Compensatory Mutations Restore Fitness during the Evolution of Dihydrofolate Reductase

Kyle M. Brown,*1 Marna S. Costanzo,1 Wenxin Xu,1 Scott Roy,2 Elena R. Lozovsky,1 and Daniel L. Hartl1

1Department of Organismic and Evolutionary Biology, Harvard University
2Department of Biology, Stanford University

*Corresponding author: E-mail: kylemichaelbrown@gmail.com.
Associate editor: Takashi Gojobori

Abstract

Whether a trade-off exists between robustness and evolvability is an important issue for protein evolution. Although traditional viewpoints have assumed that existing functions must be compromised by the evolution of novel activities, recent research has suggested that existing phenotypes can be robust to the evolution of novel protein functions. Enzymes that are targets of antibiotics that are competitive inhibitors must evolve decreased drug affinity while maintaining their function and sustaining growth. Utilizing a transgenic Saccharomyces cerevisiae model expressing the dihydrofolate reductase (DHFR) enzyme from the malarial parasite Plasmodium falciparum, we examine the robustness of growth rate to drug-resistance mutations. We assay the growth rate and resistance of all 48 combinations of 6 DHFR point mutations associated with increased drug resistance in field isolates of the parasite. We observe no consistent relationship between growth rate and resistance phenotypes among the DHFR alleles. The three evolutionary pathways that dominate DHFR evolution show that mutations with increased resistance can compensate for initial declines in growth rate from previously acquired mutations. In other words, resistance mutations that occur later in evolutionary trajectories can compensate for the fitness consequences of earlier mutations. Our results suggest that high levels of resistance may be selected for without necessarily jeopardizing overall fitness.

Key words: drug resistance, malaria, phenotypic robustness, mutational landscapes, compensatory mutations.

Introduction

In protein evolution, the development of a new function is often thought to necessitate the deterioration of an existing function (Kondrashov 2005). Such potential trade-offs would constrain protein evolution and slow the emergence of new protein functions. However, recent research has suggested that proteins may be phenotypically robust and capable of evolving new functions without compromising existing activities (Aharoni et al. 2005; Tawfik 2005; Khersonsky et al. 2006).

Enzymes that are targeted by competitive inhibitors must evolve decreased affinity for the antibiotic while maintaining their initial catalytic ability(s). For example, enzymes in human pathogens such as Streptococcus, Staphylococcus, and human immunodeficiency virus have evolved decreased antibiotic susceptibility via a series of point mutations while maintaining their original functions (e.g., Laible et al. 1989; Hackbarth et al. 1995; Berkhout 1999). However, sometimes such resistance mutations impose fitness costs, as in the case of a ribosomal protein in Salmonella (Björkman et al. 1998; Maisnier-Patin et al. 2002; Maisnier-Patin and Andersson 2004). In view of the antibiotic “warfare” among organisms that began long before the onset of anthropogenic drug pressure, antibiotic resistance is not only a threat to human health but also raises fundamental evolutionary questions (e.g., Maplestone et al. 1992; Currie et al. 1999).

In order to understand whether phenotypic trade-offs exist and how they affect protein evolution, we chose a well-characterized enzyme whose evolution has been recently shaped by antibiotic pressure. Dihydrofolate reductase (DHFR) plays an important role in the folate pathway helping to provide cofactors for several important cellular reactions including DNA synthesis (Nirmalan et al. 2002). In Plasmodium falciparum, the parasite responsible for the deadliest form of malaria, DHFR is the target of antifolate drugs, which represent inexpensive and potentially effective malarial therapies (Schlitzer 2007). Increased use of antifolate drugs, particularly pyrimethamine, has selected for antifolate resistant DHFR alleles. Several mutations at the DHFR locus of P. falciparum are now associated with high-level pyrimethamine resistance in field isolates (e.g., Sirawaraporn et al. 1997; Ekland and Fidlock 2007; Mita et al. 2007).

Using a transgenic Saccharomyces cerevisiae model of P. falciparum antifolate resistance (Sibley and Macreadie 2001), we explored the mutational landscape of pyrimethamine resistance in DHFR. We followed the combinatorial strategy of Weinreich et al. (2006) and constructed all 48 combinations of 6 mutations at 5 amino acid sites. Each of these mutations is associated with pyrimethamine resistance and has been observed in combination with one or more of the other five mutations in malarial field isolates (Foote et al. 1990; Sirawaraporn et al. 1997).
Our study builds upon the previous work of Lozovsky et al. (2009) who used an *Escherichia coli* model to determine the pyrimethamine mutational landscape for a smaller set of DHFR mutations. Using a larger set of mutational combinations allows us to assess a more complex mutational landscape and make a stronger determination of the potential trade-offs between enzyme function, growth rate, and resistance. Additionally, comparisons of adaptive landscapes in *E. coli* and *Saccharomyces cerevisiae* models of DHFR lends insight into whether adaptive topographies are quantitatively similar across species representing Eubacteria and Fungi.

We observe that the mutational landscape of pyrimethamine resistance in DHFR is dominated by a single fitness maximum. Population genetic simulations suggest that the fitness peak is most likely to be accessible by a small number of mutational paths. Additionally, these pathways exhibit compensatory evolution: initial resistance-conferring mutations decrease growth rate; however, their effects are quickly compensated for by subsequent mutations. Our results suggest that high levels of resistance may be selected for without necessarily jeopardizing overall fitness.

Materials and Methods

Yeast Strain Construction

Carol Sibley of the University of Washington generously provided the GR7 shuttle vector, a derivative of the pRS314 yeast shuttle vector (Sikorski and Hieter 1989; Wooden et al. 1997). This vector contains the wild-type *P. falciparum* DHFR allele regulated by 600 bp from the promoter region of the *S. cerevisiae* DFR1 gene and by the 400 bp 3’ DFR1 transcription and translation terminators. GR7 also includes the TRP1 yeast biosynthetic marker and a yeast centromere sequence that maintains the plasmid at about one copy per cell (Hunt et al. 2005).

We constructed all 48 possible combinations of the 6-point mutations at 5 amino acid coding sites in DHFR (A16V, N51I, C59R, S108N/T, and I164L) on the GR7 vector provided by Carol Sibley (Sibley et al. 1997; Wooden et al. 1997; Hunt et al. 2005), we quantify the resistance of each strain using a log10 scale of pyrimethamine and MIC values higher than 10^{-6} M. The full MIC data set is listed in supplementary table S4, Supplementary Material online.

Minimum Inhibitory Concentrations

Minimum inhibitory concentrations (MICs) for pyrimethamine were determined using a solid plate assay. For each replicate of each strain, a colony was picked into 3 ml unsupplemented liquid YPD. After 48 h, we measured optical density (OD_{600}), and each strain was serially diluted to a final OD_{600} of 0.002 (1\times 10^6 cells/ml). Five microliter of each diluted strain (60 cells) was spotted on plates containing either ethanol (negative control) or increasing concentrations of pyrimethamine. We studied eight replicates of each strain. The MIC for each replicate was defined as the lowest concentration of pyrimethamine to fully inhibit growth.

Strains were initially assayed using a log_{10} scale of pyrimethamine concentrations, ranging from 10^{-9} to 10^{-4} M. To further resolve MIC values among strains, we used additional pyrimethamine concentrations (2.5 \times 10^{-9}, 5 \times 10^{-9}, and 7.5 \times 10^{-9}) between each set of concentrations 10^{-9}(n+1) and 10^{-9} for all strains with MIC values higher than 10^{-6} M. The full MIC data set is listed in supplementary table S4, Supplementary Material online.

Growth Rate Measurements

Following Joseph and Hall (2004), we measured the growth rate of each strain in the presence various concentrations of pyrimethamine (0, 10^{-6}, 10^{-7}, 10^{-6}, 10^{-5}, and 10^{-4} M) using a Bioscreen C microbiological workstation (Thermo Labsystems). For each strain, we picked at least two colonies from a solid media plate and inoculated a 5-ml liquid YPD culture. After 48 h of shaking incubation at 30°C, cultures were diluted to an OD_{600} of 0.01, or approximately 6 \times 10^{6} cells/ml, in a liquid YPD culture containing the desired amount of pyrimethamine. At each pyrimethamine concentration, four aliquots of 200 \mu l were transferred to microtiter plates for growth in the Bioscreen, and the OD_{600} was measured every 15 min for 3 days. The growth rate for a given colony of a given strain was calculated as the average growth rate across the four aliquots. The growth rate for a given strain at a given concentration of pyrimethamine (e.g., fig. 1 and supplementary fig. S1, Supplementary Material online) was calculated by taking the mean growth rate of the two or more colonies picked for each strain. Growth rate standard errors represent the standard error between colony means.

Following methodology developed by Joseph and Hall (2004) with code written in R, we calculated least squares linear regressions for log absorbance versus time for a 3.25 h sliding window over the length of the growth curve. Growth rates represent the maximum regression coefficient among all sliding windows over length of the growth curve. Growth rates of each allele in the absence of pyrimethamine are depicted in supplementary table S2, Supplementary Material online.

IC50 Calculations

Using methodology previously described by Sibley and colleagues (Sibley et al. 1997; Wooden et al. 1997; Hunt et al. 2005), we quantify the resistance of each strain using
inhibitory concentration 50 (IC50) measurements. These measures represent the pyrimethamine concentration at which the strain’s growth rate is 50% of the same strain’s growth in the absence of pyrimethamine.

Briefly, for each strain, we fit the following logarithmic curve to our growth rate versus pyrimethamine concentration data:

\[
G_i = \frac{A_i}{1 + e^{-b_i c_i x_i}},
\]

where \(G_i\) is the growth rate of strain \(i\), \(A_i\) is the maximum growth rate in the absence of pyrimethamine, \(b_i\) is the pyrimethamine concentration at which \(G_i\) is half of \(A_i\), \(c_i\) is a scaling parameter determining the shape of the logistic regression, and \(x\) is the \(\log_{10}\) of the pyrimethamine concentration. IC50 values for each strain represent the value of \(b_i\) from nonlinear least squares regressions. Regression code was written in R.

We determined the correlation between our calculated IC50 values and our observed MICs (Spearman’s rank correlation: \(P = 5.895 \times 10^{-11}\); supplementary fig. S1, Supplementary Material online). For three DHFR alleles (C59R/S108N/I164L, N51I/S108N/I164L, and N51I/C59R/S108N/I164L), statistically significant IC50 values could not be determined from our logistic regressions because we did not observe a significant decrease in growth rate over the range of pyrimethamine concentrations. For these cases, we fit a linear model (IC50 ~ MIC) to our resistance data and used this model to predict the IC50 values of the missing strains. The complete IC50 data set is presented in supplementary table S3, Supplementary Material online.

Calculation of Accessible Evolutionary Trajectories
Following previously established methodology (Weinreich et al. 2006; DePristo et al. 2007; Lozovsky et al. 2009), we used the allele-specific resistance (IC50) data to analyze the mutational trajectories that are accessible to DHFR evolution. Under a model where selection acts to increase pyrimethamine resistance, we assumed that the time to fixation or loss of a newly arising mutation is much shorter than the time between mutations (“strong selection/weak mutation”; Gillespie 1984). As alleles with a single mutation do not segregate long enough to experience a second mutation, this model considers evolutionary trajectories with only single positive mutational steps (see Weinreich et al. 2006 for a detailed description). Following DePristo et al. (2007), we consider all potential positively selected single-mutant neighbors, including reversions of previously fixed mutations. We consider only mutations that increase resistance, assuming that probabilities (and thus rates) of fixation will be much higher for such mutations than for neutral mutations or those that decrease resistance.

Because each fixation event is statistically independent of those occurring previously. The probability of moving from the low fitness wild type (wt) to an allele of a higher fitness, dhfr\(^*\), via mutational intermediates \(a\), \(b\), and \(c\) is given, as in Weinreich et al. (2006), by

\[
P_{wt \rightarrow dhfr^*} = P_{wt \rightarrow a} \cdot P_{a \rightarrow b} \cdot P_{b \rightarrow c} \cdot P_{c \rightarrow dhfr^*}.
\]

We used two methods for estimating the probability of fixation \(P_{i \rightarrow j}\) of the single-mutant neighbor, \(j\), of current allele \(i\). Under equal fixation probability, we assume that all favorable alleles have an equal probability of fixation. Algebraically,

\[
P_{i \rightarrow j} = \frac{1}{|M_i^+|},
\]

where \(M_i^+\) is the set of all single-mutant neighbors of positive selective value.

Under correlated fixation probability, we follow the extreme value theorem-based approach of Weinreich et al. (2006) based on Orr (2002). This model assumes a correlation between the size of the selective increase (in our case, drug resistance) and its fixation probability. In particular,

\[
P_{i \rightarrow j} = \frac{\sum_{x = r_i}^{r_j - 1} 1}{\sum_{k \in M_i^+} \sum_{x = r_k}^{r_j - 1} 1},
\]

where \(r_i\) is the fitness rank (based on IC50 value) of all alleles regardless of mutational adjacency.

In order to account for the effects of genome-specific mutational bias in \(P. falciparum\), we weight the probability of each potential fixation by its mutational frequency according to the following equation:

\[
P_{\text{bias}(i \rightarrow j)} = \frac{P_{i \rightarrow j} \beta_{i \rightarrow j}}{\sum_{a \in M_i^+} P_{a \rightarrow j} \beta_{a \rightarrow j}},
\]

where \(P_{i \rightarrow j}\) is the equal or correlated transition probability as calculated above and \(\beta_{i \rightarrow j}\) is the relative bias of the mutation necessary to produce allele \(j\) from allele \(i\). Daniel Neafsey (Broad Institute, Cambridge, MA) kindly

FIG. 1. A plot of resistance (IC50) versus growth rate in the absence of pyrimethamine for each of the 29 functional DHFR alleles. No significant correlation exists between these two phenotypes (Pearson’s correlation: \(P = 0.7512\)).
provided a 12-parameter mutation rate matrix based upon 1073 intergenic single nucleotide polymorphisms in *P. falciparum* (see table S3 in Lozovsky et al. 2009).

Probabilities of evolutionary trajectories and their corresponding confidence intervals were estimated using simulations run using PERL. For each allele, we used the calculated IC50 value and the corresponding standard error as the mean and standard deviation of a normal distribution defining the resistance distribution for each allele. Using these IC50 distributions to probabilistically define mutational landscapes, we simulated 1,000 mutational landscapes. We then simulated 1 million rounds of evolution on each landscape under both fixation models (see Lozovsky et al. 2009 for a more detailed description of the algorithm).

Simulating landscapes and trajectories in this way allows the probability estimates to account for uncertainty in our resistance measurements. As a result, many trajectories, regardless of their probability, occur on low-likelihood landscapes. We therefore report a set of consensus trajectories that occur on at least 85% of all landscapes. Changing the percent of simulated landscapes on which a trajectory must occur changes the number of trajectories considered (95% threshold = 29, 85% threshold = 46, and 50% threshold = 85) but does not change the identity of the most frequent trajectories.

Mean trajectory probabilities (see fig. 3 and supplementary table S1, Supplementary Material online) represent the mean frequency of each trajectory across the 1,000 simulated landscapes. Statistics were calculated using scripts written in R.

Results

In order to understand how various mutational combinations may affect the ability of strains to grow, we analyzed the growth rates of different genotypes in the absence of the antifolate drug (supplementary fig. S1 and supplementary table S2, Supplementary Material online). Among the 48 genotypes, 19 demonstrated no observable growth in the absence of pyrimethamine; we consider these alleles to be nonfunctional even though some demonstrate in vitro activity toward dihydrofolate (e.g., A16V; see Sirawaraporn et al. 1997). The 29 functional alleles have relative growth rates between 71% and 104% of the wild type. Among the six single-mutant neighbors of the wild-type sequence, five have statistically significantly lower growth rates than the wild type (based on nonoverlapping 95% confidence intervals; but see allele 00100 in supplementary fig. S1, Supplementary Material online). Only C59R has a nonsignificantly different growth rate. In the yeast system, the wild-type allele appears to be a fitness peak in the absence of drug pressure.

We next analyzed the pyrimethamine resistance levels of the 29 functional alleles (supplementary fig. S2 and supplementary table S3, Supplementary Material online). We define resistance as the IC50, which is the concentration of drug needed to reduce the strain’s growth rate by half (see Materials and Methods). Consistent with previous resistance data from parasite field isolates, the quadruple mutant N51I/C59R/S108N/I164L exhibits the highest resistance, and the triple mutants C59R/S108N/I164L and N51I/C59R/S108N also exhibit high levels of resistance (Sirawaraporn et al. 1997). Likewise, S108N confers the highest resistance among single mutations.

The individual mutations have remarkably different effects on resistance (table 1). For example, although S108N increases pyrimethamine resistance 128-fold, the A16V replacement reduces resistance on the vast majority of genetic backgrounds. Mutations also differ in their ability to restore functionality to a nonfunctional DHFR genetic background (see Rescues column, table 1).

Overall, we observe no clear association between resistance level and growth rate (fig. 1). Correlation analysis between growth rate and resistance levels suggests that these two phenotypes are statistically independent (Pearson’s correlation: $P = 0.7589$). This lack of association suggests phenotypic robustness in DHFR evolution in the genetic background of *S. cerevisiae*. Furthermore, neither growth rate nor pyrimethamine resistance is a simple function of the number of mutations present in a DHFR allele (supplementary fig. S4, Supplementary Material online). Regression analyses between the number of mutations and either phenotype failed to yield a significant relationship (growth rate: adjusted $R^2 = 0.001994$, $P = 0.313$; IC50: adjusted $R^2 = 0.05281$, $P = 0.121$). Our data indicate that only specific combinations of mutations are beneficial to either growth rate or resistance and that interactions between mutations strongly affect phenotype.

In order to understand the effect of this mutational landscape on DHFR evolution, we simulated the evolution of pyrimethamine resistance following previously established methodology (Weinreich et al. 2006; DePristo et al. 2007; Lozovsky et al. 2009; see Materials and Methods). Assuming that the time between mutations is much longer than the time for fixation or loss of new mutations (Gillespie 1984; Orr 2002), our simulations move step-by-step through the mutational landscape adding or removing a single mutation at each point along a mutational trajectory. Given the relative likelihood of fixing a neutral or deleterious mutation under the intense selective pressure of antibiotics, we consider only positively selected mutational steps. As it is unclear how the level of resistance to pyrimethamine corresponds to fitness, we use two models to predict the probability of mutational fixations. The equal fixation model assumes that all favorable steps are equally likely, whereas the correlated fixation model assumes that a mutation’s probability of fixation is proportional to the magnitude of the increase in resistance (Weinreich et al. 2006). To compensate for mutational bias in the *P. falciparum* genome, we weight the frequency of the occurrence of mutations by the *P. falciparum*-specific relative mutation rates (see Materials and Methods above and table S3 in Lozovsky et al. 2009). Selection coefficients are only based upon pyrimethamine resistance because the contributions to fitness due to differences in growth rate would be negligible under strong pyrimethamine pressure.
Although we observe 46 selectively accessible mutational trajectories (i.e., those in which each step results in an increase in resistance), DHFR evolution is actually highly predictable and dominated by a handful of trajectories. The ten most likely evolutionary trajectories, depicted in Figure 2, are observed between 84% and 99% of the time (Fig. 3). Furthermore, more than 80% of our simulations fix S108N first (supplementary fig. S5, Supplementary Material online) and all trajectories end at the global resistance maximum, the quadruple mutant, N51I/C59R/S108N/I164L. Additionally, although many functional genotypes containing A16V have higher pyrimethamine resistances than the wild type, this mutation is not visited in any of the most frequent trajectories. Perhaps because of its extremely detrimental effect on native DHFR function (Sirawaraporn et al. 1997), we observe that A16V is only favorable in 3 of the possible 24 genetic backgrounds (table 1).

The three most likely evolutionary trajectories illustrate how resistance can evolve without necessarily compromising growth rate. Figure 4 depicts the growth rate and resistance level of alleles at each mutational step in these pathways. The right-hand plots for each pathway demonstrate how resistance continuously increases at each step in these paths. However, the left-hand plots show that growth rate fluctuates along the path to higher resistance. Linear regression models reveal that mutational step has no significant effect on growth rate over the course of these three trajectories (adjusted $R^2 < 0.05$ and $P > 0.35$ for all three regressions). In each trajectory, subsequent resistance increasing mutations quickly compensate for the growth rate effect of the initial fixation (S108N).

Discussion

We describe the growth rate and pyrimethamine resistance mutational landscapes of DHFR and find growth rate remarkably robust to mutations that increase resistance. Correlation analyses and evolutionary simulations reveal that, in the yeast model system, resistance and growth rate phenotypes freely associate. Because interactions between

![Figure 2](image1.png)

FIG. 2. Ten most frequent evolutionary pathways leading from the wild type to the quadruple mutant using the correlated fixation model. According to our model, evolution of pyrimethamine resistance follows one of these ten pathways nearly 99% of the time. Five digit numbers indicate allelic states at each evolutionary step where each digit corresponds to an amino acid site (from left to right: 16, 51, 59, 108, 164). Wild-type states are depicted as 0, whereas mutant states are depicted as 1 or 2 (site 108: S = 0, N = 1, T = 2). Bold arrows indicate the three most likely pathways and the thickest arrows depicting the most likely path.

![Figure 3](image2.png)

FIG. 3. Probability density function (PDF) for ten evolutionary pathways of greatest frequency. The solid line depicts the PDF based on equal fixation probabilities, whereas the dashed line depicts the PDF from correlated fixation probability. Landscapes were simulated based upon IC50 data in supplementary table S3, Supplementary Material online. Pathways are ranked according to mean frequency. Error bars represent 95% confidence intervals.
mutations seem to play a large role in determining both growth rate and resistance levels, the phenotype of alleles with multiple mutations is difficult to predict based on the phenotypic effects of the individual mutations alone.

In general, there is a complex relationship between different DHFR genotypes’ in vitro biochemical properties and their organismal phenotypes. For example, the pyrimethamine affinity (K_i) of the individual DHFR alleles does predict the level of resistance of each strain (supplementary fig. S6, Supplementary Material online; Pearson’s correlation: 0.89, $P = 0.0001$). However, there are exceptions. Some mutations that increase pyrimethamine affinity (decrease K_i) still increase resistance (e.g., N51I and I164L; see supplementary fig. S2, Supplementary Material online, and Sirawaraporn et al. 1997). Even more surprisingly, there is no significant correlation between the enzyme efficiency (k_{cat}/K_M) of different DHFR alleles and their growth rate (supplementary fig. S6, Supplementary Material online). For example, although the enzyme efficiency (k_{cat}/K_M) of wild-type and N51I/C59R/S108N alleles for dihydrofolate differ by nearly 40-fold, they grow at the same rate in the absence of pyrimethamine. The well-established

Fig. 4. Growth rates (left) and resistance values (right) of alleles at each step in the three most likely evolutionary pathways. Plots in the same row (A and B, C and D, and E and F) display data from the same trajectory. Alleles at each step in the mutational trajectories are displayed above the plots. Five digit numbers indicate allelic states at each evolutionary step where each digit corresponds to an amino acid site (from left to right: 16, 51, 59, 108, 164). Wild-type states are depicted as 0, whereas mutant states are depicted as 1 or 2 (site 108: $S = 0$, $N = 1$, $T = 2$). Rates represent growth in the absence of drug and are relative to the wild-type growth rate. Error bars represent 95% confidence intervals.
conca\v{c}e relationship between fitness and enzyme activity for pathway enzymes may explain some of the absence of correlation (Hartl et al. 1985); however, this relationship cannot explain cases in which one allele has a higher efficiency but a lower growth rate than another (e.g., compare N51I with C59R/S108N; fig. 1 in Sirawaraporn et al. 1997). We hypothesize that these mutations affect other protein properties such as degradation, aggregation, and folding, which may also impact growth rate.

Previous research suggests that mode of binding between drug and target may dictate the trade-off between resistance and native enzyme function (Berkhout 1999; Tawfik 2005). Drugs that bind directly in the active site may impose greater trade-offs than drugs that bind external to the catalytic core (Berkhout 1999; Tawfik 2005). Applying this model, one expects antifolate drugs, such as pyrimethamine, which bind directly in DHFR’s active site and interact with key residues involved in dihydrofolate binding (Yuvaniyama et al. 2003), should impose a strong trade-off in the evolution of pyrimethamine resistance. However, although the addition of these mutations significantly decreases the enzyme efficiency toward dihydrofolate (Sirawaraporn et al. 1997), they do not have the same consistent impact on growth rate. In total, our data suggest that organismal fitness, as determined by growth rate, may be even more robust than biochemical parameters alone would indicate.

Despite the additional constraint of maintaining its native enzymatic function, DHFR’s evolutionary landscape is similar in one important aspect to that of β-lactamase (Weinreich et al. 2006). As in Weinreich et al. (2006), our simulation results also suggest that protein evolution may be highly biased toward a small number of mutational trajectories. In both cases, between two and four trajectories are likely to occur at least 50% of the time independent of the fixation model used.

Surprisingly, the DHFR landscape may be more accessible to natural selection than the β-lactamase landscape. To make these landscapes comparable, we limit the mutational landscape to those mutations comprising the global fitness maximum (i.e., five for β-lactamase and four for DHFR). Furthermore, we consider mutational trajectories that comprised solely of forward mutations as these may cover as much as 99% of the trajectory probability space (DePristo et al. 2007). Weinreich et al. (2006) observe that 15–32.5% (18–39 of 120) of forward trajectories are accessible, whereas we observe that 58% (14 of 24) of potential forward trajectories are accessible. The β-lactamase landscape appears more constrained even if the landscape is restricted to the four sites that are likely to fix first (9 of 24 or 37.5%). As growth rate appears to be robust to mutations increasing resistance, our results suggest that the maintenance of an existing enzymatic function does not significantly impact the evolution of nonnative protein functions.

Our results from a yeast system for malarial DHFR are similar to those from a system developed for E. coli (Chusacultanachai et al. 2002; Lozovsky et al. 2009). Carrying out similar studies in this bacterial species, Lozovsky et al. (2009) found that the favored evolutionary pathways in the E. coli system are congruent with those in yeast (heavy lines in fig. 2). As in the yeast system, the DHFR alleles in E. coli show no consistent correlation with growth rate in the absence of drug ($P = 0.81$; supplementary table S5, Supplementary Material online).

Furthermore, in the absence of pyrimethamine, the growth rates of S. cerevisiae strains and E. coli strains carrying the same DHFR alleles are significantly correlated (one-sided Pearson’s correlation: $r = 0.56$, $P = 0.015$; see supplementary table S5, Supplementary Material online). Because the experiments in these two studies were done in two different species using two different plasmids and mutagenesis, the high correlation in growth rate seems to rule out experimental artifacts such as random mutations in the genetic background of the yeast strains or in regions of the plasmid outside the DHFR locus. The congruence of the results of these two completely independent studies also suggests that the lack of correspondence between enzyme efficiency and growth rate may be due to differences at the protein level (e.g., folding or stability), rather than at the RNA level (e.g., processing or stability). However, these models are not mutually exclusive or exhaustive, and both may play a role.

Despite their similarities, the S. cerevisiae and E. coli systems exhibit some notable differences. For example, the variance in growth rate among strains carrying the various DHFR alleles is ~ 10 times greater in E. coli than in yeast. The narrower range of growth rates is reflected in the smaller effects of individual replacements. In E. coli, replacing the triple mutant N51I/C59R/S108N with the quadruple mutant N51I/C59R/S108N/I164L reduces growth rate by about 40% and replacing C59R/S108N/I164L with the quadruple mutant reduces it by about 32%. In yeast, by contrast, the former mutation reduces growth rate by only 14% (fig. 4C–F), and the latter mutation has no detectable effect though the standard error bars are quite large (fig. 4A and B). The general amelioration of the growth rate effects of the DHFR allele may reflect a lower requirement for DHFR activity in yeast relative to E. coli. If it exists, this lower DHFR activity requirement may be due to offsets in the metabolic economy of yeast, or it may be due to some specific enzyme such as a relative increase in the activity of GTP-cyclohydrolase I, which in yeast is encoded in FOL2 (Nardese et al. 1996). This is the first enzyme in the biosynthetic pathway for folic acid, and in P. falciparum, Nair et al. (2008) have shown that copy-number polymorphisms can reduce the growth rate effects of DHFR mutants.

Our results may lend insight into the evolution of P. falciparum DHFR in nature. For example, although the vast majority of our constructed alleles are not observed in malaria field isolates, all the alleles present in each of the three most likely mutational trajectories have been isolated from patients (Sirawaraporn et al. 1997). We also confirm the importance of the S108N mutation, which has long been speculated to be the first mutation fixed in DHFR resistance evolution based predominantly on its biophysical
importance (Sirawaraporn et al. 1997; Yuvaniyama et al. 2003). In light of the challenge of culturing and genetically manipulating the parasite itself, the use of this and other model systems may provide powerful insights into combating the threat of drug resistance in \textit{P. falciparum}.

Negative trade-offs between growth rate and resistance at drug targets provide hope in combating the evolution of antibiotic resistance. If large negative trade-offs exist, one might imagine restoring drug susceptibility by relaxing drug pressure (Andersson 2006). However, upon the relaxation of drug pressure, resistance phenotypes are likely to be maintained while additional mutations compensate for their fitness consequences (Maisnier-Paitin et al. 2002; Nair et al. 2008). Our results are consistent with these findings and show that resistance-conferring mutations themselves can compensate for the fitness consequences of initial mutations (fig. 4). Together, these results suggest that once initially selected for, drug-resistant genotypes may remain at high frequencies in populations even in the absence of antibiotic pressure. Resistance prevention may still provide the best strategies in combating antibiotic resistance (Palumbi 2001).

Supplementary Material

Supplementary tables S1–S4 and figures S1–S6 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

We thank Daniel Weinreich, D. Allan Drummond, John Wakeley, Anne Pringle, and Christopher Marx for helpful discussions and comments on the manuscript. We thank Carol Sibley and her laboratory for providing the TH5 yeast strain and the GR7 shuttle vector as well as for helpful discussions about laboratory protocols. A grant from the National Institutes of Health to D.L.H. supported this work (grant number R01GM079536). K.M.B. was supported by a National Science Foundation graduate research fellowship.

References

