High Resolution Mapping of Candidate Alleles for Desiccation Resistance in *Drosophila melanogaster* under Selection

Marina Telonis-Scott,*1 Madeleine Gane,1 Sarah DeGaris,1 Carla M. Sgro,2 and Ary A. Hoffmann1

1Department of Genetics, Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia
2School of Biological Sciences, Monash University, Clayton, Melbourne, Australia

Corresponding author: E-mail: marinats@unimelb.edu.au.

Associate editor: John H. McDonald

Abstract

The ability to counter periods of low humidity is an important determinant of distribution range in *Drosophila*. Climate specialists with low physiological tolerance to desiccation stress are restricted to the tropics and may lack the ability to further increase resistance through evolution. Although the physiological adaptations to desiccation stress are well studied in *Drosophila* and other ectotherms, factors underlying evolutionary responses remain unknown because of a paucity of genetic data. We address this issue by mapping evolutionary shifts in *D. melanogaster* under selection for desiccation resistance. Genomic DNA from five independent replicate selected, and control lines were hybridized to high density Affymetrix *Drosophila* tiling arrays resulting in the detection of 691 single feature polymorphisms (SFPs) differing between the treatments. While randomly distributed throughout the genome, the SFPs formed specific clusters according to gene ontology. These included genes involved in ion transport and respiratory system development that provide candidates for evolutionary changes involving excretory and respiratory water balance. Changes to genes related to neuronal control of cell signaling, development, and gene regulation provide candidates to explore novel biological processes in stress resistance. Sequencing revealed the nucleotide shifts in a subset of the SFPs and highlighted larger regions of genomic diversity surrounding SFPs. The association between natural desiccation resistance and a 463-bp region of the 5′ promoter region of the Dys gene undergoing allele frequency changes in response to selection in the experimental evolution lines was tested in an independent population from Coffs Harbour, Australia. The allele frequencies of 23 SNPs common to the two populations were inferred from the parents of the 10% most and 10% least resistant Coffs Harbour flies. The frequencies of the selected alleles were higher at all sites, with three sites significantly associated with the resistant Coffs Harbour flies. This study illustrates how rapid mapping can be used for discovering natural molecular variants associated with survival to low humidity and provides a wealth of candidate alleles to explore the genetic basis of physiological differences among resistant and susceptible *Drosophila* populations and species.

Key words: *Drosophila*, desiccation, candidate-alleles, natural-adaptation.

Introduction

Insect distributions are commonly linked to physiological resistance traits including desiccation stress (van Herreweg and David 1997; Le Lagadec et al. 1998; Addo-Bediako et al. 2001). In *Drosophila*, distributional patterns have been connected with genetic variation for physiological tolerances to traits, such as desiccation resistance and cold resistance (Kellermann et al. 2009; Boher et al. 2010; Strachan et al. 2011). The narrow latitudinal range of tropical rainforest species parallels low phenotypic and genetic variances for desiccation resistance and reflects fundamental evolutionary limits that appear independent of neutral variation or phylogeny (Hoffmann et al. 2003; Kellermann et al. 2009). Predicted rainfall patterns leading to drier tropical conditions are anticipated to pose specific challenges to climate specialists that are evolutionarily constrained to extend their range beyond perennially humid habitats (Hoffmann 2010). Variation in distribution-limiting traits such as desiccation resistance is therefore an important indicator of species potential to adapt to changing climatic conditions, particularly for species living close to their physiological limits (Hoffmann and Sgro 2011).

Desiccation resistance is a complex adaptation that can arise through multiple mechanisms including 1) lowered water loss rates, 2) increased bulk water stores, and 3) tolerating more water loss (dehydration tolerance) (Gibbs and Matzkin 2001). The ability to retain more water underlies numerous desert invasions of cactophilic *Drosophila* primarily by reducing respiratory water loss rates to conserve water content (Gibbs and Matzkin 2001; Marron et al. 2003). Low metabolic rates may also permit greater carbohydrate energy utilization during desiccation in desert *Drosophila* despite similar basal reserves as their mesic congeners (Marron et al. 2003). Water retention is also a common mechanism underlying adaptation to simulated laboratory “deserts,” although selected populations often follow different evolutionary trajectories depending on their genetic backgrounds and selection regimes (Telonis-Scott et al. 2006). For example, varied patterns of water balance and resource partitioning in selected *D. melanogaster* populations include sequestration of water to the hemolymph (Chippindale et al. 1998; Folk et al. 2001), increased carbohydrate (glucose) storage (Chippindale et al. 1998), reduced metabolic rate (Hoffmann and Parsons 1989), and greater dehydration
tolerance (Telonis-Scott et al. 2006). Moreover, dehydration tolerance in desert Drosophila can be phylogenetically constrained (Marron et al. 2003).

Despite the well-characterized physiology and ecology of desiccation resistance in Drosophila, surprisingly little is known about the genetic basis underlying the evolutionary divergence among climatically adapted species. Single gene approaches in D. melanogaster have isolated loci with large effects on water balance in adults and wandering larvae, parched and desiccate, respectively (Kimura et al. 1985; Kawano et al. 2010), and have linked the cold stress candidates frost and smp-30 with the desiccation response (Sinclair et al. 2007). Genome-wide studies suggest that adaptations to low humidity environments may involve more complex genetic architectures. Quantitative trait loci (QTL) mapping identified at least 15 genomic regions contributing to natural variation for desiccation survival in D. melanogaster (Foley and Telonis-Scott 2011). At the transcriptome level, desiccation stress elicited differential expression patterns in over 1,000 genes in the desert endemic D. mojavensis (Matzkin and Markow 2009) and altered the basal expression of more than 200 genes in experimental evolution populations of D. melanogaster (Sorensen et al. 2007). Although genome-wide studies associate desiccation resistance with intervals containing thousands of annotated genes (QTL analysis), or with expression variation in hundreds of genes (microarrays), variation at the allelic level remains poorly defined. Single-gene studies attempt to bridge this gap but are limited in scope given that natural continuous phenotypes are rarely reflected in the discrete form of laboratory mutants and isolates. As such, important questions still remain including why only some species lack the genetic potential to adapt to low-humidity habitats, and specifically, to discover the molecular basis of variation in this trait.

Here, we begin to address these questions by utilizing a rapid and effective genome-wide strategy to systematically map candidate alleles associated with evolutionary shifts in desiccation resistance in D. melanogaster. This species is a widespread cosmopolitan climate generalist with naturally high levels of desiccation resistance (David et al. 2004; Kellermann et al. 2009); importantly, it is also a fully sequenced model organism. Drosophila melanogaster exhibits substantial evolutionary capacity to adapt to low humidity environments, and studies on this species have provided much insight into the evolutionary physiology of desiccation resistance (Hoffmann and Harshman 1999). We used a short intensive artificial selection treatment to generate highly desiccation divergent lines from a large recently field-derived population. The selected lines survived desiccation on average over 30% longer than the controls, retained 14% more water after 3 h, and stored 6% and 57% more water and glycogen than the controls, respectively (DeGaris S, unpublished data).

The applications of array-based genotyping are multifold and include differentiating between inbred and wild Arabidopsis strains (Borevitz et al. 2003, 2007), cryptic mosquito strains (Turner et al. 2005), and highly diverse clines endpoints in D. melanogaster (Turner et al. 2008), as well as mapping QTL for longevity between recombinant inbred lines in D. melanogaster (Lai et al. 2007). Nevertheless, this approach has been rarely used to map allele frequency changes contributing to the selection response of complex traits. Nuzhdin et al. (2007) inferred QTL contributing to the selection response for starvation resistance in D. melanogaster using expression arrays to identify linked markers undergoing allele frequency shifts. Although a more powerful multiallelic approach compared with traditional hitch-hiking mapping studies, a more comprehensive mapping platform such as the tiling array would have enabled greater resolution of small selective sweeps (Nuzhdin et al. 2007).

Our design, involving multiple replicate lines combined with comprehensive genome coverage, permitted the detection of at least three regions of chromosome 3R undergoing multiple allele frequency changes in response to selection for desiccation resistance. We used high-density tiling arrays to screen over 2 million loci across the D. melanogaster genome, and this process mapped shifts following selection to 691 single-feature polymorphisms (SFPs). We linked SNPs from one of these regions showing evidence of a selective sweep at <0.5 kb of the Dys gene with natural variation for desiccation resistance and resolved several small haplotype blocks in this region. These data represent the essential next step in connecting laboratory evolution to natural resistance evolution in Drosophila and provide new candidate regions for variation in a trait of ecological significance.

Materials and Methods

Drosophila melanogaster Lines and Culture

The artificial selection and control lines were founded from D. melanogaster sampled from southern Victoria in 2008. The offspring of 100 field-collected females were pooled and mass bred for two generations in the laboratory prior to the first selection at generation F3. The experimental flies were reared under controlled density conditions by removing parents after 6 h of oviposition. Virgin F3 flies were separated by sex under light CO2 anesthesia at 6 h intervals and allowed at least 48 h recovery prior to desiccation stress. Flies were desiccated in groups of 25 in glass vials topped with gauze in sealed glass tanks containing silica desiccant (RH < 10%) until the approximate LT50 of 1,000 flies of each sex. The survivors were randomly allocated into six replicate lines comprised of 70–80 flies of each sex (150–160 flies total per replicate). The controls were established in the same manner as the selected lines barring the substitution of water for desiccant, and an equivalent number of flies were randomly allocated into six replicate lines at the end of the desiccation stress. Selection on subsequent generations was more stringent, with the last 10–20% of surviving males and females used to start the following generation. Although we endeavored to select from 1,000 flies of each sex per replicate line, the number of virgin progeny collected from the preceding generation was sometimes fewer than 2,000 per line. Therefore, the proportion of selected individuals could vary from generation to generation, however no less than

Telonis-Scott et al. · doi:10.1093/molbev/msr294

Molecular Biology and Evolution

Vol. 00, No. 00

1336
80 flies of each sex were used to start the next generation for selection, (i.e., 160 virgin males and females). The proportion of flies selected, strength of selection, and sex ratios were kept consistent between replicates at each generation. Eight generations of selection were conducted in this manner on the six replicate lines, and the six controls were also maintained at comparable densities. Generation F8 females from five replicates of each treatment were frozen in 100% ethanol for the DNA hybridizations and sequencing. All flies were maintained at 25 °C under constant light on a dextrose-dead yeast-agar medium in 500-ml bottles.

Desiccation Selection Response Assay
The lines were assessed for desiccation resistance following the final selection round. The desiccation assays were conducted on all lines except Control replicate 4 (which had low progeny numbers at this time for an unknown reason) after two generations following the cessation of selection. Density was controlled in the test flies by minimizing the time for oviposition; 130 females and 150 males were allowed to oviposit in 500-ml bottles for a 2-h interval. The progeny eclosed into mixed sex cohorts and were sorted by sex into groups of 10 under light CO2 anesthesia and allowed at least 48 h recovery prior to desiccation. Flies were desiccated as described above, and scored at hourly intervals until 100% mortality was reached (LT100).

Coffs Harbour Association Study
For the association study, the offspring of 30 field-collected females from a banana plantation in Coffs Harbour (30°13′507′′S, 153°05′443′′E) in 2010 were pooled and mass bred for a generation under controlled density conditions (limiting the time for oviposition as described above). Virgin generation F1, flies were separated by sex using light CO2 anesthesia and pair mated at 6–7 days of age. The progeny eclosed into mixed sex cohorts and were sorted by sex into groups of 10 under light CO2 anesthesia and allowed at least 48 h recovery prior to desiccation. Flies were desiccated as described above, and scored at hourly intervals until 100% mortality was reached (LT100).

For the Coffs Harbour population, the LT50 of each sex/replicate combination was adjusted to account for slight differences in mortality across the six tanks used for the desiccation assays. The difference between the overall average LT50 across tanks and the average of tank x was subtracted from each vial in tank x. The 10% tails of the F2 phenotypic distribution were chosen by ranking the female LT50. This resulted in 14 F1 parents of field females from each tail of the distribution for genotyping (14/137 “high” parents and 14/137 “low” parent crosses). Phenotypic differences between the two tails were tested with a Student’s t test (SAS V9.2).

DNA Isolation and Sample Preparation for Array Hybridizations
Groups of 25 females were homogenized in 180 µl buffer ATL (QIAGEN, Valencia, CA) and lysed in 20 µl proteinase K at 56 °C for 3 h, then incubated with 4 µl RNase A (100 µg/ml) for 2 min at room temperature. Genomic DNA was isolated and purified using the DNeasy Blood and Tissue Kit (QIAGEN) according to the manufacturer’s instructions. For each replicate line, four separate isolations were combined and concentrated by ethanol precipitation for a total pool of 100 flies per sample, producing a total of 10 samples for the hybridizations. DNA concentration was determined on a Nanodrop Spectrophotometer (Nanodrop Technologies, Wilmington, DE), and quality was assessed using 1% agarose gel electrophoresis.

DNA Fragmentation for Array Hybridizations
DNA fragmentation was carried out according to the following protocol: 9 µg of each sample was digested in a 40 µl reaction containing 0.016 U/µg DNasel (New England Biolabs Inc, Ipswich, MA), 4 µl One Phor All Buffer (100 mM each of Tris-acetate, magnesium acetate, and potassium acetate in 50 ml H2O), 0.08 µl purified BSA (NEB Inc). Samples were incubated in an Eppendorf PCR machine at 37 °C for 16 min, and the reaction was stopped at 99 °C for 15 min, then cooled at 12 °C for 10 min. Fragments were visualized using 3% agarose gel electrophoresis. This protocol generated fragments consistently ranging approximately 200–15 bp, with an average size of 50 bp.

Sample Labeling, Array Hybridization, Washing, and Scanning
Fragmented DNA (7.5 µg) was labeled and hybridized to GeneChip Drosophila Tiling 2.0R Arrays (Affymetrix, Santa Clara, CA) following sections of the Affymetrix Chromatin Immunoprecipitation Assay protocol. Double-stranded fragmented DNA was labeled in 15 µl of double-stranded DNA labeling mix (12 µl 5 X TdT buffer, 2 µl TdT, 1 µl 5 mM DNA labeling reagent) by incubating at 37 °C for 60 min, 70 °C for 10 min, and cooling at 4 °C. For each sample, the hybridization cocktail contained 7.5 µg fragmented and labeled DNA target, 3.3 µl control oligonucleotide B2, 100 µl 2X hybridization mix, 14 µl DMSO, and nuclease-free H2O in a total volume of 200 µl. The hybridization cocktail was heated at 99 °C for 5 min and cooled at 45 °C for 5 min.

Phenotypic Data Analyses
The difference between the selected and control line LT100 values were compared with a one-way analysis of variance (ANOVA). While the residual variances departed from normality (P < 0.0001, Shapiro–Wilk test, PROC UNIVARIATE, SAS V9.2), inferences were similar using nonparametric or parametric statistics, therefore, ANOVA is shown for simplicity.
Arrays were hybridized at 45 °C at 60 rpm for 16 h, then washed and stained using the fluidics protocol for GeneChip Tiling Arrays. Array hybridization, washing, and scanning were performed at the Ramaciotti Centre (University of New South Wales, NSW, Australia). Raw intensity values for the perfect match (PM) features were exported from CEL files using Affymetrix Tiling Analysis Software (v1.1).

SFP Analysis

The Affymetrix probe annotation (NCBIv36 release) was updated to exclude probes with multiple hits by aligning 2,877,067 PM probes to the FlyBase release 5.22 excluding chromosome U (Tweedie et al. 2009) using the short read aligner Bowtie (Langmead et al. 2009). Two million seven hundred fifty thousand nine hundred fifty-six probes had unique hits to the 5.22 genome. This included 157 Affymetrix control features, 536 Y chromosome features, and 536 chromosome U-labeled features which were excluded from the final analysis of 2,750,232 probes.

The data were normalized using a modified rank-based method (Graze et al. 2009). This approach predicted SNPs with 97% accuracy between *D. melanogaster* and *D. simulans* on Drosophila 1.0R tiling arrays (Graze et al. 2009). This normalization method controls for shifts in signal intensities relative to all the features on the array and accounts for artifacts such as background and slide intensity variation among slides. The raw PM intensities of each array were ranked into ten bins as this tended to provide greater dynamic range, sensitivity, and overall stringency compared with ranking data into thirds or quartiles. Allele frequency shifts between the control and selected lines were identified from those features where consistent DNA mismatches between the target and probe sequences sufficiently reduced hybridization efficiency resulting in signal attenuation in one set of treatments compared with the other. This was determined by comparing the normalized hybridization signals between the control and selected lines using Student’s t tests. Significance was determined across multiple tests using the false discovery rate (FDR) method of Benjamini and Hochberg (1995) at a threshold of 0.2. Analyses were performed using SAS software version 9.2 (SAS Institute, Cary, NC).

Verification of Putative SFPs with Sequencing

Regions of genomic divergence between the control and selected lines were further assessed with single-pass sequencing. A subset of SFPs were chosen for verification based on several criteria including substantial signal attenuation between treatments, clustering of significant SFPs, and mapping to an annotated gene with biological relevance to water balance. Fifteen SFPs targeting 13 genes were sequenced. Primers flanking up to 400 bp either side of the probe sequence were designed using Primer3 (http://frodo.wi.mit.edu/primer3/ [date last accessed 6 December 2011]); sequences and expected product sizes are provided in supplementary table 1 in supplementary file 1, Supplementary Material online. A standard 25 μl polymerase chain reaction (PCR) contained 2.5 μl 1 × NEB Buffer, 2.5 μl dNTPs, 1 μl 10 μM forward primer, 1 μl 10 μM reverse primer, 0.21 μl NEB Taq, 16.8 μl H2O, and 1 μl genomic DNA diluted 1:20 in H2O. Products were amplified with a standard PCR profile with annealing temperatures ranging from 55 to 60 °C. The same pooled genomic DNA samples used for the array hybridizations (bulk samples of 100 females) were sequenced from purified PCR products using standard protocols at Macrogen (Korea). Sequencing was performed on both strands only in those cases where one direction yielded poor quality sequence. Multiple alignments were performed using Sequencer V4.7. The chromatograms were visually inspected to identify sites undergoing frequency changes and based on the predominance of two major peaks at the polymorphic sites in the control lines, the secondary peak height calling threshold was set to 40% of the larger peak. This threshold tended to partition major allele changes from the sequencing noise of 100 individuals, albeit at the expense of detecting rare or fixed alleles.

Functional Annotation Enrichment Analysis

SFPs that mapped to a functionally annotated gene were assessed for annotation-term enrichment analysis using DAVID (Dennis et al. 2003; Huang et al. 2009). Three hundred and eighty-eight Flybase IDs were converted to DAVID IDs (*D. melanogaster* background) and were analyzed with the following settings: functional categories = “cog ontology”; “SP_PIR_keywords, UP_seq_features”; “gene ontology”: GOTERM_BP_FAT (biological process), GOTERM_MP_FAT (molecular process), GOTERM_CC_FAT (cellular component); “protein domains”: INTERPRO, PIR_SUPERFAMILY, SMART; “pathway”: KEGG pathways. Gene-term enrichment was first performed to determine which annotation terms were overrepresented in the gene list (custom settings: minimum count = 5; EASE = 0.05). Probability values (EASE scores) were determined using a modified Fisher’s exact test (Dennis et al. 2003; Huang et al. 2009) and were corrected for multiple tests with an FDR threshold of 0.1. Functional annotation clustering was then performed to summarize annotation terms into more meaningful biological modules and highlight group-term enrichment of related genes (custom settings: simterm overlap = 3; similarity threshold = 0.75; initial group membership = 5; final group membership = 5; multiple linkage threshold = 0.5). The enrichment score is the log transformed geometric mean of all the EASE scores of each annotation term in the group (Dennis et al. 2003; Huang et al. 2009).

Dys-RF Association Study

The parents of the progeny from the Coffs Harbour 10% phenotypic tails (high and low progeny) were genotyped for the association analysis at the *Dys-RF* locus. DNA was isolated from single flies using 5% w/v Chelex, and PCR was performed using Phusion Flash High Fidelity MasterMix (Finnzymes) following the manufacturer’s protocols. This specific DNA polymerase yielded more consistent PCR amplics from the Chelex-based DNA isolations. Sequencing was performed at Macrogen (Korea).

From the 56 individual dams and sires producing the 10% highest and 10% lowest desiccation tolerant progeny (28
pairs, 14 high and 14 low), sequences were obtained from 47 parents (24 high and 23 low). Owing to the decrease in sequence quality across some amplicons, 96 alleles were analyzed for markers 3R:15286900-15287069 and 84 alleles for markers 3R:15287112-15287364. The sequences were aligned in Sequencher Version 4.7, and the allele frequencies at 28 polymorphic sites (spanning 463 bp) between the high and low classes were compared using Fisher’s exact tests (Proc FREQ, SAS 9.2). Linkage disequilibrium (LD) statistics (r^2) and haplotype patterns across the 463-bp region were generated with Haploview (Barrett et al. 2005).

Results

Desiccation Selection Response

The effect of selection was significant in a one-way ANOVA ($F_{1,81} = 119.2, P < 0.0001$); moreover, while the selection response was similar between the replicate selected lines ($F_{5,40} = 1.89, P = 0.118$), there was significant variation among the replicate control lines ($F_{4,32} = 5.66, P < 0.002$) due to lower mortality in one of the control replicates (fig. 1). Replicate control lines no longer differed when this line was excluded from the analysis ($F_{3,25} = 2.21, P = 0.112$). We suspect that the unusual behavior of this line reflected a methodological issue because it did not behave aberrantly when retested at a later stage (De Garis S, unpublished data). There was a significant shift in the survival curve of the selected lines with 100% mortality occurring on average 6.7 h after the controls, representing an average survival increase of 29% (fig. 1) or 7.75 h and 33% survival increase when excluding the outlying control line.

SFP Discovery

Regions of genomic divergence between the desiccation resistant and control lines were mapped using Affymetrix GeneChip Drosophila Tiling 2.0R Arrays with a modified DNA hybridization protocol and SFP analysis. Our goal was to identify a general molecular signal of small strongly differentiated regions following artificial selection rather than to identify replicate-specific responses across large regions of the genome. Five selected and five control lines were chosen for genomic analysis, and our methodology maximized biological replication at the treatment level with relatively few (10) arrays. The normalized signals of 2,750,232 unique 25 bp PM features were compared between the selected and control treatments using Student’s t tests. Six hundred and seventy-one SFPs were identified at a FDR of 0.05, with a further 16 and 4 SFPs at FDRs of 0.1 and 0.2, respectively (supplementary table 2, cited as supplementary file 2.1, Supplementary Material online). To balance Type I and Type II error rates, we performed further analyses on the SFPs significant at FDR 0.05, although SFPs were later confirmed at all thresholds. The SFPs were randomly distributed across the genome with no significant departure from random expectations in the comparison of features across the genome ($\chi^2 = 2.86$, degrees of freedom [df] = 4, $P = 0.58$) or when the analysis was carried out on the basis of the individual chromosome arms (cited as supplementary table 2 in supplementary file 1, Supplementary Material online). The majority of significant features mapped to annotated genes including introns, exons, and untranslated regions, but at least a third of all features spanned intergenic regions flanking gene clusters (table 1).

Fig. 1. Average female response to selection for desiccation resistance after nine generations at 25 °C. The five control lines are shown as open markers, and the six selected lines are solid markers.
Table 1. Summary of DNA Regions of the 691 Significant SFPs (FDR 20%).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genome Coordinate</th>
<th>DNA Region</th>
<th>Size (bp)</th>
<th>Sites</th>
<th>Allele Change, Control-Selected</th>
<th>SFP Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dys (region 2)</td>
<td>3R:15301867-15302296</td>
<td>Intron</td>
<td>430</td>
<td>1</td>
<td>CT-C</td>
<td></td>
</tr>
<tr>
<td>cdi</td>
<td>3R:14914539-14914913</td>
<td>Intron</td>
<td>375</td>
<td>34</td>
<td>AG-G; AC-C; AT-T; GT-T; GC-G; GC-C; CA-A; GT-T; GC-G; GT-T; GT-T; GC-C; GC-C; CA-A; CA-C; GC-C; GT-T; GT-T; AT-A; AG-G; GT-T; GC-G; GT-T; GT-T; A-AG; AG-G; GC-G; GT-T; GT-T; AG-T-G; GT-T; GC-G; GT-T; GT-T; GC-G; GT-T; GT-T; A-AG; AG-G; AT-A; AT-A; AT-A; AT-A; GT-G; AT-A</td>
<td></td>
</tr>
<tr>
<td>Abd-B</td>
<td>3R:12757222-12757624</td>
<td>Exon/intron</td>
<td>420</td>
<td>10</td>
<td>CT-T; TA-A; CA-A</td>
<td></td>
</tr>
<tr>
<td>CG31431</td>
<td>3R:17698959-17699378</td>
<td>Exon/UTR</td>
<td>420</td>
<td>3</td>
<td>CT-T; TA-A; CA-A</td>
<td></td>
</tr>
<tr>
<td>beatVII</td>
<td>3R:22495768-22496287</td>
<td>Intron</td>
<td>520</td>
<td>3</td>
<td>CT-T; GC-G; GC-C</td>
<td></td>
</tr>
<tr>
<td>CG7638</td>
<td>3L:1103922-1104241</td>
<td>Exon/intron</td>
<td>320</td>
<td>3</td>
<td>CT-T; GA-A; CT-C</td>
<td></td>
</tr>
<tr>
<td>Mol</td>
<td>2L:14981445-14980926</td>
<td>Intron</td>
<td>520</td>
<td>3</td>
<td>CT-T; TA-A; CA-A</td>
<td></td>
</tr>
<tr>
<td>CG11069</td>
<td>3R:20722832-20722434</td>
<td>Exon/intron</td>
<td>399</td>
<td>1</td>
<td>AT-A; AG-G; GC-C</td>
<td></td>
</tr>
<tr>
<td>SNF4Ag</td>
<td>3L:17022665-17022368</td>
<td>Intron</td>
<td>298</td>
<td>4</td>
<td>AT-T; AC-C; C-AC; C-CT</td>
<td></td>
</tr>
<tr>
<td>CG14304</td>
<td>3R:14426924-14427243</td>
<td>Intron</td>
<td>320</td>
<td>2</td>
<td>GT-T; AT-T</td>
<td></td>
</tr>
<tr>
<td>CG7084</td>
<td>3R:18129401-undetermined</td>
<td>Exon/3′ UTR</td>
<td>—</td>
<td>3</td>
<td>1-bp insertion-del</td>
<td></td>
</tr>
<tr>
<td>ome</td>
<td>3L:18129401-18129411</td>
<td>Exon/3′ UTR</td>
<td>—</td>
<td>187-394 bp insertion-del</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dpr2</td>
<td>2L:10945222-10945411</td>
<td>Intron</td>
<td>190</td>
<td>—</td>
<td>Undetermined</td>
<td></td>
</tr>
</tbody>
</table>

NOTE. Sequences were obtained from DNA pools of 100 females, and allelic differentiation between the control and selected lines resulting from positive selection for desiccation resistance are represented as “allele changes.” The bulk sequencing data were scored based on visual inspection of chromatograms and conservative base peak height analysis at each site. As this scoring method may exclude the detection of low-frequency alleles in a line, the shifts from segregating control states to a single high-frequency allele in the selected lines are intended as polymorphism estimations and do not represent the fixation of alleles following selection. Genome coordinates correspond to the D. melanogaster genome build from FlyBase V2011_01. The size (bp) represents the aligned sequence where polymorphisms could be scored with confidence. A Nonsynonymous base substitution.
promoter-proximal region of the Dys-RF isoform with 29 sites in 463 bp across the first exon including the 5’ UTR, coding region, and intron (fig. 2). The two SFPs in this region were tiled within a 100-bp window, whereas the third SFP indicated a single SNP in an intron over 100-kb downstream (regions 1 and 2, respectively, fig. 2 and table 2). At the 3R:15286900 SFP (region 1), the low signal in the selected lines resulted from C-T and T-C transitions at positions 6, 9, 12, and 16 of the 25mer, whereas a C-T transition at position 12 affected hybridization intensities of the feature-targeting chromosome coordinate 3R:15287022 (fig. 2). This region included two putative alternative promoter sequences (Neural Network Promoter Prediction, scores > 0.9, http://www.fruitfly.org/seq_tools/promoter.html accessed 6 December 2011). The first UTR-predicted promoter sequence contained five SNPS (including SFP 3R:15286900) and four SNPS occurred at the second site proximal to the start codon of the coding region. Sequencing 0.5 kb downstream of this polymorphic region did not reveal any further variation for another 0.5 kb of intronic sequence (data not shown).

For cdi, three SNPs were detected at positions 4, 12, and 21 (sense strand) of the feature at 3R:14914751 (A-G and C-T transitions and an A-T transversion, respectively, table 2). For 33/34 cdi SNPs, one of the two most common control alleles shifted to a high frequency following selection, in contrast to Dys where 8/29 SNPs where represented by a single alternate high-frequency allele each in the control and selected lines. This suggests that for Dys, directional selection for desiccation resistance was strong enough to induce rapid allele shifts from low starting frequencies in the founding populations, whereas shifts at cdi appear to be from more intermediate starting frequencies. In addition, the Dys-RF substitutions were the most consistent across the 5 lines, whereas cdi ranged from shifts in 3–5 of the lines. SNPs ranging from 1 to 10 sites were detected in a further 8 genes, whereas two SFPs indicated the presence of indels for two genes CG7084 and ome (table 2). Population sequencing showed clear shifts in the abundance of indels between the control and selected lines, but apart from one site at CG7084, the multiple alleles could not be separated and accurately scored. Nonetheless, indels can be detected with this rapid mapping approach, and the alleles can be later determined with individual sequencing.

Overall, the sequence analysis revealed a substantial amount of genomic differentiation that was disproportionate to SFP detection. Given that features are tiled on average every 38 bp from the center of the oligo, we chose the Dys-RF region to investigate why only 2 of the 17 features in this region were detected in the SFP analysis. Close inspection of the tiling scheme excluded 12 SNPs from the tiling layout, and while five SNPs were detected on the arrays, an additional 12 variable sites remained unaccounted for. Plotting the average normalized signal of each probe by treatment showed large differences in probe hybridization intensities across this region (fig. 3a). The highest signal intensities were observed for features targeting undifferentiated sequence, although signal attenuation was greatest at sites harboring SNPs. Five features were at the extreme low end of the signal distribution in all lines, whereas the two SFPs were due to extreme signal attenuation in only one treatment (fig. 3a). Mapping DNA variants with array features as markers is dependent on factors such as the hybridization affinity of the oligo sequence and SNP positions in the 25mer such that SNPs central to the feature (between positions 6 and 13) are more likely to be detected (Rostoks et al. 2005). Accordingly, we plotted the position of the SNPs with positions 1 and 25 the origin and end of the 25mer (sense strand) and found that only target sequence harboring SNPs between positions 6 and 16 hybridized in at least one treatment (fig. 3b).

Biological Annotation Enrichment Analysis

The 671 SFPs mapped to 388 annotated genes (DAVID D. melanogaster background) and were enriched for 47 annotation terms (FDR 0.1, supplementary table 4, cited as supplementary file 2.2, Supplementary Material online) and one Kegg pathway. The Kegg pathway analysis highlighted four SNPs that target four genes at several junctions.
in the phosphatidylinositol signaling system (supplementary figure 1 in supplementary file 1, Supplementary Material online). Functional annotation clustering reduced term redundancy by organizing the annotation output into five smaller modules (nominal FDR-corrected EASE of 0.1 for each term, table 3). Although the results between the two enrichment analyses were concordant, clustering can result in the omission of enriched terms without closely related neighbors (Huang et al. 2009). In this case, 18 genes associated with respiratory system development related to open tracheal development were overrepresented with gene-term enrichment analysis but not with functional annotation clustering (supplementary table 5 cited as supplementary file 2.3, Supplementary Material online). In the cluster analysis, the highest and lowest enrichment scores of 7.59 and 2.71 (table 3) are equivalent to <0.0001 and 0.001, respectively, on the nonlog scale (Dennis et al. 2003). Modules 1–4 were connected to varying degrees due to overlapping gene annotations and biological themes, whereas module 5 clustered independently. The two most enriched modules were functionally related to nervous system development at the level of the neuron, including cell–cell communication (1) and neuronal differentiation (2) (table 3). Module 1 comprised of highly overrepresented members of the immunoglobulin protein superfamily (IgSF). Sequencing of the IGSF genes beatVII and dpr confirmed the former SFP, whereas the dpr2 SFP appeared to be a false positive (table 2). False positives may be biological (i.e., such as repetitive sequence binding) or technical (Turner et al. 2008). It is possible that the large poly C, T, and dinucleotide

![Fig. 3.](image-url)
Table 3. Functional Annotation Clustering Analysis of 388 Annotated Genes from 671 SFPs (FDR 0.05) to Highlight Significantly Enriched Annotation Modules.

<table>
<thead>
<tr>
<th>Category</th>
<th>Term</th>
<th>FDR-Corrected EASE</th>
<th>Gene Number</th>
<th>Fold Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1: enrichment score = 7.59</td>
<td>IPR007110 Immunoglobin-like</td>
<td>3.02×10^{-07}</td>
<td>23</td>
<td>5.36</td>
</tr>
<tr>
<td></td>
<td>IPR003599 Immunoglobin subtype</td>
<td>1.65×10^{-05}</td>
<td>18</td>
<td>5.71</td>
</tr>
<tr>
<td></td>
<td>IPR013151 Immunoglobin</td>
<td>6.72×10^{-05}</td>
<td>16</td>
<td>6.01</td>
</tr>
<tr>
<td></td>
<td>IPR013783 Immunoglobin-like fold</td>
<td>2.90×10^{-04}</td>
<td>18</td>
<td>4.73</td>
</tr>
<tr>
<td></td>
<td>SM00409 Immunoglobin</td>
<td>6.32×10^{-04}</td>
<td>18</td>
<td>4.30</td>
</tr>
<tr>
<td>Module 2: enrichment score = 6.61</td>
<td>GO:0030182 Neuron differentiation</td>
<td>2.30×10^{-05}</td>
<td>36</td>
<td>2.92</td>
</tr>
<tr>
<td></td>
<td>GO:0000904 Cell morphogenesis involved in differentiation</td>
<td>1.49×10^{-04}</td>
<td>29</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>GO:0048812 Neuron projection morphogenesis</td>
<td>1.66×10^{-04}</td>
<td>28</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>GO:0031775 Neuron projection development</td>
<td>1.78×10^{-04}</td>
<td>28</td>
<td>3.23</td>
</tr>
<tr>
<td></td>
<td>GO:0048667 Cell morphogenesis involved in neuron morphogenesis</td>
<td>1.92×10^{-04}</td>
<td>28</td>
<td>3.22</td>
</tr>
<tr>
<td></td>
<td>GO:0048866 Neuron development</td>
<td>2.21×10^{-04}</td>
<td>31</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>GO:0048858 Cell projection morphogenesis</td>
<td>4.69×10^{-04}</td>
<td>29</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>GO:0000902 Cell morphogenesis</td>
<td>5.07×10^{-04}</td>
<td>35</td>
<td>2.62</td>
</tr>
<tr>
<td></td>
<td>GO:0032990 Cell part morphogenesis</td>
<td>9.39×10^{-04}</td>
<td>29</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>GO:0030030 Cell projection organization</td>
<td>0.00213</td>
<td>30</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td>GO:0032989 Cellular component morphogenesis</td>
<td>0.00257</td>
<td>37</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>GO:007409 Axonogenesis</td>
<td>0.00291</td>
<td>21</td>
<td>3.52</td>
</tr>
<tr>
<td>Module 3: enrichment score = 5.68</td>
<td>GO:007444 Imaginal disc development</td>
<td>2.76×10^{-05}</td>
<td>36</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>GO:0048569 Postembryonic organ development</td>
<td>9.73×10^{-05}</td>
<td>29</td>
<td>3.24</td>
</tr>
<tr>
<td></td>
<td>GO:0048563 Postembryonic organ morphogenesis</td>
<td>1.44×10^{-04}</td>
<td>28</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>GO:007560 Imaginal disc morphogenesis</td>
<td>1.44×10^{-04}</td>
<td>28</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>GO:009791 Postembryonic development</td>
<td>3.29×10^{-04}</td>
<td>35</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>GO:002165 Instar larval or pupal development</td>
<td>4.32×10^{-04}</td>
<td>34</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>GO:007552 Metamorphosis</td>
<td>5.63×10^{-04}</td>
<td>31</td>
<td>2.84</td>
</tr>
<tr>
<td></td>
<td>GO:0048707 Instar larval or pupal morphogenesis</td>
<td>7.49×10^{-04}</td>
<td>30</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>GO:009886 Postembryonic morphogenesis</td>
<td>0.00107</td>
<td>30</td>
<td>2.82</td>
</tr>
<tr>
<td></td>
<td>GO:0035114 Imaginal disc-derived appendage morphogenesis</td>
<td>0.01478</td>
<td>22</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>GO:0035107 Appendage morphogenesis</td>
<td>0.01793</td>
<td>22</td>
<td>3.01</td>
</tr>
<tr>
<td></td>
<td>GO:0048737 Imaginal disc-derived appendage development</td>
<td>0.01911</td>
<td>22</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>GO:0048736 Appendage development</td>
<td>0.02304</td>
<td>22</td>
<td>2.96</td>
</tr>
<tr>
<td></td>
<td>GO:0035120 Postembryonic appendage development</td>
<td>0.02679</td>
<td>21</td>
<td>3.04</td>
</tr>
<tr>
<td>Module 4: enrichment score = 3.85</td>
<td>GO:0045449 Regulation of transcription</td>
<td>0.03318</td>
<td>46</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>GO:0003700 Transcription factor activity</td>
<td>0.02574</td>
<td>30</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td>GO:006355 Regulation of transcription, DNA-dependent</td>
<td>0.03907</td>
<td>37</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>SP_PIR_KW DNA-binding</td>
<td>0.02574</td>
<td>29</td>
<td>2.45</td>
</tr>
<tr>
<td>Module 5: enrichment score = 2.71</td>
<td>SP_PIR_KW Ion transport</td>
<td>0.07437</td>
<td>17</td>
<td>2.39</td>
</tr>
</tbody>
</table>

Note: Categories include: IPR, INTERPRO Protein domains; SM, SMART Protein domains; GO, gene ontology; SP_PIR_KW, keywords.

repeats flanking the dpr2 SFP affected probe binding, in any case we did not detect polymorphisms in the 190-bp ampli-con surrounding the probe.

Module 2 was enriched for genes involved in aspects of neuronal development, cell morphogenesis, and axonogenesis (table 4, supplementary table 4 cited as supplementary table 2.2, Supplementary Material online). Genes clustered to module 3 were enriched for anatomic development, particularly organ and appendage formation, as well as functioning in neuronal development (module 2), including Dys (table 4, supplementary table 5 in supplementary file 2.3, Supplementary Material online). The developmental mod-ules included a substantial number of transcription regulators (module 2 = 13/36, module 3 = 18/36) overlapping with the 46 DNA binding/regulatory genes clustered in module 4 (table 4, supplementary table 4, cited as supplementary file 2.2, Supplementary Material online). Module 5 comprised a functionally distinct and unique cluster of genes related to ion transport (table 4, supplementary table 4, cited as supplementary file 2.2, Supplementary Material online). Although functional annotation clustering analysis excluded the open tracheal development genes, a compar-ison of this gene enrichment group to the clustered data showed that 15/18 genes were represented in modules 2, 3, and 4 (supplementary table 5 cited as supplementary file 2.3, Supplementary Material online). Data mining of the literature and protein–protein interaction databases showed many instances of genetic interactions between genes/gene products within and between the modules; these are summarized in supplementary table 5 cited as sup-plementary file 2.3, Supplementary Material online.

Validation of the Mapping Approach: Dys and Desiccation Tolerance Association Study

Finally, we utilized an indirect association approach to test the degree of overlap between candidate alleles for
desiccation resistance from artificial selection and alleles occurring in naturally tolerant D. melanogaster (Weeks et al. 2002; Chenoweth and Visscher 2009). We compared the frequencies of SNPs in the 3R:15286900–15287364 (FlyBase V2011_01) region of the Dys RF isomorph between the parents of the most desiccation resistant and susceptible progeny from a wild-derived population from Coffs Harbour (CH) Australia. To avoid environmental and maternal effects on phenotypic measurements of flies directly from the wild, the F1 progeny of 30 wild caught isofemales were mass mated, and their progeny were used to establish single-pair matings to generate F2 field derived flies for phenotyping. Based on the 10% tails of the F2 phenotypic distribution from 137 crosses, 14 F2 pairs representing the high progeny and 14 F2 pairs representing the low progeny were selected for sequencing. Desiccation resistance substantially differed between the high and low female progeny from these crosses, forming two discrete phenotypic classes (paired t-test, high vs. low; t = 23.46; df = 24; P < 0.0001), with high females surviving an average 8.9 h longer than low females (fig. 4). Based on the sequencing outcome, 24 of the possible 28 high dams and sires and 23 of the 28 low dams and sires were included in the SNP analysis (the phenotypic data above reflects these crosses only). Twenty-three SNPs were shared between the CH and the selected populations (table 4), and five SNPs were unique to CH (supplementary table 6 cited as supplementary file 3, Supplementary Material online). The selected allelic state segregated at a higher frequency among the parents of the high CH progeny for all 23 common SNPs, and this was significant at α < 0.05 for sites 3R:15287040, 15287112, 15287118, and marginal at α = 0.07 for an additional ten SNPs (table 4). Allele frequencies significantly differed between the high and low CH families for an additional SNP at 3R:15287117 that did not change in response to selection (supplementary table 6 cited as supplementary file 3, Supplementary Material online, P = 0.005).

Patterns of LD were extensive across the 463-bp region tested and could be resolved to several small haplotype blocks (fig. 5). Haplotypes in complete LD comprise six SNPs at positions 3R:15286900–15286930, three SNPs at 3R:1528963–15286986, four SNPs at 3R:15287043–15287069, and two SNPs at positions 3R:15287112–15287118. When

![Figure 4](https://example.com/figure4.png)

Figure 4. Average survival to desiccation (LT50) at 19 °C in the 10% most and 10% least resistant families, three generations from collection in Coffs Harbour, Australia. Error bars are standard deviations of the means.
the allele frequencies were compared between the high and low groups by haplotype, the marginal differences in allele frequencies from the single-marker analysis were significant for SNPs at 3R:15286900–15286930 ($\chi^2 = 7.90; \text{df} = 2; P < 0.05$) and remained significant at 3R:15287112-15287118 ($\chi^2 = 14.52; \text{df} = 3; P < 0.01$). The other significant sites from the single-marker analysis (3R:15287017 and 15287040) were not linked to any other sites (fig. 5).

Discussion

SFP Analysis

Drosophila distributional patterns appear to be closely associated with evolutionary potential for physiological tolerances to ecological traits such as cold and desiccation tolerance (Hoffmann et al. 2003; Kellermann et al. 2009). Although the genetics of many stress tolerance traits are unknown, their elucidation could considerably expand our understanding of the differences in physical tolerances between species, improve predictions of climate change effects on populations, and provide potential genetic indicators of environmental stress. Specifically, allele frequency shifts at key loci undergoing evolutionary change could be used as genetic markers to monitor effects of environmental perturbation on populations well before the occurrence of range shifts or extinction (Hoffmann and Daborn 2007). Our data provides new candidate alleles associated with adaptive evolution for desiccation resistance in a broadly distributed tolerant *Drosophila* species. Model organisms such as *D. melanogaster* can provide valuable inroads to understanding the molecular ecology of climatic traits in nonmodel *Drosophila*, such as Australian rainforest endemics. We used highly replicated divergent lines and relatively few high-density tiling arrays to discover sites undergoing allele frequency changes in *D. melanogaster* under selection for desiccation resistance. Although the efficacy of array-based genotyping is well established (Borevitz et al. 2003, 2007; Rostoks et al. 2005; Turner et al. 2005, 2008; Nuzhdin et al. 2007), our study utilized a unique combination of array genotyping, artificial selection, and association analysis to simply and effectively link candidate alleles from the laboratory to resistance in the field. This approach demonstrates the usefulness of short-term laboratory evolution to understand the evolution of complex traits, despite the potential for confounding experimental artifacts from an artificial design (see Harshman and Hoffmann 2000).

We performed our analysis at the probe level as pooling probe statistics with a sliding-windows approach can result in less accurate FDR estimates on this platform (Turner et al. 2008). Furthermore, more complex “regional” analyses are problematic owing to the partial genome coverage due to the tiling strategy itself as well as ineffective hybridization resulting from limits in tiling probe specificity/sensitivity or SNP position (see Zhang et al. 2003). The Dys-RF feature analysis illustrates some of these technical issues. In this light, the 0.02% of probes with differentiated signals is...
not an explicit measurement of the genomic selection response. Rather, we aimed to map short highly replicated molecular signals in non-laboratory adapted flies to ultimately test candidate associations with natural tolerances among populations and species. Next-generation sequencing technologies provide the coverage and sensitivity required to fully characterize allele frequency changes in traits undergoing selection, particularly for smaller genomes such as budding yeast (Parts et al. 2011). Resequencing at the level of replication required to map convergent evolutionary responses is still in the early phases for larger genomes such as *Drosophila* and is so far limited to selection for body size in long-term laboratory strains (Turner et al. 2011). This will change in the immediate future as technological advances continue to improve both sequencing throughput and cost. In the interim, our method presents a cost-effective way to map replicated adaptive responses to poorly defined complex traits in the absence of a full population analysis preselection and postselection.

Sequence Analysis

Although the high sequencing confirmation rate is promising for a larger scale investigation of evolutionary responses to desiccation resistance, the array analysis tended to underestimate the diversity at many loci as discussed above. Despite this limitation, our data provide a valuable snapshot of alleles undergoing consistent frequency changes, and we surmise that at least a proportion of the significant SFPs represent markers to larger regions undergoing allele changes in response to selection (i.e., *Dys-RF*, *cdi*, *Abd-B*). In the absence of known candidates for desiccation resistance, we examined genes with large signal differences between treatments and with a variety of biological functions that may be relevant to stress resistance. We confirmed segregating sites at two genes that may function in the fly sensory organs CG7638 and *moe* (Dubnau et al. 2003; Buffin and Gho 2010). The detection of stress is vital to mounting an adequate stress response, and evidence from gene expression studies suggests that genes encoding phototransducers are enriched in both laboratory induced and naturally desiccation resistant *Drosophila* (Sorensen et al. 2007; Matzkin and Markow 2009). Other signaling genes include protein kinases; *SNF4A*, *CG14305* and *cdi*, and immunoglobulins *Beat-VII* and *CG31431* (Tweedie et al. 2009). Shifts in the frequency of indels at *ome* and *CG7084* highlight more specific desiccation candidates; *ome* codes for an enzyme that modifies a protein in the developing epicuticle, and *CG7084* is one of the most highly expressed genes in the Malpighian tubules (MTs) which together with the hindgut form the fly renal system and site of excretory water balance (discussed below) (Wang et al. 2004; Chihara et al. 2005). Other genes of interest include *CG11069* which encodes a molecule involved in the transmembrane movement of substances, and the transcription factor *Abd-B* which is expressed at high levels in the larval hind gut and trachea (Tweedie et al. 2009).

The regions sequenced around the *cdi* and *Dys* SFPs were highly differentiated, with 34 and 29 sites, respectively, in less than 500 bp. *Dys* is one of the largest genes in the *Drosophila* genome (Neuman et al. 2001, 2005), and although we might expect to detect more SFP by chance, sequencing 1-k upstream of this region showed that the differentiation clustered specifically to the 5’ end of RF transcript. Given that the mapping resolution is unknown and may be low at the chromosome level due to incomplete probe coverage, further genotyping is required to determine if this is indeed a localized signature of selection or the mark of widespread differentiation extending within or beyond the *Dys* locus.

Validating the Mapping Approach

Artificial selection studies of stress resistance in *Drosophila* have so far mostly failed to link nucleotide-level candidates with natural variation in stress traits. Our data contribute to making this essential leap by connecting allelic differentiation at the *Dys-RF* locus in experimental evolution populations with desiccation tolerant flies only a few generations from the field. Quite strikingly, 23 of the selected SNPs segregated at a higher frequency among the desiccation tolerant Coffs Harbour (CH) families. The significant sites reflect strong differentiation between the desiccation tolerant and susceptible CH families. Although there was a high degree of SNP overlap between the laboratory lines and the CH population, there was some divergence between the populations, including an additional SNP at position 3R:15287017 that had significantly different allele frequencies between the high and low CH families. This SNP clusters with a number of SNPs common to the selected and CH populations in the alternative promoter region of the RF transcript. This presents an intriguing region to examine cis-regulatory alleles that may affect alternative transcription start sites and/or transcript-specific expression, in addition to further exploring the status of the CH-specific SNP as an alternate resistance allele or silent polymorphism. LD analysis revealed high levels of LD across this small region and the CH SNPs resolved to several haplotype blocks that are considerably narrower than predicted natural LD blocks (Haddrill et al. 2005). Strong LD in naturally tolerant flies combined with the rapid shift from very low to very high frequency alleles in the selected lines are suggestive of a selective sweep in this region in response to positive selection.

It is interesting to note that the three CH SNPS with significant frequencies of the selected allele at 3R:15287040, 15287112, and 15287118 appear not to be in LD with the surrounding alleles, apart from the complete linkage observed between the latter SNPs. This is also the case for the CH-specific SNP at position 3R:15287017. These data highlight this region as a potentially localized region affecting variation for desiccation resistance and provides positional candidates to explore causal allele variants. The *Dys* gene is highly pleiotropic with varied roles in the establishment of cell polarity and wing vein morphogenesis, muscle cell development and homeostasis, regulation of neurotransmitters, and neuronal synaptic plasticity (Tweedie et al. 2009). Mutations in the human homolog of *Dys* (DMD) are known to cause the muscle wasting associated with Duchenne muscular dystrophy. In *D. melanogaster*, two...
isoforms are required for the integrity of the musculature (Neuman et al. 2005; van der Plas et al. 2006). Targeted knockdowns of all of the Dys transcripts results in progressive muscle degeneration of larvae and adult flies (van der Plas et al. 2006) but so far the individual function of the Dys-RF isoform remains unclear.

Gene Annotation Enrichment Analysis
Clustering the entire set of 388 annotated genes highlighted biologically meaningful associations among the SFPs, with a particular emphasis on genetic regions harboring genes important for insect water balance.

Candidate Mechanisms at the Tissue Level for Changes in Water Balance
The cluster analysis revealed specific insights into potential changes to excretory water balance in the insect renal system, through a distinct cluster of genes associated with ion transport. In insects, an open circulatory system results in the tight coupling of ion homeostasis with water balance (reviewed in Coast et al. 2002; Beyenbach 2003; Gade 2004). Primary osmoregulation occurs in the MTs, which in conjunction with the hindgut form the insect excretory system (reviewed in Dow and Davies 2001). Although the MT secrete KCl- or NaCl-rich urine that is isotonic to the hemolymph, water, and other solutes transfer by diffusion and drain to the hindgut that selectively reabsorbs water, ions, and other necessary metabolites. MT and hindgut function are independently regulated by neuroendocrine factors, including diuretic and antidiuretic peptides that either increase or decrease water loss by regulating tubule secretion and/or ion and water retake in the hindgut. Differential regulation of these hormonal peptides provides an obvious way to budget water in Drosophila. We mapped SFPs that target the candidate anti-diuretic neuropeptide ITP and the neuropeptide sNPF. ITP products colocalize with the neuropeptides sNPF and DTK in the fly brain, and loss of function produces a dramatic decrease in both desiccation and starvation survival (Kahsai et al. 2010). A likely scenario is that sNPF and DTK are accessoires to ITP and are released during desiccation stress (Kahsai et al. 2010). Other likely candidates for MT water balance include K+ channel genes KCNQ, slo, sodium channel, and symporter genes para, NaCP60E, CG7720, Picot, chloride channel genes pHCl, GluClalpha among others related to calcium, chloride, and cation channel activity such as ltp-r83A and trpl, pHCl, and nAcRz-30D, nAcRz-34E (supplementary file 2.3, Supplementary Material online). The genes KCNQ, slo, ltp-r83A, NcKx30C, and trpl are all expressed in the MT, which are the likely sites of sodium balance during desiccation in selected populations of D. melanogaster (Folk and Bradley 2005) and water-homeostasis channels in Anopheles gambiae (Liu et al. 2011). We mapped several other genes that are known to be expressed in the MT including transcription factors cad, Pxt1, and ct, major signal transducers Nos, dunce, sl, and ltp-r83A.

The data were enriched for gene terms relating to open tracheal system development, and while this was omitted from the cluster analysis (see Results), we discuss this group based on biological relevance to insect water balance. The tracheal system is a branched, tubular, and structure that delivers oxygen to the tissues through the external tracheal apertures called spiracles (Samakovlis et al. 1996; Affolter and Caussinus 2008). In Drosophila, epidermal water loss can occur through the cuticle or across the spiracles during the open phase in respiration, and this occurs predominantly across the spiracles in xeric and mesic Drosophila including D. melanogaster (reviewed in Lehmann and Schutzner 2010). Since the tracheal system is assumed to be water saturated, discontinuous gas exchange is thought to keep the spiracles closed for longer to increase CO2 loss relative to respiratory water loss (Hoffmann and Harshman 1999; Lehmann and Schutzner 2010). This link has proven inconclusive in desiccation-resistant selected lines of D. melanogaster (Hoffmann and Harshman 1999), but is thought to save more water in Drosophila than other insects, and has been shown to occur more frequently in xeric species that lose water less rapidly than in their mesic counterparts, such as D. melanogaster (Marron et al. 2003). Here, SFPs targeted 18 genes associated with tracheal system development, including tube development, primary branching, branch fusion, and chitin biosynthesis (DAAM, Hs6st, dys, and dp, supplementary file 2.3, Supplementary Material online). Many genes overlap with several modules significant in the cluster analysis, including the genes encoding cell adhesion molecules if, mew, Fas2, and transcription factors Ubx and ct (discussed below). Our selected lines show distinct changes in water balance including increased water storage and slower water loss rates which are likely functionally related to changes in the excretory and respiratory systems either independently or in concert. Analyses of water balance mechanisms between desert and mesic Drosophila showed that excretory water loss explained a significantly smaller proportion of water loss rates than respiratory water loss (Gibbs et al. 2003), and it would be fascinating to further connect the genetic candidates to the physiological adaptations here and, ultimately, to divergent species.

Candidate Stress Signaling Networks
The cluster ontology analysis also resulted in some less obvious but nonetheless compelling candidates. The most highly represented group comprised a suite of GO terms associated with the immunoglobulin protein superfamilies (IgSF) representing up to 17% of the Drosophila repertoire (Hynes and Zhao 2000; Vogel et al. 2003). IgSF proteins play a major role in cell-cell communication, signal transduction, and neuronal development and provide a structural platform for essential protein interactions during the life of a neuron including migration, axon pathfinding, synapse formation as well as the maintenance of adult neuronal networks (reviewed in Rougon and Hobert 2003; Maness and Schachner 2007). SFPs clustered to multiple members of the Beat, dpr, and sidestep families (supplementary file 2.3, Supplementary Material online), and while interesting, this group warrants
further investigation given that DAVID does not account for the selection bias for GO categories enriched for longer genes and, particularly, those populated by gene families.

In spite of the potential for overrepresentation bias in the GO analysis, several IgSF are known to genetically interact with genes encoding molecules known to modulate the neuronal response to changing environments (module 2) (Rougou and Hobert 2003), suggesting a biological role in neuronal signaling (the full list is given in supplementary table 5 cited as supplementary file 2.3, Supplementary Material online). Two well-studied interactions include Fas2 (modules 1 and 2, supplementary table 5 cited as supplementary file 2.3, Supplementary Material online) that encodes a cell surface adhesion molecule (reviewed in Rougou and Hobert 2003). Fas2 interacts with Amphi (module 2), which plays a novel role in Drosophila postsynaptic vesicle exocytosis to regulate Fas2 protein cycling (Mathew et al. 2003). Fas2 also interacts with beat proteins (reviewed in Rougou and Hobert 2003), particularly beat1 and its complement beat1c (Pipes et al. 2001). A final example of molecular “cross-talk” is for SFPs targeting genes encoding adhesive molecules and their receptors which guide neuronal development, including two of the five interacting α subunits of the Drosophila integrin αβ heterodimeric receptors mew and if (Hynes and Zhao 2000).

Recent adaptation resulting in genomic differentiation among related and/or interacting genes presents intriguing possibilities to study evolution from a network perspective (Turner et al. 2008). Our data reveal several attractive candidates to explore in a neural-network context. In order adapt to fluctuating environments, organisms must rapidly detect, then respond to environmental stressors. Stress responses across a range of taxa are mediated through signal transduction either specifically or via molecular cross-talk between pathways (Ruis and Schüller 1995; Chinnusamy et al. 2004). In Drosophila, distinct subsets of neurons are recruited into the stress response circuitry to modulate behavioral responses during starvation and oxidative stress, and this is context dependent based on the hormonal environment of the brain (Neckameyer and Matsuo 2008). Furthermore, starvation stress elicits different factors, such as transcription factors foxo and transducers of regulated CREB activity (TORCs) in response to insulin-regulated signaling pathways to function in the maintenance of energy balance in the fly brain (Kramer et al. 2008). Although gene expression studies suggest that phototransduction might be important for stress detection during desiccation (Sorensen et al. 2007; Matzkin and Markow 2009), knowledge of stress signaling during water deprivation in flies is scant. However, desiccation resistance is known to be affected by variable neuropeptide control of the renal system (Kahsai et al. 2010), and it is likely that other neuronal signaling components play an important role in water balance but remain to be identified.

Candidate Sites of Regulatory Divergence

Finally, cluster analysis revealed an overrepresentation of DNA transcription regulators involved in complex development, mental phenotypes, such as organ and muscle development, pigmentation, and cuticle synthesis suggest that regulation of gene expression is modified by selection for desiccation resistance. Artificial selection for different stress resistances in D. melanogaster including heat knockdown, desiccation, starvation, and chill coma resistance are known to alter basal gene expression in adults (Sorensen et al. 2007; Telonis-Scott et al. 2009). Of the five coding regions of the 13 genes sequenced, only one base substitution resulted in an amino acid change from an isoleucine to a threonine at position 3R:20722513 of the CG11069 gene. For this subset of genes, the level of synonymous substitutions and differentiation around UTRs and predicted promoter regions suggest that gene regulation is affected by selection for desiccation resistance.

Overlap with Previous Studies

Although our large number of SFPs did not overlap with the few known desiccation candidate genes (i.e., desiccate, TotA, Smp-30, and Frost) (Sinclair et al. 2007; Kawano et al. 2010), we did observe overlap with QTL and genome-wide expression studies. Foley and Telonis-Scott (2011) reported at least 15 QTL affecting female survival to desiccation and strong associations with CHC composition suggested that the epicuticle barrier forms an important component of the survival strategy. Here, SFPs occur within the most significant peak of seven of the desiccation QTL including 1 at 7F (X chromosome), 9 spanning QTL 12B, 25D, 28D, 37C, 45C, and 47D-E (2L, 2R), and 3 at QTL 84D-E (3R). This expands considerably to almost half the SFP when the QTL confidence intervals are considered and includes genes such as Dys, mol, SN4Agamma, KCNQ, ct, ed, CadN, trpl, and members of the immunoglobulin beat family. Nonetheless, some overlap is expected by chance given the large genomic intervals encompassed by the QTL (particularly chromosome two, see Foley and Telonis-Scott 2011) but is still suggestive in a comparative sense to previously described desiccation “hotspots.” A small fraction of genes (14/262) with altered basal expression patterns in D. melanogaster following selection for desiccation resistance including immunoglobulins, tracheal system, metabolic, and sodium symporter functions (Sorensen et al. 2007), whereas functional clusters, such as the immunoglobulin and cell–cell adhesion genes overlapped with the transcriptional response to desiccation in D. mojavensis (Matzkin and Markow 2009). In D. melanogaster, desiccation resistance can evolve in diverse ways depending on the genetic and environmental backgrounds and given that our mapping is to a much higher resolution than previous studies, it is not surprising that the overlap between studies seems small. However, the genetic changes common to different populations and species provide strong functional candidates for further analysis.

Conclusions

We have found that tiling arrays provide an effective way of rapidly mapping genomic regions differentiated between
selected and control lines. By having a large number of replicate lines, regions that have repeatedly and independently differentiated can be readily identified with some confidence and used to suggest pathways and mechanisms underlying evolved shifts in stress resistance. We independently corroborated the association between the desiccation resistant phenotype and a potential cis-regulatory region of the Dys locus in a natural population. This study also provides numerous candidates for further genetic analysis of diversified populations and species, with the eventual goal of understanding genetic opportunities and constraints for resistance evolution and shifts in the climatic niche of species.

Data Accessibility
Sequence data from individual flies (Coffs Harbour flies) are deposited with the EMBL/GenBank data libraries under accession numbers JN886039–JN886084.

Supplementary Material
Supplementary files 1, 2, 3, and 4 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments
We are grateful to Lauren McIntyre for valuable statistical advice. We also thank Robert Good for bioinformatic support and Charles Robin as well as Sui-Fai (Ronald) Lee for helpful discussions. Finally, we thank Jennifer Shiriffs, Lea Rako, Allen Rako, Vanessa White for technical assistance, and Tom Turner and an anonymous reviewer for comments that improved the manuscript. This work was supported by Discovery and Laureate Fellowship grants from the Australian Research Council.

References

