses the calibration point is used in the mathematical sense as a bound, not as a point estimate. The numbers in the first (lefthand) column of the table are those shown in Figure 3. The parameters used in the analyses were as for Figure 3, except that rt_rate was 0.010582 and rtrate_sd was 0.005291 when 3rd cdp were included. 95% confidence intervals were calculated but are not shown. SD: standard deviation.

A priori estimates for multidivtime parameters were as follows: 84 MY for the mean of the prior distribution for the time separating the ingroup root and the present (rt_tm) and 42 MY for the standard deviation of rttm (rttmsd); 0.001687 for the mean of the prior distribution for the rate at the ingroup root node (rtrate) and 0.000844 for the standard deviation of rtrate (rtratesd); 0.01 for both the mean of the prior distribution for Brownian motion constant 'nu' (brown_mean) and the standard deviation of brown_mean (brown_sd); 500 MY for the length of time between the root and the present (big_time). The Markov chain was sampled 10,000 times (num_samps), the number of cycles between samples (samp_freq) was 100 and the number of cycles before the first sample of the Markov chain (burnin) was 100,000. The results of other dating analyses (approximation of prior distributions of divergence times; with 3^{rd} cdp, coded as nt data; without an upper bound on the penguin/stork and magpie goose/(duck + goose) calibration points) are summarized in Table S1.

Table S1. Summary of	f avian	divergence	time	estimates.
----------------------	---------	------------	------	------------

	Posterior approximation										Prior approximation						
	Without 3rd cdp With 3rd cdp										ithou	t 3rd c	dp	With 3rd cdp			
	FIX	ED	VARI	VARIABLE		FIXED		VARIABLE		FIXED		VARIABLE		FIXED		VAR	ABLE
Divergences	Age	Age SD A		Age SD		Age SD		Age SD		Age SD		Age SD		Age SD		Age	SD
emu/cassowary	33.1	1.3	33.2	1.3	33.0	1.4	33.3	1.3		32.4	1.4	32.4	1.4	32.4	1.4	32.5	1.4
kiwi/emu+cassowary	56.7	4.0	59.3	4.8	56.7	3.2	59.1	3.8		56.2	21.9	63.2	27.9	56.5	22.2	62.4	26.8
greater rhea/kiwi+emu+cassowary	63.7	4.5	67.2	5.7	65.7	3.9	69.4	4.8		80.3	29.2	93.9	37.2	80.7	29.6	93.4	36.2
ostrich/greater rhea+kiwi+emu+cassowary	70.1	4.8	74.5	6.2	71.9	4.2	76.3	5.4	1	03.8	33.2	124.7	42.1	104.7	33.7	124.0	41.2
tinamou/crested-tinamou	42.6	4.9	45.3	5.7	44.1	4.2	46.7	4.8		64.3	42.5	76.4	51.1	64.7	42.4	77.4	51.4
Struthioniformes (ratites)/Tinamiformes	75.2	5.0	80.3	6.6	80.2	4.6	85.6	6.0	1	28.0	35.3	154.9	43.9	128.9	36.1	155.0	44.1
(tinamous)																	
chicken/quail	29.9	3.5	32.9	4.5	29.9	2.7	33.7	3.8		51.5	34.0	68.7	45.6	52.0	34.0	70.0	45.9
duck/goose	29.6	3.2	32.7	4.4	25.2	2.2	28.9	3.4		33.1	19.1	53.6	36.2	33.3	19.0	53.9	36.2
magpie goose/duck+goose	66.0	0.0	72.5	5.0	66.0	0.0	74.2	5.1		66.0	0.0	107.2	32.9	66.0	0.0	107.1	33.1
Galliformes/Anseriformes	77.1	2.5	84.1	5.7	75.5	2.0	83.6	5.4	1	02.4	28.1	138.8	38.8	102.8	28.5	139.3	38.9
penguin/stork	62.0	0.0	66.7	4.1	62.0	0.0	65.9	3.6		62.0	0.0	77.6	15.6	62.0	0.0	77.6	15.6
loon/penguin+stork	67.1	2.1	72.5	4.7	65.1	1.3	69.7	4.0		74.4	12.7	93.0	21.8	75.0	12.9	93.1	21.9
albatross/petrel	58.7	3.2	63.4	5.0	56.1	2.2	60.0	4.0		43.9	27.4	54.0	35.0	44.1	27.6	54.1	35.2
Procellariiformes/loon+penguin+stork	71.1	2.3	76.8	5.0	67.2	1.5	72.0	4.1		87.3	18.3	108.7	26.6	88.1	18.4	108.7	27.1
oystercatcher/turnstone	69.1	3.0	74.8	5.3	61.9	2.5	66.5	4.4		49.8	31.9	62.6	40.0	50.4	32.0	61.9	40.0
Charadriiformes/Procellariiformes+loon+penguir	73.6	2.5	79.6	5.2	71.3	1.8	76.8	4.5	1	00.1	22.7	124.1	30.6	100.8	22.5	124.5	31.5
falcon/buzzard	65.1	3.7	70.5	5.6	66.5	2.7	71.6	4.8		56.5	36.1	69.6	44.6	56.8	36.0	68.4	45.3
Falconiformes/Charadriiformes+Procellariiforme	77.2	2.9	83.6	5.6	74.7	2.1	80.6	4.8	1	12.8	26.2	139.8	34.4	113.6	26.1	140.1	35.2
+penguin+stork																	
indigobird/rook	30.1	3.7	32.7	4.5	34.2	3.1	37.0	3.9		42.3	32.0	51.5	39.9	42.2	32.2	52.0	40.5
rifleman/broadbill	59.0	4.0	63.9	5.7	62.3	3.2	67.4	5.0		42.1	31.9	51.4	40.0	42.5	31.9	51.7	40.0
indigobird+rook (oscines)/broadbill	67.4 3.5		73.0	5.6	71.1	2.7	76.9	5.1		83.8	36.0	103.5	45.8	84.4	36.3	104.4	45.9
(suboscine)+rifleman					00.4	0.4		5.0	-	05.4	00.0	455.0	07.7	400.4	00.5	455.0	00.5
	79.6	3.0	86.2	5.7	80.1	2.4	86.8	5.2	1	25.4	29.6	155.3	31.1	126.1	29.5	155.8	38.5
Gallianseres/Neoaves	89.8	3.5	97.4	6.6	91.0	2.9	99.1	6.2	1	38.0	32.6	1/1.0	40.9	138.9	32.7	1/1.6	41./
Palaeognathae/Neognathae	98.4	5.1	106.1	7.8	102.5	4./	110.6	1.3	1	51.7	36.1	185.4	44.3	152.9	36.5	185.9	44./

										10		10	10		45	10		4.0	10						
	1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Waimanu	?	?	?	?	0	?	?	?	?	?	?	0	0	?	?	?	?	?	?	?	?	?	?	?	1
"Palaeeudyptes"	1	0	0	1	?	?	?	?	?	?	?	0	?	?	?	?	?	?	?	?	?	?	?	?	?
Platydyptes	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
Waimanu	?	?	?	?	?	?	1	?	1	?	?	1	0	?	0	1	1	0	?	?	?	?	?	?	?
"Palaeeudyptes"	?	?	?	?	?	?	?	?	1	0	0	1	0	?	0	?	1	0	0	0	0	0	?	?	?
Platydyptes	?	?	?	?	?	?	?	?	?	?	?	?	?	?	0	?	1	0	0	0	?	?	?	?	?
	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Waimanu	?	?	?	0	?	?	0	1	1	?	?	0	0	0	0	0	0	0	?	?	?	?	?	?	0
"Palaeeudyptes"	?	?	?	?	?	?	0	?	1	0	0	0	0	0	0	0	0	0	0	?	1	0	1	?	0
Platydyptes	?	?	0	?	?	?	0	?	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1	?	0
	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Waimanu	0	0	0	1	0	1	0	1	0	0	0	?	?	?	0	1	0	1	1	0	0	0	0	1	1
"Palaeeudyptes"	0	0	0	1	0	1	0	?	?	0	0	?	?	?	0	1	0	1	1	0	0	0	0	1	1
Platydyptes	0	0	0	1	0	1	0	?	0	0	0	?	?	?	0	?	0	1	1	0	0	0	0	1	1
	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125
Waimanu	0	0	0	0	0	0	0	1	0	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
"Palaeeudyptes"	0	0	0	0	0	0	1	1	0	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
Platydyptes	0	0	0	0	0	0	1	1	0	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148		
Waimanu	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		
"Palaeeudyptes"	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		
Platydyptes	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?		

Table S2. Character matrix of 148 morphological character for *Waimanu*, "*Palaeeudyptes*", and *Platydyptes*.

Figure S1. Output from five MCMC runs to show that the runs both had converged and to similar values. Every 1000th step of each chain is plotted

Supplementary - 15/6/04, page 7, 17/03/06

----- 0.1 substitutions/site

Figure S2. Maximum likelihood tree for 25 birds and six reptiles. The dataset is the 12 protein-coding genes from the mitochondrial heavy strand plus 22 RNAs (two ribosomal RNAs and 20 transfer RNAs - tRNA-Phe and tRNA-Glu were excluded due to missing data). Gaps, ambiguous sites around gaps, and stop codons were removed, giving a dataset of 11709 nt. First and second codon positions (cdp) and RNAs were analyzed as nucleotide (nt) data, third cdp were analyzed as transversion (RY) data. The analysis used the likelihood settings from the best-fit (GTR+I+G) model selected by the Akaike Information Criterion (AIC) in Modeltest Version 3.06. The tree has a -Ln likelihood value of 107275.44 and is to scale. Numbers represent bootstrap values (1000 independent bootstrap replicates); 100% bootstrap support is indicated by *.

Figure S3. Phylogenetic position of *Waimanu* within Sphenisciformes in the strict consensus cladogram of 6 most parsimonious trees resulting from the analysis of morphological data (Length = 822, CI = 0.3228, RI = 0.4871, RC = 0.1573). Bootstrap support values more than 50% are indicated below and to the right of corresponding nodes. Waimanu and the penguins are not close to the Charadriiformes (represented here by Burhinidae and Recurvirostridae), nor to the Pelecaniformes (such as Fregatidae, Phalacrocoracidae and the Phaethontidae)

			Age Ma		span, m			
Eudimorphodon ranzii	Italy	p60	220	10	1	p60	Ramphorhynch	eudimorpodont
Eudimorphodon cf. ranzii	Austria	B_M24	210	20	0.75	B_M7	Ramphorhynch	eudimorpodont
Peteinosaurus zambellii	Tethys	p60	220	10	0.6	p62	Ramphorhynch	dimorpodont
Preondactylus (Padian)	Italy	p64	225	5	1.5	p64	Ramphorhynch	ramphorhynch
Preondactylus buffarini		p64	225	5	0.45	p65	Ramphorhynch	ramphorhynch
Austriadactylus cristatus	Austria	B_M27	210	20	1.2	D_VWHR02	Ramphorhynch	?eudimorpodont?
	England							
Dimorphodon macronyx	Lias	p70	205	25	1.4	p70	Ramphorhynch	dimorpodont
Ramphinion jenkinsi	Arizona	p74	200	30	1.5	p78		undetermined
Dorygnathus banthensis	Germany	p74	196	34	1	p74	Ramphorhynch	ramphorhynch
Campylognathoides liasicus	Germany	p74	194	36	1	p76	Ramphorhynch	ramphorhynch
Campylognathoides zitteli	Germany	p74	195	35	1.75	p76	Ramphorhynch	ramphorhynch
Parapsicephalus purdoni	England	p74	190	40	1	p78	Ramphorhynch	ramphorhynch
agnurognathid	Mongolia	U96_297	175	55	0.4	U96_298	Ramphorhynch	anurognathidae
Huizacal pterosaur	Mexico	U96_298	172	58	1.4	U96-298	Ramphorhynch	campylognathoid?
Ramphocephalus bucklandii	England	p81	165	65	1.05	p80	Ramphorhynch	ramphorhynch
Ramphocephalus depressirostris	England	p81	164	66	1	U96	Ramphorhynch	ramphorhynch
Ramphocephalus	England	U96_293	163	67	2	U96_295	Ramphorhynch	ramphorhynch
Ramphorhynchus	England	U96_295	160	70	1.1	U96_296	Ramphorhynch	ramphorhynch
Angustinaripterus longicephalus	China	p86	165	65	2	UBLML	Ramphorhynch	ramphorhynch
Herbstosaurus pigmaeus	Argentina	p81	160	70	1.5	U96_299	Pterodacyloidea	dsungaripteridae
Ramphorhynchus longicaudus	Solnhofen	p86	152	78	0.4	p84	Ramphorhynch	ramphorhynch
Ramphorhynchus longiceps	W Europe	p86	155	75	1.75	p84	Ramphorhynch	ramphorhynch
Pterodactylus longicollum	W Europe	p86	151	79	1.45	p88	Pterodacyloidea	pterodactylidae
Pterodactylus grandis	W Europe	p86	149	81	2.5	p88	Pterodacyloidea	pterodactylidae
Pterodacyloidea indet	Switzerland	M_H99	151	79	3.5	M_H99	Pterodacyloidea	indeterm
Scaphognathus crassirostris	Solnhofen	p90	151	79	0.9	p93	Ramphorhynch	scaphogn
Anurognathus ammoni	Solnhofen	p90	148	82	0.5	p93	Ramphorhynch	anurognathidae
Germanodactylus cristatus	Solnhofen	p95	149	81	0.98	p95	Pterodacyloidea	germanodactylidae
Germanodactylus ramphastinus	Solnhofen	p95	145	85	1.08	p95	Pterodacyloidea	germanodactylidae

Gallodactylus suevicus	Solnhofen	p95	151	79	1.35	p97	Pterodacyloidea	gallodactylidae			
Ctenochasma roemeri	Fr/Germ	p98	150	80	1.2	p98	Pterodacyloidea	ctenochasmatidae			
Gnathosaurus subulatus	Solnhofen	p98	150	80	1.7	p100	Pterodacyloidea	ctenochasmatidae			
Huanhepteris quingyangensis	China	p98	150	80	2.5	p105	Pterodacyloidea	ctenochasmatidae			
Gen et sp indet	north France	KB01	148	82	2.5	KB01	Pterodacyloidea	pterodactylidae			
Dermodactylus montanus	Colorado	p102	144	86	1	p105	Pterodacyloidea	undetermined			
Comodactylus ostromi	Colorado	p102	145	85	2.5	p105	Ramphorhynch	undetermined			
Harpactognathus gentryii	Wyoming	B_M46	153	77	2.5	B_M51	Ramphorhynch	scaphogn			
Batrachognathus volans	Kazakhstan	p102	150	80	0.75	U&B423	Ramphorhynch	anurognathidae			
Sordes pilosus	Kazakhstan	B_M51	155	75	0.7	B_M51	Ramphorhynch	scaphogn			
Ornithocheirus sp	France	p117	133	97	3.7	p117	Pterodacyloidea	ornithocheiridae			
Criorhynchus simus	England	p110	130	100	5	p111	Pterodacyloidea	criorhychidae		& other sp	С
Ornithodesmus latidens	Isle of Wight	p114	120	110	5	p115	Pterodacyloidea	ornithodesmidae			
Dsungaripterus weii	China	p118	140	90	3.25	p119	Pterodacyloidea	dsungaripteridae			
Phobetor parvus	China	p118	140	90	1.5	p119	Pterodacyloidea	dsungaripteridae		Dsungaript parvus	erus
Toxaster caste	France	Buff04	133	97	7	Buff04	Pterodacyloidea	ornithocheiridae		F	
Isle of Wight specimen	England	MEGG96	127	103	8	MFGG96	Pterodacyloidea	undetermined			
Noripterus complicidens	China	p118	120	110	2	p120	Pterodacyloidea	dsungaripteridae			
Arthurdactylus conan-doylei	Brazil	FM94	120	110	4.6	FM94	Pterodacyloidea	ornithocheiridae			
Jeholopterus ningchengensis	Jehol	J_104	124	106	0.9	J_100	Ramphorhynch	anurognathidae			
Eosipterus yangi	Jehol	J_22	122	108	1.2	J_100	Pterodacyloidea	pterodacylidae			
Haopterus gracilis	Jehol	J_22	122	108	1.35	J_100	Pterodacyloidea			subadult?	
Sinopterus dongi	Jehol	J_106	115	115	1.2	J_104	Pterodacyloidea	tapejaridae	young	indiv	Well04
Chaoyangopterus zhangi	Jehol	J_106	115	115	1.85	J_104	Pterodacyloidea	nyctosauridae			
Liaoningopterus gui	Jehol	J_106	115	115	5	J_104	Pterodacyloidea	anhangueridae			
Anhanguera blittersdorffi	Brazil	p128	115	115	4	p129	Pterodacyloidea	anhangueridae			
Anhanguera santanae	Brazil	p128	115	115	4.15	p125	Pterodacyloidea	anhangueridae			
Anhanguera piscator	Brazil	KT2000	105	125	5	Kell2004a	Pterodacyloidea	anhangueridae		very young	indiv
Cearadactylus atrox	Brazil	p128	115	115	5.5	p129	Pterodacyloidea	ctenochasmatidae		Unwin02	
Cearadactylus' ligabuei	Brazil	KT2000	105	125	5.5	KT2000	Pterodacyloidea	ctenochasmatidae			
Tropeognathus mesembrinis	Brazil	p128	115	115	6.2	p129	Pterodacyloidea	criorhychidae			
Tropeognathus robustus	Brazil	p128	117	113	5.5	p129	Pterodacyloidea	criorhychidae		in proportio	on
Santanadactylus araripensis	Brazil	p128	115	115	3	p124	Pterodacyloidea	ornithocheiridae			
Tapejara wellnhoferi	Brazil	p128	115	115	1.5	Kell04	Pterodacyloidea	tapejaridae			

Tupuxuara longicristatus	Brazil	p130	115	115	2.8	Kell04	Pterodacyloidea	tapejaridae	toothless
Tupuxuara leonardii	Brazil	Well04	116	114	4.5	Kell04	Pterodacyloidea	tapejaridae	
Araripesaurus castilboi	Brazil	p124	115	115	2.2	p124	Pterodacyloidea		
Araripedactylus debmi	Brazil	p124	115	115	4.8	p124	Pterodacyloidea	indeterm	
ornithocheirid'	Mongolia	U&B426	112	118	5.5	U&B426	Pterodacyloidea	ornithocheiridae	
Bennett 1989	Argentina	p134	115	115	4	p134	Pterodacyloidea		
Coloborhynchus spielbergi	Brazil	Veld03	108	122	5.9	Veld03	Pterodacyloidea	anhangueridae	
Thalassodromeus sethi	Brazil	KC02	110	120	4.4	KC02	Pterodacyloidea	tapejaridae	
Pterodaustro guinazui	Argentina	Chiappe04	100	130	3	Chiappe04	Pterodacyloidea	pterodaustridae	filter feeder
Ornithostoma orientalis	England	p110	97	133	2.5	p111	Pterodacyloidea	pteranodontidae	
cf. Anhanguera	Russia	U&B425	95	135	3.5	U&B425	Pterodacyloidea	ornithocheiridae	
cf. Anhanguera	Russia	U&B425	95	135	3.5	U&B425	Pterodacyloidea	ornithocheiridae	
Ornithocheirus sp	Zaire	p121	90	140	4.5	p121			
Pteranodon sternbergi	Kansas	p134	85	145	9	p139	Pterodacyloidea	pteranodontidae	toothless
Pteranodon ingens	Kansas	p134	85	145	7	p139	Pterodacyloidea	pteranodontidae	toothless
"Pteranodon sp"	Japan	p145	83	147	6	UBLML	Pterodacyloidea	azhdarchid	
Haenamichnus footprint	Korea	KHCLC03	81	149	10	KHCLC03	Pterodacyloidea	footprints!	
Ornithocheirus bunzeli	Austria	p116	80	150	1.7	117	Pterodacyloidea	ornithocheiridae	may be Azdharch
Azdharcho lancicollis	Uzbekistan	U&B426	87	143	5	U&B426	Pterodacyloidea	azhdarchid	
Azdharchid	Russia	U&B427	85	145	3.5	U&B427	Pterodacyloidea	azhdarchid	
Wairoa specimen	NZ	WM88	76	154	3.5	WM88	Pterodacyloidea	indeterm	
Ornithocheiridae indet	Russia	AY04	75	155	5	AY04	Pterodacyloidea	ornithocheiridae	
Nyctosaurus gracilis	Kansas	p138	80	150	2.9	p139	Pterodacyloidea	nyctosauridae	
Nyctosaurus lamegoi	Brazil	p145	75	155	3.5	p122	Pterodacyloidea	nyctosauridae	
Quetzalcoatlus northropi	Texas	p142	66	164	11	p143	Pterodacyloidea	azhdarchid	
Quetzalcoatlus sp	Texas	p142	66	164	5.5	p142	Pterodacyloidea	azhdarchid	p142
Phosphatodraco mauritanicus	Morocco	B_M80	68	162	5	B_M87	Pterodacyloidea	azhdarchid	
Arambourgiania philadelphiae	Jordan	MSFK96	69	161	12	FM96	Pterodacyloidea	azhdarchid	formerly Titanopteryx B_M86
Zhejiangopterus linhaiensis	China	U_J97	81	149	3.5	B_M87	Pterodacyloidea	azhdarchid	
cf. Quetzalcoatlus	France	BLLB97	67	163	9	BLLB97	Pterodacyloidea	azhdarchid	
Azhdarchidae indet.	Spain	Company99	69	161	5.5	Company99	Pterodacyloidea	azhdarchid	
Hatzegopteryx thambema	Romania	Buffet02	68	162	12	Buffet02	Pterodacyloidea	azhdarchid	
Montplaisir pterosaur	France	Buffet96	67	163	5	Buffet96	Pterodacyloidea	azhdarchid	
largest ever'	Spain	Company01	67	163	12.2	Company01	Pterodacyloidea	azhdarchid	

Data for Figure 3, Panel A, pterosaur diversity through time. The data in Figure 3A was taken directly from Figure 21 of Unwin (2003), but that figure is redrawn and shown here for convenience.

The following references were used for the data in Figure 3 (other references were consulted, but not used

for the primary data).

- Averianov, A.O. and A.A. Yarkov. 2004 On the occurrence of a giant flying reptile (Pterosauria) in the terminal Late Cretaceous of the lower Volga region. Paleont. J. 38, 669-671.
- Bennet, S.C. 1996. Year-classes of pterosaurs from the Solnhofen limestone of Germany: taxonomic and systematic implications, J. Vert. Pal. 16, 432-444.
- Berggren WA, Kent DV, Swisher III CC, Aubry M-P (1995) A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time scales, and Global Stratigraphic Correlation (eds Berggren W A, Kent D V, Aubry M-P, Hardenbol J) 129-212 (SEPM (Society for Sedimentary Geology) Oklahoma.
- Buffetaut, E. 2004. A giant pterosaur from the Lower Cretaceous of the eastern Paris basin. Bull. Soc. geol. France. 175, 573-577.
- Buffetaut, E., J.B. Clarke and J. Le Loeuff. 1996. A terminal Cretaceous pterosaur from the Corbieres (southern France) and the problem of dinosaur extinction. Bull. Soc. Geol. France. 167, 753-759.
- Buffetaut, E., D. Grigorescu and Z. Csiki. 2002. A new giant pterosaur with a robust skull from the latest Cretaceous of Romania. Naturwissenschaften. 89, 180-184.
- Buffetaut, E., D. Grigorescu and Z. Csiki. 2003. Giant azhdarchid pterosaurs from the terminal Cretaceous of Transylvania (western Romania). *In:* Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, 91-104.
- Buffetaut, E., J-J Lepage and G. Lepage. 1998. A new pterodactyloid from the Kimmeridgian of the Cap de la Hève (Normandy, France). Geol. Mag. 135, 719-722.
- Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217.
- Buffetaut, E., Y. Laurent, J. Le Loeuff and M. Bilotte. 1997. A terminal Cretaceous giant pterosaur from the French Pyrenees. Geol. Mag. 134,553-556.
- Carpenter, K., D. Unwin, K. Cloward, C. Miles and C. Miles. 2003 A new scaphognathine pterosaur from the Upper Jurassic Morrison Formation of Wyoming, USA. *In:* Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, 45-54.
- Chang, M-m, (ed) 2004. The Jehol Biota: the emergence of feathered dinosaurs, beaked birds and flowering plants. Shanghai Scientific and Technical Publishers, Shanghai.
- Chiappe, L.M., L. Cordorniu, G. Grellet-Tinner, and D. Rivarola. 2004. Argentina unhatched pterosaur fossil. Nature 432, 571-572.
- Company, J., J.I. Ruiz-Omenaca and X.P. Suberbiola. 1999. A long-necked pterosaur (Pterodactyloidea, Azhdarchidae) from the Upper Cretaceous of Valencia, Spain. Geologie en Mijnbouw 78, 319-333.
- Company, J., D.M. Unwin, J.I. Ruiz-Omenaca and X.Pereda-Suberbiola. 2001. A giant azhdarchid pterosaur from the latest Cretaceous of Valencia, Spain the largest flying creature ever? J. Vert. Pal. 21, 41A-42A.
- Dalla Vecchia, F.M. 2003 New morphological observations on Triassic pterosaurs. *In:* Buffetaut, E. and J._M. Mazin (eds). Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, 23-44.
- Dalla Vecchia, F.M., P. Arduini, and A.W.A. Kellner. 2001. The first pterosaur from the Cenomanian (Late Cretaceous) Lagerstätten of Lebanon. Cretac. Res. 22, 219-225.
- Dalla Vecchia, F.M., R. Wild, R., H. Hopf, H and J. Reitner. 2002. A crested rhamphorhynchoid pterosaur from the Late Triassic of Austria. J. Vert. Pal. 22, 196-199.
- Frey, E. and D.M. Martill. 1996. A reappraisal of Arambourgiania (Pterosauria, Pterodactyloidea): one of the world's largest flying animals. N. Jb. Geol. Palaentol. Abh. 199, 221-247
- Frey, E. and D.M. Martill. 1994. A new pterosaur from the Crato Formation (Lower Cretaceous, Aptian) of Brazil. N. Jb. Geol. Palaentol. Abh. 194, 379-412.
- Frey, E., D.M. Martill, and M.C. Buchy. 2003. A new crested ornithocheirid from the Lower Cretaceous of northeastern Brazil and the unusual death of an unusual pterosaur. *In:* Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, 55-63.

- Frey, E., D.M. Martill, and M.C. Buchy. 2003. A new species of tapejarid pterosaur with soft-tissue head crest. *In:* Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, 65-72.
- Gasparini, Z., M. Fernandez and M. de la Fuente 2004. A new pterosaur from the Jurassic of Cuba. Palaeontology 47, 919-927.
- Hwang, K-G., Huh, M., Lockley, M.G., Unwin, D.M. and Wright, J.L. 2002 New pterosaur tracks (Pteraichnidae) from the Late Cretaceous Uhangri formation, southwestern Korea. Geol. Mag. 139, 421-435.
- Jenkins, F.A., N.H. Shubin, S.M. Gatesy and K. Padian. 2001 A diminutive pterosaur (Pterosauria: Eudimorphodontidae) from the Greenland Triassic. Bull. Mus. Comp. Zool. 156, 151-170.
- Jouve, S. 2004. Description of the skull of a *Ctenochasma* (Pterosauria) from the latest Jurassic of eastern France, with a taxonomic revision of European Tithonian Pterodactyloidea. J. Vert. Paleont. 24, 542-554.
- Kellner, A.W.A. 2004. New information on the Tapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade. Ameghiniana 41, 521-534.
- Kellner, A.W.A. 2004a. The ankle structure of two pterodactyloid pterosaurs from the Santana formation (Lower Cretaceous), Brazil. Bull. Am. Mus. Nat. Hist. 285, 25-35.
- Kellner, A.W.A. and D. A. Campos. 2002. The function of the cranial crest and jaws of a unique pterosaur from the Early Cretaceous of Brazil. Science 297, 389-392.
- Kellner, A.W.A and W. Langston. 1996. Cranial remains of Quetzalcoatlus (Pterosauria, Azdharchidae) from Late Cretaceous sediments of Big Bend National Park, Texas. J. Vert. Pal. 16, 222-231.
- Kellner, A.W.A. and J.M. Moody. 2003 Pterosaur (Pteranodontia, Pterodactyloidea) scapulocoracoid from the Early Cretaceous of Venezuela. *In:* Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, 73-77.
- Kellner, A.W.A. and Y. Tomida. 2000. Description of a new species of Anhangueridae (Pterodactyloidea) with comments on pterosaur fauna from the Santana Formation (Aptian-Albian), northeaster Brazil. National Science Museum, Tokyo.
- Kim, C-B., M. Huh, C-S. Cheong, M.G. Lockley and H-W Chang. 2003. Age of pterosaur and web-footed bird tracks associated with dinosaur footprints from South Korea. The Island Arc 12, 125-131.
- Knoll, F. and A. Bouveur. 2001. A large Jurassic pterodactyloid in northern France and a review of the French pterosaur record. Bull. Soc. Geol. France. 172, 447-454.
- Lockley, M.G. and E. C. Rainforth. The track record of Mesozoic birds and pterosaurs: an ichnological and paleoecological perspective. In, ???
- Lockley, M.G., S.Y.Yang, M. Matsukawa, F. Fleming and S.K. Lim. 1992. The track record of Mesozoic birds and pterosaurs: evidence and implications. Phil. Trans R Soc. London B 336, 113-134.
- Maisch, M.W., A.T. Matzke and G. Sun. 2004. A new dsungaripteroid pterosaur from the lower Cretaceous of the southern Junggar Basin, north-west China. Cret. Res. 25, 625-634.
- Martill, D.M., E. Frey, M. Green and M.E. Green. 1996. Giant pterosaurs from the Lower cretaceous of the Isle of Wight, UK. N Jb. Geol. Palaeont. Mh. 11, 672-683.
- Martill, D.M., E. Frey, R.M.Sadaqah, and H.N. Khoury. 1998. Discovery of the holotype of the giant pterosaur *Titanopteryx philadpelphiae* ARAMBOURG 1959, and the status of *Arambourgiania* and *Quetzalcoatlus*. N. Jb. Geol. Palaeontol. Abh. 207, 57-76. (Neues Jahrbuch fur Geologie und Palaeontology)
- Meyer, C.A. and A.P. Hunt. 1999. The first pterosaur from the Late Jurassic of Switzerland: evidence for the largest Jurassic flying mammal. Oryctos 2, 111-116.
- Pereda Superbiola, X., N. Bardet, S. Jouve, M. Iarochene and M. Amaghzaz. 2003. A new azhdarchid pterosaur from the Late Cretaceous phosphates of Morocco. *In:* Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, pp 79-90.
- Sullivan, R.M. 1987. A reassessment of reptilian diversity across the Cretaceous-Tertiary boundary. Contributions in Science, 391, 1-26. (Nat. Hist. Museum Los Angeles County)
- Unwin, D.M. 1987. Pterosaur extinction: nature and causes. Mem. Soc. geol. France, N.S. 150, 105-111
- Unwin, D.M. 1996. The fossil record of middle Jurassic pterosaurs. In M. Morales (ed) The continental Jurassic. Mus. Northern Arizona Bull. 60, 291-304.
- Unwin, D.M. 2003. *Eudimorphodon* and the early history of pterosaurs. Riv. Mus. Civ. Sc. Nat. "E. Caffi" BERGAMO. 22, 39-46.

- Unwin, D.M. 2003. On the phylogeny and evolutionary history of pterosaurs. *In*, Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, pp 139-190.
- Unwin, D.M. and N.N. Bakhurina 2000. Pterosaurs from Russia, Middle Asia and Mongolia. In M.J. Benton, M.A. Shishkin, D.M. Irwin and E.N. Kurochkin (eds) The Age of Dinosaurs in Russia and Mongolia. Cambridge University Press. pp 420-433.
- Unwin, D.M., N.N. Bakhurina, M.G. Lockley, M. Manabe and J. Lu. 1997. Pterosaurs from Asia. Paleont. Soc. Korea Spec. Publ. No 2: 43-65.
- Unwin, D.M. and J. Lu. 1997. On *Zhejiangopterus* and the relationships of pterodactyloid pterosaurs. Hist. Biol. 12, 199-210.
- Veldmeijer, A.J. 2003. Description of Coloborhynchus spielbergi sp. Nov. (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil. Scripta Geologica 125, 35-139
- Wang, Z.-L. and Z.H. Zhou. 2004. Pterosaurs. Pp 99-107, In The Jehol Biota: the emergence of feathered dinosaurs, beaked birds and flowering plants. Chang, M-m, (ed) Shanghai Scientific and Technical Publishers, Shanghai.
- Wang, Z.-L. and Z.H. Zhou. 2003. A new pterosaur (Pterodactyloidea, Tapejaridae) from the early Cretaceous Jiufotang formation of western Liaoning, China and its implications for biostratigraphy. Chin. Sci. Bull. 48, 16-23.
- Wellnhofer, P. 1991. The Illustrated Encyclopedia of Pterosaurs. Salamander Books, London.
- Wellnhofer, P. 2003. A Late Triassic pterosaur from the northern calcareous alps (Tyrol, Austria). *In:* Buffetaut, E. and J._M. Mazin. 2003 Evolution and Palaeobiology of Pterosaurs. Geol. Soc. London Spec. Publ. 217, 5-22.
- Wiffen, J. and R.E. Molnar. 1988. First pterosaur from New Zealand. Alcheringa 12, 53-59.

- ³ Hollis CJ, Strong CP (2003) Biostratigraphic review of the Cretaceous/Tertiary boundary transition, mid-Waipara River section, North Canterbury, New Zealand. N Z J Geol Geophys 46: 243-253.
- ⁴ Vajda V, Raine J I, Hollis CJ (2001) Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science 294: 1700-1702.
- ⁵ Cooper R. A. et al. (2004) The New Zealand geological timescale. Institute of Geological and Nuclear Sciences monograph 22: 1-284.
- ⁶ Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196-6200.
- ⁷ Cooper A, Lalueza-Fox C, Anderson S, Rambaut A, Austin J, Ward R (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704–707.
- ⁸ Sorensen MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol. Phylog. Evol. 12:105–114.
- ⁹ Harrison, G L, PA McLenachan, MJ Phillips, K E Slack, A Cooper and D Penny 2004 Four new avian mitochondrial genomes help get to basic evolutionary questions in the Late Cretaceous. Mol Biol Evol 21: 974-983.
- ¹⁰ Lin Y-H, McLenachan PA, Gore AR, Phillips MJ, Ota R, Hendy MD, Penny D (2002) Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol Biol Evol 19: 2060-2070.
- ¹¹ Phillips MJ, Penny D (2003) The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phyl Evol 28: 171-185.
- ¹² Delsuc F, Phillips MJ, Penny D (2003) Comment on "Hexapod Origins: monophyletic or paraphyletic?" Science 301: 1482d.
- ¹³ Phillips MJ, Delsuc F, Penny D (2004) Genome-scale phylogeny: sampling and systematic errors are both important. Mol Biol Evol 21: 1455-1458.
- ¹⁴ Yang Z, Yoder AD (2003) Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene loci and calibration points, with application to a radiation of cute-looking mouse lemur species. Syst Biol 52: 705-716.
- ¹⁵ Thorne J L, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51: 689-702 (<u>http://statgen.ncsu.edu/thorne/multidivtime.html</u>).
- ¹⁶ Yang, Z PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13: 555-556 (1997) (<u>http://abacus.gene.ucl.ac.uk/software/paml.html</u>).

¹ Jenkins DG (1971) New Zealand Cenozoic planktonic foraminifera. N Z Geo Surv Bull 42: 1-278.

² Strong CP (1984) Cretaceous Tertiary Boundary, Mid-Waipara River Section, North Canterbury, New-Zealand. N Z J Geol Geophys 27: 231-234.