1 Supplemental Information

2

3 For:

4

5 Natural variation in abiotic stress responsive gene expression and local adaptation

6 to climate in Arabidopsis thaliana

7

- 8 Jesse R. Lasky, David L. Des Marais, David B. Lowry, Inna Povolotskaya, John
- 9 K. McKay, James H. Richards, Timothy H. Keitt, and Thomas E. Juenger

10

11

13 SUPPLEMENTAL METHODS

14

15 <i>Climate data</i>	
------------------------	--

Hijmans et al. (2005) created WorldClim data by spatially interpolating 19502000 weather station data and resolving it to 30" grid squares. The authors
(Hijmans et al. 2005) estimated mean monthly minimum, mean, and maximum
temperatures and mean monthly precipitation averaged across years of the time
period. Furthermore, Hijmans et al. (2005) derived variables of climatic extremes
and variability.
We used Climate Research Unit (CRU) humidity and temperature data to

approximate vapor pressure deficit (VPD), which is the difference between water
vapor partial pressure and maximum potential pressure at a given air temperature,
and indicates evaporative demand on plants (Johnson and Ferrell 1983). CRU data
come from 1961-1990 weather station data that were subsequently interpolated to
10' resolution (New et al. 2002).

28 We used a third database to estimate inter-annual variability in

29 precipitation. The National Centers for Environmental Prediction (NCEP)

30 generated Reanalysis data on a T62 grid (resolution ~ 210 km) for the years 1948-

31 2009 (data provided by NOAA/OAR/ESRL PSD, <u>http://www.esrl.noaa.gov/psd/</u>)

- 32 (Kalnay et al. 1996). We used monthly surface precipitation rates to calculate
- 33 each calendar month's coefficient of variation (CV) across years (Lasky et al.

- 34 2012).

36	Growing season climate – We previously used temperature and precipitation
37	data to model the months of the year when accessions may be growing (climate
38	diagram model) (Walter and Lieth 1960; Lasky et al. 2012). Putative growing
39	months were specified as all months having abundant soil moisture and mean
40	temperature \geq 4°C. We considered soil moisture to be abundant in a given month
41	if mean precipitation (mm) ≥ 2 * mean temperature (°C) (Walter and Lieth 1960).
42	We used growing season predictions to calculate growing season climate
43	conditions for each accession, consisting of mean values of monthly precipitation,
44	VPD, and minimum and mean temperature. We also calculated the CV of mean
45	monthly precipitation within the growing season and the mean inter-annual CV of
46	growing season month's precipitation.
47	We selected eleven climate variables we hypothesized would represent
48	selective gradients due to drought and cold stress in order to test for SNP-climate
49	associations. Six climate variables described the growing season: 1) mean
50	monthly precipitation, 2) coefficient of variation (CV) of mean monthly
51	precipitation, 3) mean VPD at mean monthly conditions, 4) mean inter-annual CV
52	of mean monthly precipitation, 5) mean monthly mean temperature, and 6) mean
53	monthly minimum temperature. Five variables described yearlong climate
54	conditions: 1) CV of mean monthly precipitation, 2) isothermality (average

56	temperature, 4) minimum temperature of coldest month, and 5) annual
57	temperature range.
58	
59	Association studies of climate and fitness under acclimation to abiotic stress
60	Mixed model - We used the Efficient Mixed-Model Association (EMMA)
61	mapping linear mixed model (Kang et al. 2008) to test SNP associations with
62	climate and fitness in new GWAS (i.e. not previously published). EMMA
63	includes a kinship random effect to attempt to control for population structure.
64	Hancock et al. (2011) previously used non-parametric partial Mantel tests for
65	SNP-climate association tests to reduce the influence of accessions occupying
66	outlier climates. We chose not to use partial Mantel tests, which use permutations
67	to generate null distributions, because Mantel permutations may be poor null
68	models for data heavily influenced by spatially autocorrelated processes (e.g.
69	climatic gradients, population structure, Raufaste and Rousset 2001; Goslee and
70	Urban 2007; Guillot and Rousset 2013). Partial Mantel tests of climate-SNP
71	associations by Hancock et al. (2011) generated extremely high numbers of
72	associations with the lowest possible <i>p</i> -value, which the authors hypothesized
73	indicates that these tests performed poorly at controlling for population structure.
74	Instead, we used EMMA, and culled accessions from each analysis that we
75	identified as outliers by visually inspecting climate histograms (Figures S10-S12).

diurnal temperature range / annual range), 3) standard deviation (SD) of monthly

76	In contrast to a partial Mantel results (Hancock et al. 2011), our quantile-quantile
77	plots compared theoretical and observed test statistics (Figures S6-S9) indicate
78	our models follow the null much more closely, albeit with small enrichments of
79	strong associations (low p-values) as expected if a small number of loci are
80	involved in local adaptation. For example, we found between a 1- and 7-fold
81	enrichment of SNPs in the lower 0.001 p-value tail compared to the null
82	expectation; in contrast to the 156- to 368-fold enrichment found by Hancock et
83	al. (2011). The lack of a large enrichment of low p-values in our mixed model
84	approach signifies that our model is likely controlling for the large portion of
85	population structure that is collinear with climate (Lasky et al. 2012). Note that
86	this approach is highly conservative because we expect that a portion of the
87	genome-wide divergence between populations captured by the kinship matrix will
88	be caused by local adaptation to climate.
89	We used EMMA to test the null hypothesis that the mean climate
90	inhabited by accessions with one allele was equal to the mean climate inhabited
91	by the alternative allele, while controlling for population structure (Kang et al.
92	2008; Yoder et al. 2014). In fitness association tests, we tested the null hypothesis
93	that the fitness of accessions with one allele was equal to the fitness of the
94	alternative allele. Formally stated
95	$y = X\beta + u + e \qquad (eqn. 1)$
06	where y is the $n \times 1$ vector of observed elimeted at for each accession (total of n

96 where *y* is the $n \ge 1$ vector of observed climate data for each accession (total of n

97 accessions). For association mapping with fitness, y was a vector of accession 98 fitness data. X is an $n \ge q$ matrix of data for q fixed effects, consisting of intercept 99 and SNP effects. β is a $q \ge 1$ vector giving the slope of the fixed effects. The u100 term gives the random error due to kinship

101 $Var(u) = \sigma_g^2 K$ (eqn. 2)

102 with K being the $n \ge n$ kinship matrix. The e term gives the random error of each 103 accession

104
$$Var(e) = \sigma_e^2 I$$
 (eqn. 3).

105The kinship matrix was constructed using identity in-state of SNPs (Kang et al.1062008). The significance of SNP-climate or SNP-fitness relationships, β_I , was107assessed using t-tests, the *p*-values of which indicate the significance of SNP108associations to climate or fitness (Kang et al. 2008).109All climate variables were scaled to have a mean of 0 and a standard

deviation of 1. Survival data were arcsin square-root transformed in order to
improve normality. Only SNPs with a minor allele frequency greater than 0.1
among tested accessions were analyzed in order to avoid spurious significant
associations (Atwell et al. 2010).

114

116 which provided our drought stress gene expression data, split microarray

experiments into early and late-flowering groups of accessions (in the absence of
vernalization) because flowering time groups may have varied phenology and
life-history that affects response to abiotic stress (McKay et al. 2003; Donohue
2005; Korves et al. 2007). We followed Des Marais *et al.* (2012) and our previous
study (Lasky et al. 2012), conducting a subset of GWAS on putative early and
late-flowering groups.
Because flowering time data were only available for 476 of the 1,307

124 accessions with genomic data, in the previous study we used data from the 476 to 125 predict flowering time variation in the remaining accessions (Lasky et al. 2012). 126 Methods are described in greater detail in Lasky *et al.* (2012). We used data from 127 13 common garden experiments in different environments, all without 128 vernalization (Table S10, Figure S4) (Shindo et al. 2005; Zhao et al. 2007; Atwell 129 et al. 2010; Li et al. 2010; Kenney 2012) because vernalization accelerates the 130 flowering of late-flowering putative winter annuals, which would have limited our 131 ability to distinguish life history variation (Stinchcombe et al. 2004). We then 132 used these empirical flowering time data to categorize accessions using a SNP-133 based model of flowering-time category for accessions lacking data. 134 For the flowering time model, we used candidate SNPs identified in the 135 original flowering time association studies (Atwell et al. 2010; Li et al. 2010) and 136 SNPs within 100 kb of FRI and FLC, two interacting genes in the vernalization-137 sensitivity pathway (Michaels and Amasino 1999; Stinchcombe et al. 2004; Zhao

138	et al. 2007), giving 857 total SNPs as predictor variables (SNP data from Horton
139	et al. 2012). We modeled flowering category with support vector machines
140	(SVM), a type of classification model flexible enough to deal with interaction and
141	non-linear effects. SVM based on predictor SNPs and empirical flowering time
142	categories predicted a total of 765 early-flowering and 248 late-flowering
143	accessions of the 1,003 accessions used in climate association mapping. We
144	previously experimentally validated flowering time categories predicted using
145	SVM and found our predictions were correct for 24 of 27 accessions (89%)
146	previously lacking flowering time data (Lasky et al. 2012). Although there are
147	limitations to predicting flowering time from genotype, the included experiments
148	span a variety of environments and thus we believe our categories capture
149	ecologically important flowering time variation.
150	
151	Enrichment of genes with expression plasticity
152	We assessed whether genes having abiotic stress treatment effects (eSR) or
153	accession by treatment effects (eGEI) on expression were more likely than
154	randomly selected genes to have SNPs associated with signatures of selection,
155	climate and fitness. In enrichment tests, we tested null hypotheses stating, in
156	essence, that SNPs near eSR and eGEI genes had equal climate, fitness, and
157	selection statistics as did SNPs from randomly chosen genes. We used a

158 permutation enrichment test based on that of Segrè et al. (2010). The test

159	compares the proportion of candidate genes (eSR or eGEI genes) having nearby
160	SNPs with strong associations to the proportion of randomly selected genes
161	having nearby SNPs with strong associations (Figure S3). Typically, existing
162	methods link to a gene all SNPs within a window of a defined number of base
163	pairs of the gene's coding region (e.g. Segrè et al. 2010; Cabrera et al. 2012).
164	However, recombination rates and linkage disequilibrium (LD) in diverse
165	genotype panels vary extensively across the Arabidopsis genome (Horton et al.
166	2012). Thus the information a SNP contains about variation in nearby genes a
167	given distance away is highly heterogeneous across the genome. In order to
168	account for this heterogeneity, we used an adaptive window based on local rates
169	of LD to link SNP association signals to nearby genes (SNP data from Horton et
170	al. 2012). We identified a window surrounding genes where the smoothed average
171	minimum correlation between SNPs (Pearson's r) was greater than 0.3. We first
172	averaged the maximum distance where $r > 0.3$ from each SNP with the two
173	neighboring SNPs on either side. We then averaged those distances for all SNPs
174	within 5 kb of the coding region of each gene to get the linkage window for each
175	gene. If there were no SNPs within 5 kb, we set the linkage window for a gene as
176	the average linkage distance for the nearest SNP.
177	In order to calculate the enrichment test statistic for climate and fitness
178	associations, we first found the lowest association <i>p</i> -value among SNPs linked to

179 each gene in the candidate list (eSR or eGEI genes). If a single SNP had the

180	lowest <i>p</i> -value for multiple genes, then the SNP was only included once in the
181	candidate list. Typically, >90% genes had a unique SNP having the lowest p -
182	value for that gene (<i>i.e.</i> the low <i>p</i> -value SNP was not the low <i>p</i> -value SNP for an
183	additional gene). Next, we calculated the 5^{th} percentile of <i>p</i> -values for all SNPs of
184	a particular association study. We then found the proportion of candidate SNP <i>p</i> -
185	values falling below the 5 th percentile and considered this proportion the observed
186	enrichment test statistic. For direct comparisons of eSR and eGEI enrichments we
187	calculated the difference between gene lists (eSR – eGEI) in their proportion of
188	genes falling in the 5 th percentile <i>p</i> -values.

189 We then created a null distribution by permuting gene classifications as 190 eSR, eGEI or neither circularly around the genome 10,000 times in order to 191 maintain LD patterns and the number of genes in each category (excluding the 192 same genes that were excluded in analyses of microarrays described above). For 193 each random gene set we calculated a test statistic in the same way as the 194 observed test statistic. We then compared observed test statistics to permuted test 195 statistics. Finally, we conducted a two-tailed permutation-based hypothesis test 196 because gene lists might be biased toward many or few strong SNP associations 197 to climate and fitness and selection statistics. To conduct the two-tailed test we 198 determined the proportion of random sets with a test statistic in the tail beyond 199 our observed statistic and doubled this proportion to get a two-tailed permutation 200 *p*-value. This was the *p*-value for the null hypothesis that the stress responsive

candidate genes co-occurred randomly with respect to strong SNP associations

202 (Segrè et al. 2010).

203

204 Promoter motif polymorphisms from resequencing data

205 We quantified ABRE and DRE/CBF motifs across the 1000 bp promoters of the

206 first 80 genomes of the 1001 Arabidopsis genomes project (Cao et al. 2011).

207 Quantification of the number of motifs was conducted on the transcribed strand

208 with custom perl scripts. Based on past studies, we counted ABRE type motifs

209 only in the 5' to 3' orientation with the transcribed gene (Zhang et al. 2005;

210 Maruyama et al. 2012; Fujita et al. 2013). In contrast, DRE/CBF type motifs have

been show to be functional in both the 5' to 3' and 3' to 5' orientations (Geisler et

al. 2006) and so we counted them in both directions.

For each gene set, we tested whether each motif showed differences in frequency among accessions or in variance of frequency compared to random genes. We tested the aggregated enrichment of gene lists for all motif variants of

the same core using the test statistic of O'Brien (1984). The O'Brien (1984)

217 method allows calculation of a non-parametric statistic for multivariate responses

218 (here the multiple variants of each core motif). For each gene, we calculated the

219 mean frequency and variance in frequency of the motif among of accessions (out

- 220 of 80). We then ranked the mean frequency and variance in frequency of each
- 221 gene and averaged across motif variants to get a statistic for each gene. For

222	variance in frequency we only included motif-gene combinations where at least
223	one accession had the motif. Because different motif variants differed widely in
224	genome-wide occurrence, the number of genes with missing variance
225	observations differed widely among motif variants. Thus for variance in
226	frequency, we standardized ranks to mean zero and unit standard deviation for
227	each motif variant in order to balance the influence of different motif variants. For
228	each gene list, we then calculated an observed enrichment as the mean gene-level
229	statistic. Observed statistics were compared to 10,000 circular permutations of
230	gene list categories.
231	We also conducted tests of gene list enrichment with each motif variant
232	individually. For these tests, we calculated observed enrichment as on raw
233	frequency and variance in frequency data (in contrast to rank values used above)
233 234	frequency and variance in frequency data (in contrast to rank values used above) averaged across genes in the gene list. Observed statistics were compared to
234	averaged across genes in the gene list. Observed statistics were compared to
234 235	averaged across genes in the gene list. Observed statistics were compared to 10,000 circular permutations of gene list categories (results shown in Tables S7 &
234 235 236	averaged across genes in the gene list. Observed statistics were compared to 10,000 circular permutations of gene list categories (results shown in Tables S7 &

240 *Climate association enrichments for combined flowering time categories*

241 Among accessions of both flowering time categories combined, drought eGEI

242 genes were most strongly associated with intra-annual CV of monthly

243	precipitation ($z = 2.97$, $p = 0.0036$; Table S2). By contrast, drought eSR genes
244	had a significantly low proportion of SNPs associated with mean monthly
245	growing season precipitation ($z = -2.06 p = 0.0412$). Cold eGEI genes were most
246	significantly enriched for SNP associations with the standard deviation of
247	monthly temperature ($z = 2.12$, $p = 0.0316$; Table S2). Cold eSR genes, even
248	more so than drought eSR genes, tended to have fewer associations to temperature
249	climatic variables. Cold eSR genes had significantly fewer SNP associations with
250	mean growing season temperature ($z = -2.29$, $p = 0.0224$) and monthly minimum
251	growing season temperature compared to genomic controls ($z = -2.07$, $p =$
252	0.0404). In direct comparison with eGEI genes, eSR genes had tended to have
253	fewer SNP associations with climate, significantly for SD of monthly temperature
254	(z = -2.58, p = 0.0064), CV of monthly precipitation $(z = -2.41, p = 0.0166)$ and
255	CV of monthly growing season precipitation ($z = -2.04$, $p = 0.0406$, Table S2).
256	
257	References
258 259 260	Atwell S, Huang YS, Vilhjalmsson BJ, et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631.
261 262 263	Cabrera CP, Navarro P, Huffman JE, et al. 2012. Uncovering Networks from Genome-Wide Association Studies via Circular Genomic Permutation. G3 GenesGenomesGenetics 2:1067–1075.
264 265	Cao J, Schneeberger K, Ossowski S, et al. 2011. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963.
266	Donohue K. 2005. Niche construction through phenological plasticity: life history

267	dynamics and ecological consequences. New Phytol. 166:83-92.
268 269 270	Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol. Plant. 147:15–27.
271 272 273 274 275	Geisler M, Kleczkowski LA, Karpinski S. 2006. A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis. Plant J. 45:384–398.
276 277	Goslee SC, Urban DL. 2007. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22:1–19.
278 279	Guillot G, Rousset F. 2013. Dismantling the Mantel tests. Methods Ecol. Evol. 4:336–344.
280 281 282	Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J. 2011. Adaptation to Climate Across the Arabidopsis thaliana Genome. Science 334:83 –86.
283 284 285	Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:1965–1978.
286 287 288	Horton MW, Hancock AM, Huang YS, et al. 2012. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44:212–216.
289 290	Johnson JD, Ferrell WK. 1983. Stomatal response to vapour pressure deficit and the effect of plant water stress. Plant Cell Environ. 6:451–456.
291 292	Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77:437–471.
293 294 295	Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E. 2008. Efficient Control of Population Structure in Model Organism Association Mapping. Genetics 178:1709–1723.
296 297	Kenney AM. 2012. Evolutionary genetics and ecology of water use efficiency ([delta] ¹³ C) in Ipomopsis agregata and Arabidopsis thaliana.

298	Korves TM, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR, Purugganan MD,
299	Schmitt J. 2007. Fitness Effects Associated with the Major Flowering
300	Time Gene FRIGIDA in Arabidopsis thaliana in the Field. Am. Nat.
301	169:E141–E157.
302	Lasky JR, Des Marais DL, McKay JK, Richards JH, Juenger TE, Keitt TH. 2012.
303	Characterizing genomic variation of Arabidopsis thaliana: the roles of
304	geography and climate. Mol. Ecol. 21:5512–5529.
305	Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO. 2010. Association
306	mapping of local climate-sensitive quantitative trait loci in Arabidopsis
307	thaliana. Proc. Natl. Acad. Sci. 107:21199–21204.
308	Maruyama K, Todaka D, Mizoi J, et al. 2012. Identification of Cis-Acting
309	Promoter Elements in Cold- and Dehydration-Induced Transcriptional
310	Pathways in Arabidopsis, Rice, and Soybean. DNA Res. 19:37–49.
311	McKay JK, Richards JH, Mitchell-Olds T. 2003. Genetics of drought adaptation
312	in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations
313	among ecological traits. Mol. Ecol. 12:1137–1151.
314	Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C Encodes a Novel
315	MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell
316	Online 11:949–956.
317 318	New M, Lister D, Hulme M, Makin I. 2002. A high-resolution data set of surface climate over global land areas. Clim. Res. 21:1–25.
319	O'Brien PC. 1984. Procedures for Comparing Samples with Multiple Endpoints.
320	Biometrics 40:1079–1087.
321 322	Raufaste N, Rousset F. 2001. Are partial Mantel tests adequate? Evolution 55:1703–1705.
323	Segrè AV, Groop L, Mootha VK, Daly MJ, Altshuler D, DIAGRAM Consortium,
324	MAGIC investigators. 2010. Common Inherited Variation in
325	Mitochondrial Genes Is Not Enriched for Associations with Type 2
326	Diabetes or Related Glycemic Traits. PLoS Genet 6:e1001058.
327	Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C.
328	2005. Role of FRIGIDA and FLOWERING LOCUS C in Determining
329	Variation in Flowering Time of Arabidopsis. Plant Physiol 138:1163–
330	1173.

331 332 333 334	Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C, Halldorsdottir SS, Purugganan MD, Schmitt J. 2004. A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc. Natl. Acad. Sci. U. S. A. 101:4712 –4717.
335	Walter H, Lieth H. 1960. Klimadiagramm-Weltatlas. Gustav Fisch. Jena 8000.
336 337 338 339 340	Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P. 2014. Genomic Signature of Adaptation to Climate in Medicago truncatula. Genetics [Internet]. Available from: http://www.genetics.org/content/early/2014/01/15/genetics.113.159319.ab stract
341 342 343 344	Zhang W, Ruan J, Ho TD, You Y, Yu T, Quatrano RS. 2005. Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21:3074–3081.
345 346	Zhao K, Aranzana MJ, Kim S, et al. 2007. An Arabidopsis Example of Association Mapping in Structured Samples. PLoS Genet 3:e4.
347 348	
349	

- 351 Tables
- 352 **Table S1.** Results for enrichment tests with selection statistics. Enrichments
- 353 (frequency of genes in list having SNPs in the 5th percentile of test selection
- 354 statistics) are calculated as a *z*-score using the distribution from null permutations.
- 355 Gene lists with significant enrichment of selection statistics are shown in bold.
- 356 Tests were not stratified by flowering time because selection statistics were
- 357 calculated on a panel with both types [2].

Selection	Gene list	Abiotic stress	Mean (enrichment z-	Permutation
statistic			score)	test p
PHS	eSR	Cold	2.38	0.0258
	eSR	Drought	2.57	0.0198
	eGEI	Cold	-1.42	0.1526
	eGEI	Drought	-0.21	0.8384
	eSR - eGEI	Cold	2.38	0.0120
	eSR - eGEI	Drought	1.13	0.2596
CLR	eSR	Cold	0.86	0.3938
	eSR	Drought	1.14	0.2518
	eGEI	Cold	-0.41	0.6720
	eGEI	Drought	0.31	0.7520
	eSR - eGEI	Cold	0.71	0.4766
	eSR - eGEI	Drought	0.02	0.9914
F _{st}	eSR	Cold	0.54	0.5928
	eSR	Drought	0.29	0.7652
	eGEI	Cold	-1.16	0.2402
	eGEI	Drought	2.46	0.0142
	eSR - eGEI	Cold	1.37	0.1692
	eSR - eGEI	Drought	-2.30	0.0258
MAF	eSR	Cold	-4.18	<0.0002
	eSR	Drought	-2.43	0.0168
	eGEI	Cold	1.66	0.1002
	eGEI	Drought	1.96	0.0434
	eSR - eGEI	Cold	-3.10	0.0022
	eSR - eGEI	Drought	-2.62	0.0106

Table S2. Results for enrichment tests with climate associations. The enrichment

359 of candidate gene sets with associations to cold-related climate variables.

- 360 Enrichments (frequency of genes in list having SNPs in the 5th percentile for *p*-
- 361 values) are calculated as a *z*-score using the distribution from null permutations.

362 Gene lists with significant enrichment of climate variables are shown in bold.

Accessions	Climate variable	Gene list	Abiotic stress	Frequency of significant SNPs z- score	Permutation test p
All	Isothermality	eSR	Cold	-0.044	0.9516
All	SD monthly temperature	eSR	Cold	-1.401	0.1650
All	Minimum temperature of coldest month	eSR	Cold	-0.866	0.3882
All	Temperature annual range	eSR	Cold	-0.597	0.5534
All	Mean growing season temperature	eSR	Cold	-2.287	0.0224
All	Mean monthly minimum growing season temperature	eSR	Cold	-2.073	0.0404
All	CV monthly precipitation	eSR	Drought	1.607	0.1170
All	Mean monthly growing season precipitation	eSR	Drought	-2.061	0.0412
All	CV monthly growing season precipitation	eSR	Drought	-0.549	0.5736
All	Mean growing season VPD	eSR	Drought	-0.063	0.9298
All	Inter-annual CV of growing season precipitation	eSR	Drought	-0.107	0.9234
All	Isothermality	eGEI	Cold	-1.412	0.1538
All	SD monthly temperature	eGEI	Cold	2.123	0.0316
All	Minimum temperature of coldest month	eGEI	Cold	0.615	0.5372
All	Temperature annual range	eGEI	Cold	1.598	0.1132
All	Mean growing season temperature	eGEI	Cold	0.444	0.6474
All	Mean monthly minimum growing season temperature	eGEI	Cold	-0.641	0.5178
All	CV monthly precipitation	eGEI	Drought	2.968	0.0036
All	Mean monthly growing season precipitation	eGEI	Drought	-0.447	0.6494
All	CV monthly growing season precipitation	eGEI	Drought	1.932	0.0534
All	Mean growing season VPD	eGEI	Drought	-0.112	0.9238
All	Inter-annual CV of growing season precipitation	eGEI eSR -	Drought	1.275	0.1972
All	Isothermality	eGEI eSR -	Cold	1.389	0.1666
All	SD monthly temperature	eGEI eSR -	Cold	-2.580	0.0064
All	Minimum temperature of coldest month	eGEI eSR -	Cold	-0.901	0.3702
All	Temperature annual range	eGEI eSR -	Cold	-1.786	0.0750
All	Mean growing season temperature	eGEI eSR -	Cold	-1.218	0.2200
All	Mean monthly minimum growing season temperature	eGEI eSR -	Cold	-0.071	0.9300
All	CV monthly precipitation	eGEI eSR -	Drought	-2.410	0.0166
All	Mean monthly growing season precipitation	eGEI eSR -	Drought	-0.137	0.8940
All	CV monthly growing season precipitation	eGEI eSR -	Drought	-2.042	0.0406
All All	Mean growing season VPD Inter-annual CV of growing season precipitation	eGEI eSR - eGEI	Drought Drought	0.091	0.9428 0.1982
All Early-	mer-annual C v or growing season precipitation	CUEI	-	-1.2/1	0.1962
flowering Early-	Isothermality	eSR	Cold	-2.362	0.0168
flowering	SD monthly temperature	eSR	Cold	-2.311	0.0198

Early- flowering	Minimum temperature of coldest month	eSR	Cold	-2.661	0.0080
Early- flowering	Temperature annual range	eSR	Cold	-1.884	0.0622
Early- flowering	Mean growing season temperature	eSR	Cold	-3.176	0.0010
Early- flowering	Mean monthly minimum growing season temperature	eSR	Cold	-3.317	0.0012
Early- flowering	CV monthly precipitation	eSR	Drought	-1.115	0.2654
Early- flowering	Mean monthly growing season precipitation	eSR	Drought	-1.120	0.2664
Early- flowering	CV monthly growing season precipitation	eSR	Drought	-1.807	0.0760
Early- flowering	Mean growing season VPD	eSR	Drought	-0.289	0.7792
Early- flowering	Inter-annual CV of growing season precipitation	eSR	Drought	-1.760	0.0738
Early- flowering	Isothermality	eGEI	Cold	2.123	0.0336
Early- flowering	SD monthly temperature	eGEI	Cold	1.499	0.1296
Early- flowering Early-	Minimum temperature of coldest month	eGEI	Cold	1.629	0.1034
flowering Early-	Temperature annual range	eGEI	Cold	1.878	0.0630
flowering Early-	Mean growing season temperature	eGEI	Cold	1.890	0.0602
flowering Early-	Mean monthly minimum growing season temperature	eGEI	Cold	2.320	0.0192
flowering Early-	CV monthly precipitation	eGEI	Drought	1.757	0.0756
flowering Early-	Mean monthly growing season precipitation	eGEI	Drought	-0.639	0.5254
flowering Early-	CV monthly growing season precipitation	eGEI	Drought	2.597	0.0146
flowering Early-	Mean growing season VPD	eGEI	Drought	0.371	0.7124
flowering Early-	Inter-annual CV of growing season precipitation	eGEI eSR -	Drought	2.283	0.0208
flowering Early-	Isothermality	eGEI eSR -	Cold	-2.612	0.0074
flowering Early-	SD monthly temperature	eGEI eSR -	Cold	-1.972	0.0482
flowering Early-	Minimum temperature of coldest month	eGEI eSR -	Cold	-2.186	0.0282
flowering Early-	Temperature annual range	eGEI eSR -	Cold	-2.257	0.0264
flowering Early-	Mean growing season temperature	eGEI eSR -	Cold	-2.546	0.0080
flowering Early-	Mean monthly minimum growing season temperature	eGEI eSR -	Cold	-3.024	0.0022
flowering Early-	CV monthly precipitation	eGEI eSR -	Drought	-2.020	0.0438
flowering Early-	Mean monthly growing season precipitation	eGEI eSR -	Drought	0.287	0.7792
flowering Early-	CV monthly growing season precipitation	eGEI eSR -	Drought	-3.062	0.0024
flowering Early-	Mean growing season VPD	eGEI eSR -	Drought	-0.443	0.6520
flowering	Inter-annual CV of growing season precipitation	eGEI	Drought	-2.721	0.0072
Late-flowering	Isothermality	eSR	Cold	0.563	0.5738
Late-flowering	SD monthly temperature	eSR	Cold	-0.192	0.8664
Late-flowering	Minimum temperature of coldest month	eSR	Cold	1.362	0.1750
Late-flowering	Temperature annual range	eSR	Cold	-0.463	0.6390
Late-flowering	Mean growing season temperature	eSR	Cold	-2.437	0.0138
Late-flowering	Mean monthly minimum growing season temperature	eSR	Cold	-0.692	0.5016
Late-flowering	CV monthly precipitation	eSR	Drought	0.575	0.5682
Late-flowering	Mean monthly growing season precipitation	eSR	Drought	-1.838	0.0668
Late-flowering	CV monthly growing season precipitation	eSR	Drought	0.043	0.9560
Late-flowering	Mean growing season VPD	eSR	Drought	0.506	0.6264
Late-flowering	Inter-annual CV of growing season precipitation	eSR	Drought	-1.466	0.1500
Late-flowering	Isothermality	eGEI	Cold	0.865	0.3902
Late-flowering	SD monthly temperature	eGEI	Cold	1.692	0.1002
Late-flowering	Minimum temperature of coldest month	eGEI	Cold	1.501	0.1444
Late-flowering	Temperature annual range	eGEI	Cold	0.080	0.9276

Late-flowering	Mean growing season temperature	eGEI	Cold	-0.675	0.5098
Late-flowering	Mean monthly minimum growing season temperature	eGEI	Cold	-1.024	0.3058
Late-flowering	CV monthly precipitation	eGEI	Drought	2.328	0.0182
Late-flowering	Mean monthly growing season precipitation	eGEI	Drought	1.345	0.1792
Late-flowering	CV monthly growing season precipitation	eGEI	Drought	1.629	0.1070
Late-flowering	Mean growing season VPD	eGEI	Drought	1.750	0.0800
Late-flowering	Inter-annual CV of growing season precipitation	eGEI	Drought	0.638	0.5278
		eSR -	-		
Late-flowering	Isothermality	eGEI	Cold	-0.693	0.4934
		eSR -			
Late-flowering	SD monthly temperature	eGEI	Cold	-1.762	0.0822
		eSR -			
Late-flowering	Minimum temperature of coldest month	eGEI	Cold	-1.085	0.2754
		eSR -			
Late-flowering	Temperature annual range	eGEI eSR -	Cold	-0.225	0.8264
Late-flowering	Mean growing season temperature	esk - egei	Cold	-0.086	0.9318
Late-nowening	Mean growing season temperature	eSR -	Colu	-0.080	0.9518
Late-flowering	Mean monthly minimum growing season temperature	eGEI	Cold	0.826	0.4122
Late-nowening	Mean montiny minimum growing season temperature	eSR -	Colu	0.820	0.4122
Late-flowering	CV monthly precipitation	eGEI	Drought	-2.161	0.0304
0	5 1 5 I 1 I 1	eSR -			
Late-flowering	Mean monthly growing season precipitation	eGEI	Drought	-1.777	0.0796
		eSR -			
Late-flowering	CV monthly growing season precipitation	eGEI	Drought	-1.599	0.1118
		eSR -			
Late-flowering	Mean growing season VPD	eGEI	Drought	-1.583	0.1110
		eSR -			
Late-flowering	Inter-annual CV of growing season precipitation	eGEI	Drought	-0.971	0.3320

Table S3. Results for enrichment tests with fitness associations. Enrichments367(frequency of genes in list having SNPs in the 5th percentile for *p*-values) are368calculated as a *z*-score using the distribution from null permutations. Gene lists369with significant enrichment of fitness variables are shown in bold. Tests were not370stratified by flowering time because of limited sample size in fitness experiments.

Fitness component	Location	Abiotic stress	Gene list	Frequency of significant SNPs z-score		Permutation test p
Survival	Finland	eGEI	cold		0.20	0.8270
Survival	Finland	eGEI	drought		0.83	0.4052
Survival	Germany	eGEI	cold		-0.56	0.5888
Survival	Germany	eGEI	drought		0.50	0.6102
Survival	Spain	eGEI	cold		1.07	0.2880
Survival	Spain	eGEI	drought		0.95	0.3414
Survival	UK	eGEI	cold		-1.36	0.1712
Survival	UK	eGEI	drought		-1.03	0.3028
Survival	Finland	eSR	cold		-1.49	0.1382
Survival	Finland	eSR	drought		0.03	0.9692
Survival	Germany	eSR	cold		-1.40	0.1604
Survival	Germany	eSR	drought		-0.06	0.9422
Survival	Spain	eSR	cold		-3.67	0.0008
Survival	Spain	eSR	drought		-1.60	0.1066
Survival	UK	eSR	cold		-2.92	0.0046
Survival	UK	eSR	drought		-2.08	0.0360
Survival	Finland	eSR - eGEI	cold		-0.70	0.4754
Survival	Finland	eSR - eGEI	drought		-0.80	0.4112
Survival	Germany	eSR - eGEI	cold		0.08	0.9326
Survival	Germany	eSR - eGEI	drought		-0.50	0.6026
Survival	Spain	eSR - eGEI	cold		-2.36	0.0202
Survival	Spain	eSR - eGEI	drought		-1.39	0.1638
Survival	UK	eSR - eGEI	cold		0.36	0.7152
Survival	UK	eSR - eGEI	drought		0.41	0.6794
Silique N	Finland	eGEI	cold		0.49	0.6178
Silique N	Finland	eGEI	drought		0.60	0.5478
Silique N	Germany	eGEI	cold		1.05	0.2924
Silique N	Germany	eGEI	drought		-0.16	0.8698
Silique N	Spain	eGEI	cold		0.50	0.6226
Silique N	Spain	eGEI	drought		-0.80	0.4258
Silique N	UK	eGEI	cold		0.09	0.9384
Sinque i	UIX .	COL1	Ulu		0.07	0.2004

Silique N	UK	eGEI	drought	-1.51	0.1282
Silique N	Finland	eSR	cold	-2.19	0.0338
Silique N	Finland	eSR	drought	-0.76	0.4478
Silique N	Germany	eSR	cold	-0.12	0.9052
Silique N	Germany	eSR	drought	-0.36	0.7028
Silique N	Spain	eSR	cold	-1.13	0.2590
Silique N	Spain	eSR	drought	-0.74	0.4630
Silique N	UK	eSR	cold	-1.42	0.1556
Silique N	UK	eSR	drought	-1.11	0.2626
Silique N	Finland	eSR - eGEI	cold	-1.24	0.2232
Silique N	Finland	eSR - eGEI	drought	-0.79	0.4336
Silique N	Germany	eSR - eGEI	cold	-1.09	0.2784
Silique N	Germany	eSR - eGEI	drought	0.06	0.9570
Silique N	Spain	eSR - eGEI	cold	-0.87	0.3738
Silique N	Spain	eSR - eGEI	drought	0.58	0.5632
Silique N	UK	eSR - eGEI	cold	-0.57	0.5708
Silique N	UK	eSR - eGEI	drought	1.15	0.2506

Table S4. Results for enrichment tests with selection statistics based on
resequencing of 80 accessions. The mean statistic for genes in each gene list,
standardized to the null permutations, is shown as "Mean (z-score)." Gene lists
with significant enrichment of selection statistics are shown in bold. Tests were
conducted without stratifying by flowering time because resequencing data were
from too few accessions.

Statistic	Gene list	Abiotic stress	Mean (enrichment z- score)	Permutation test p
K_a/K_s	eSR	Drought	-15.76	<0.0002
	eSR	Cold	-16.35	<0.0002
	eGEI	Drought	-0.74	0.4651
	eGEI	Cold	-4.76	<0.0002
	eSR - eGEI	Drought	-3.93	0.0004
	eSR - eGEI	Cold	-1.03	0.3013
Promoter θ	eSR	Drought	-3.560	0.0066
	eSR	Cold	-3.300	0.0329
	eGEI	Drought	2.190	0.0248
	eGEI	Cold	1.580	0.1181
	eSR - eGEI	Drought	-3.580	0.0042
	eSR - eGEI	Cold	-3.320	0.0043

385 Table S5. [attached .xls file] Table of accessions included in the various data sets
386 analyzed in this study.

Table S6. Enrichment of gene lists for mean rank of motif counts (O'Brien 1984).
The mean statistic for genes in each gene list, standardized to the null
permutations, is shown as a z-score. For example, a z-score > 0 indicates the
motif is more common in the gene list compared to random genes. Gene lists with
a significant motif frequency are shown in bold. DRE/CBFs are read both forward
and reverse (2d) or only one direction at a time (1d).

Motif	Treatment	Mean eSR Z	Mean eSR p	Mean eGEI Z	Mean eGEI p	Mean eSR - Mean eGEI Z	Mean eSR - Mean eGEI p
ABRE	drought	5.86	<0.0002	0.48	0.6314	1.36	0.1754
ABRE	cold	1.91	0.0570	12.55	<0.0002	-2.89	0.0044
DRE/CBF							
2d	drought	2.87	0.0038	-1.69	0.0812	2.50	0.0124
DRE/CBF 2d	cold	1.10	0.2682	3.00	0.0010	-0.05	0.9722
Zu DRE/CBF	colu	1.10	0.2082	3.00	0.0010	-0.03	0.9722
ld	drought	3.24	0.0012	-0.81	0.4278	1.75	0.0748
DRE/CBF							
1d	cold	1.28	0.2108	1.24	0.2118	0.77	0.4370

398	Table S7. The enrichment of specific motifs in the promoters of genes with
399	transcriptional plasticity. The mean statistic for genes in each gene list,
400	standardized to the null permutations, is shown as a z-score. For example, a z-
401	score > 0 indicates the motif is more common in the gene list compared to random
402	genes. Gene lists with a significant motif frequency are shown in bold. Core
403	motifs are shown in bold. Gene lists with a significant motif frequency are shown
404	in bold. DRE/CBFs are read both forward and reverse (2 directions) or only one

405 direction at a time (F-forward or R-reverse).

Motif	Treatment	Mean eSR Z	Mean eSR p	Mean eGEI Z	Mean eGEI p	Mean eSR - Mean eGEI Z	Mean eSR - Mean eGEI p
ABREs							
ACGT	drought	4.34	0.0000	0.42	0.6826	0.94	0.3602
ACGT	cold	1.43	0.1516	9.53	0.0000	-2.25	0.0236
ACACGTGG	drought	4.40	0.0000	0.49	0.5994	0.86	0.4034
ACACGTGG	cold	1.20	0.2278	1.99	0.0496	0.42	0.6768
ACGTG	drought	6.09	0.0000	0.32	0.7468	1.56	0.1224
ACGTG	cold	2.21	0.0318	12.80	0.0000	-2.68	0.0072
ACGTGG	drought	4.80	0.0000	-0.66	0.5254	2.10	0.0300
ACGTGG	cold	1.84	0.0698	8.16	0.0000	-1.32	0.1840
ACGTGT	drought	4.42	0.0000	0.78	0.4300	0.57	0.5628
ACGTGT	cold	1.46	0.1460	9.18	0.0000	-1.93	0.0532
CACGTG Gbox	drought	7.14	0.0000	-0.10	0.9252	2.28	0.0202
CACGTG Gbox	cold	2.47	0.0156	10.70	0.0000	-1.54	0.1176
CACGTT TGbox	drought	-0.43	0.6742	-0.52	0.6108	0.38	0.7146
CACGTT TGbox	cold	-1.16	0.2444	0.00	0.9916	-1.12	0.2648
CCACGTGG	drought	3.53	0.0006	0.56	0.5578	0.52	0.6110
CCACGTGG	cold	1.09	0.2826	8.89	0.0000	-2.27	0.0184
DRE/CBFs 2 directions							
GCCGAC CAGCCG	drought	3.24	0.0012	-1.88	0.0596	2.80	0.0032
GCCGAC CAGCCG	cold	1.55	0.1178	2.97	0.0024	0.40	0.6906
AGCCGAC CAGCCGA	drought	2.74	0.0068	-0.80	0.4338	1.61	0.0892
AGCCGAC CAGCCGA	cold	0.70	0.4834	2.85	0.0060	-0.36	0.7304
GGCCGAC CAGCCGG	drought	-0.42	0.6836	-1.04	0.3010	0.89	0.3782
GGCCGAC CAGCCGG	cold	0.69	0.4754	-0.14	0.8922	0.72	0.4624
DRE/CBFs 1 direction							
GCCGAC F	drought	3.28	0.0004	-1.89	0.0526	2.82	0.0014
GCCGAC F	cold	1.54	0.1252	2.96	0.0028	0.40	0.7006
CAGCCG R	drought	1.66	0.0912	0.68	0.4868	-0.17	0.8594
CAGCCG R	cold	1.10	0.2746	-4.71	0.0000	2.79	0.0066

AGCCGAC F	drought	2.75	0.0070	-0.82	0.4248	1.61	0.0916
AGCCGAC F	cold	0.69	0.4924	2.85	0.0056	-0.38	0.7252
CAGCCGA R	drought	1.75	0.0780	-1.61	0.0926	2.09	0.0262
CAGCCGA R	cold	0.48	0.6102	2.51	0.0130	-0.45	0.6608
CAGCCGG R	drought	0.62	0.5320	1.76	0.0908	-1.53	0.1330
CAGCCGG R	cold	0.20	0.8102	-1.41	0.1578	0.71	0.4726
GGCCGAC F	drought	-0.42	0.6708	-1.04	0.3016	0.89	0.3832
GGCCGAC F	cold	0.71	0.4680	-0.15	0.8916	0.73	0.4492

411	Table S8. Enrichment of gene lists for mean rank of variance in motif frequency
412	among accessions. The mean statistic for genes in each gene list, standardized to
413	the null permutations, is shown as a z-score. For example, a z-score > 0 indicates
414	that genes having the motif have higher variance in motif frequency among
415	accessions than expected. Gene lists with a significant motif frequency are shown
416	in bold. Gene lists with a significant motif frequency are shown in bold.
417	DRE/CBFs are read both forward and reverse (2d) or only one direction at a time
418	(1d).

Motif	Treatment	Var. eSR Z	Var. eSR p	Var. eGEI Z	Var. eGEI p	Var. eSR - Var. eGEI Z	Var. eSR - Var. eGEI p
ABRE ABRE DRE/CBF	drought cold	-7.08 -3.38	<0.0002 0.0006	2.16 -0.64	0.0336 0.5048	-4.48 -2.93	<0.0002 0.0040
2d DRE/CBF	drought	-1.13	0.2602	-1.42	0.1604	1.05	0.2920
2d DRE/CBF	cold	-1.02	0.3154	-2.21	0.0270	-0.18	0.8542
1d DRE/CBF	drought	-1.22	0.2192	-1.63	0.1008	1.22	0.2228
1d	cold	-1.21	0.2352	-0.61	0.5260	-0.94	0.3414

426	Table S9. Variance among accessions in the count of motifs. The mean statistic
427	for genes in each gene list, standardized to the null permutations, is shown as a z-
428	score. For example, a z-score > 0 indicates that genes having the motif have
429	higher variance in motif frequency among accessions than expected. Gene lists
430	with a significant motif frequency are shown in bold. Core motifs are shown in
431	bold. Gene lists with a significant motif frequency are shown in bold. DRE/CBFs
432	are read both forward and reverse (2 directions) or only one direction at a time (F-
433	forward or R-reverse).

Motif	Treatment	Var. eSR Z	Var. eSR p	Var. eGEI Z	Var. eGEI p	Var. eSR - Var. eGEI Z	Var. eSR - Var. eGEI p
ABREs							
ACGT	drought	-5.11	0.0000	1.38	0.1800	-2.94	0.0060
ACGT	cold	-2.23	0.0164	3.18	0.0012	-3.39	0.0002
ACACGTGG	drought	-0.85	0.3996	2.25	0.0294	-2.43	0.0194
ACACGTGG	cold	-0.53	0.6140	-2.96	0.0034	0.55	0.5662
ACGTG	drought	-5.62	0.0000	-0.02	0.9886	-1.73	0.0974
ACGTG	cold	-2.14	0.0240	0.38	0.7190	-2.19	0.0242
ACGTGG	drought	-2.17	0.0258	-0.11	0.9406	-0.56	0.5646
ACGTGG	cold	-1.52	0.1082	-2.37	0.0126	-0.57	0.5882
ACGTGT	drought	-5.27	0.0000	0.33	0.7224	-1.89	0.0646
ACGTGT	cold	-1.84	0.0552	0.87	0.3668	-2.10	0.0292
CACGTG Gbox	drought	-2.92	0.0032	-0.24	0.8180	-0.63	0.5030
CACGTG Gbox	cold	-0.90	0.3624	-2.61	0.0056	0.10	0.8848
CACGTT TGbox	drought	-3.16	0.0010	3.43	0.0072	-4.29	0.0014
CACGTT TGbox	cold	-1.21	0.1942	-0.63	0.5492	-0.93	0.3494
CCACGTGG	drought	-0.16	0.8782	-0.55	0.6134	0.49	0.6476
CCACGTGG	cold	-0.62	0.5436	-2.64	0.0062	0.35	0.7016
DRE/CBFs 2 directions							
GCCGAC CAGCCG	drought	-0.70	0.4802	-1.90	0.0532	1.64	0.0972
GCCGAC CAGCCG	cold	-0.81	0.4248	-1.66	0.0992	-0.17	0.8694
AGCCGAC CAGCCGA	drought	-0.45	0.6556	-1.32	0.1548	1.17	0.2280
AGCCGAC CAGCCGA	cold	-0.26	0.8270	-2.42	0.0120	0.62	0.5240
GGCCGAC CAGCCGG	drought	-0.11	0.9070	-0.44	0.6736	0.40	0.7152
GGCCGAC CAGCCGG	cold	-0.47	0.6544	0.34	0.7248	-0.57	0.5762
DRE/CBFs 1 direction							
GCCGAC F	drought	-0.69	0.4912	-1.92	0.0448	1.66	0.0888
GCCGAC F	cold	-0.83	0.4154	-1.66	0.0944	-0.18	0.8630

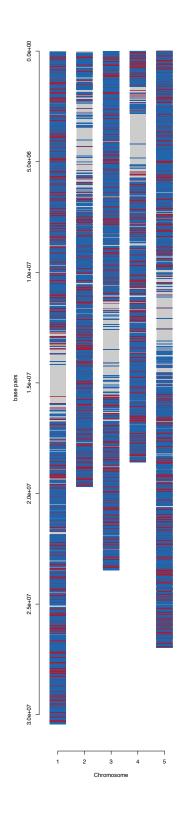
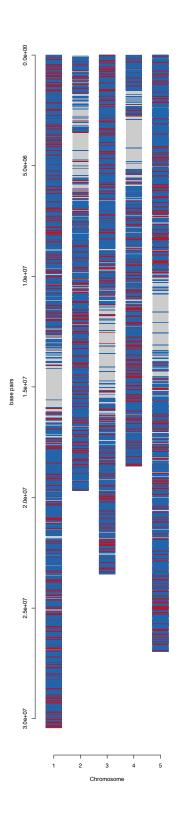
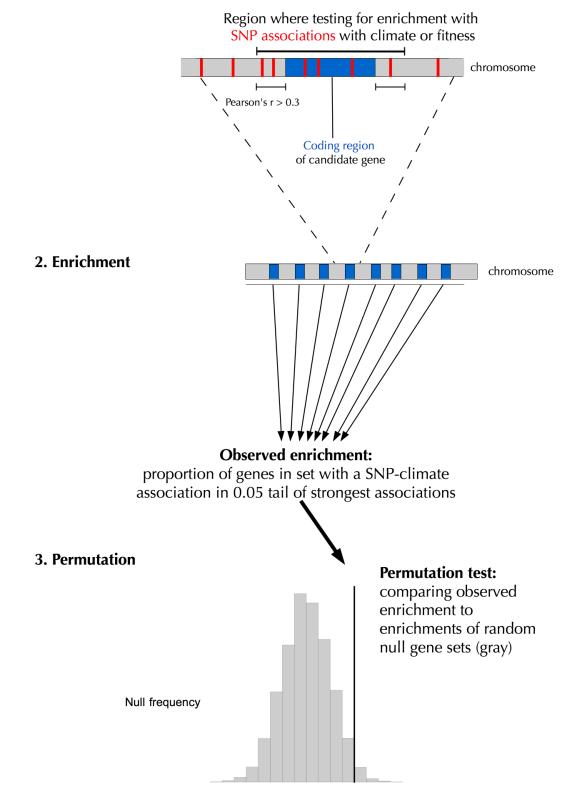

CAGCCG R	dravaht	-1.64	0.0972	-1.63	0.0770	1.08	0.2600
CAUCUU K	drought	-1.04	0.0972	-1.05	0.0770	1.08	0.2000
CAGCCG R	cold	-0.74	0.4748	0.06	0.9544	-0.74	0.4644
AGCCGAC F	drought	-0.43	0.6600	-1.33	0.1566	1.18	0.2296
AGCCGAC F	cold	-0.27	0.8110	-2.42	0.0144	0.62	0.5222
CAGCCGA R	drought	-1.81	0.0706	-2.94	0.0010	2.35	0.0094
CAGCCGA R	cold	-0.26	0.8228	-0.96	0.3280	0.09	0.9092
CAGCCGG R	drought	-1.19	0.2412	-0.79	0.4114	0.44	0.7154
CAGCCGG R	cold	-0.33	0.8080	0.57	0.5834	-0.52	0.6370
GGCCGAC F	drought	-0.12	0.9064	-0.45	0.6656	0.41	0.7034
GGCCGAC F	cold	-0.47	0.6624	0.33	0.7292	-0.57	0.5808

Table S10. Flowering time experiments used to fit a SNP-based model of


- 441 flowering time category.

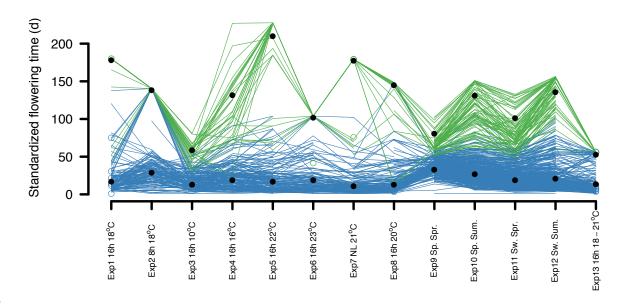
Reference	Photoperiod (hrs)	Natural light conditions	Temp. (°C)	Naccessions	Notes
Zhao et al. 2007	16	n/a	18	167	
Zhao et al. 2007	8	n/a	18	162	
Atwell et al. 2010	16	n/a	10	194	
Atwell et al. 2010	16	n/a	16	193	
Atwell et al. 2010	16	n/a	22	193	
Zhao et al. 2007	16	n/a	23	137	
Shindo et al. 2005	n/a	52°37' N, Oct. – March	20-22	153	
Atwell et al. 2010	16	n/a	20	166	
Li et al. 2010	n/a	41°43' N, MarchJuly	5-27	445	simulated natural day length and temperature
Li et al. 2010	n/a	55°43' N, May – Sep.	5-21	445	simulated natural day length and temperature
Li et al. 2010	n/a	41°43' N, Apr. – Sep.	7-28	445	simulated natural day length and temperature
Li et al. 2010	n/a	55°43' N, June – Nov.	5-21	445	simulated natural day length and temperature
Kenney et al. In prep.	16	n/a	18-22	205	drought stress applied to half of individuals
443					

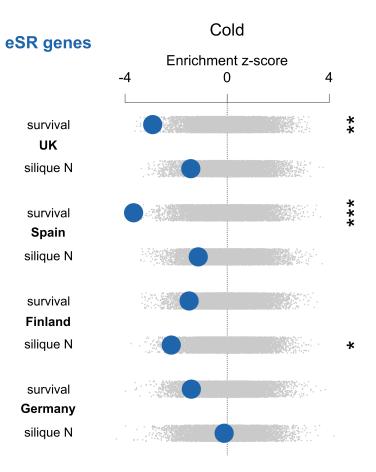
- 446 Figure S1. Coding regions of eSR (blue) and eGEI (red) genes from a cold-
- 447 acclimation experiment (Hannah et al. 2006) mapped across the genome. Genes
- that are both eSR and eGEI are shown in purple. A small border is added to each
- 449 gene to improve visibility.

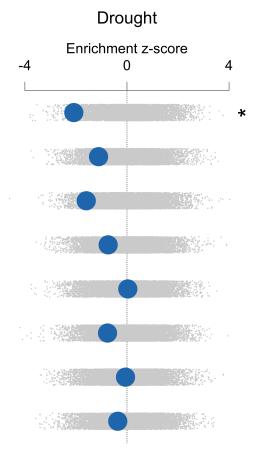


- 451 **Figure S2.** Coding regions of eSR (blue) and eGEI (red) genes from a drought
- 452 experiment (Des Marais et al. 2012) mapped across the genome. Genes that are
- both eSR and eGEI are shown in purple. A small border is added to each gene to
- 454 improve visibility.

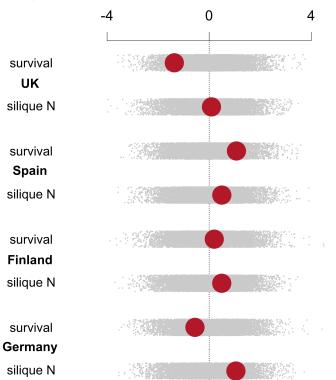
456	Figure S3. Schematic of permutation tests for enrichment. Representation of
457	permutation tests for enrichment of eSR and eGEI gene sets with SNP
458	associations to climate, fitness, or selection statistics. 1. GWAS statistics for
459	SNPs (red) within a window where a moving average of correlation r among SNP
460	state is $>$ 3 are identified. 2. The observed enrichment test statistic is calculated as
461	the proportion of genes in that set (step 1) that have a SNP with a climate, fitness,
462	or selection statistic in the 0.05 tail of lowest p -values. 3. This proportion is then
463	compared to a null distribution generated from randomly permuted gene sets with
464	the same number of genes as the observed set.

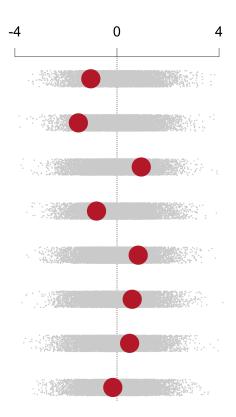



Enrichment

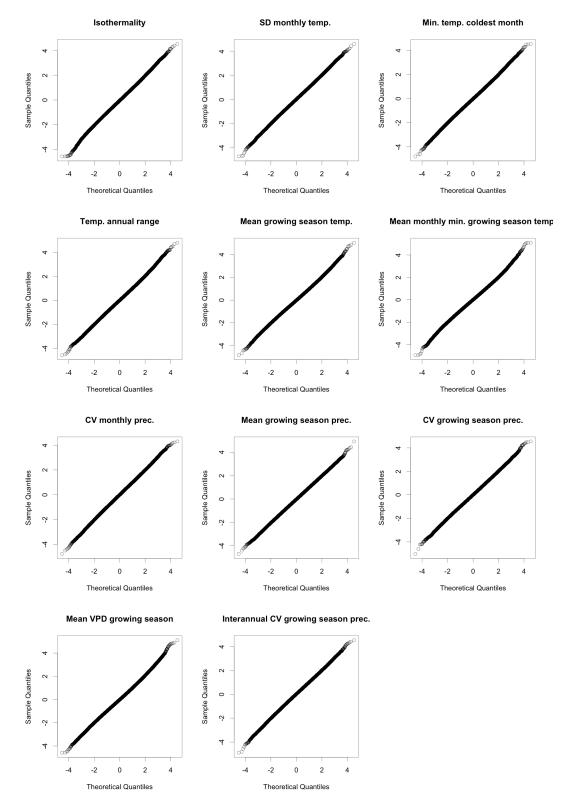

Figure S4. Reaction norm of flowering time across 13 published experiments (Table S10). Lines connect accessions and open circles represent accessions not present in the adjoining experiments in the figure. Green accessions are those classified as late-flowering and blue are early-flowering. Closed black circles represent cluster means used to define early versus late-flowering groups in kmeans clustering conducted on accessions present in all experiments.

475Figure S5. The enrichment of candidate gene sets with associations to fitness476variables. Observed enrichments are calculated as a z-score using the distribution477from null permutations. Enrichment of eSR genes is shown in blue, while eGEI478genes are shown in red. Null permutations are shown as small gray dots (0 , p <</td>4790.1, '*' p < 0.05, '**' p < 0.01, '***' p < 0.005).</td>

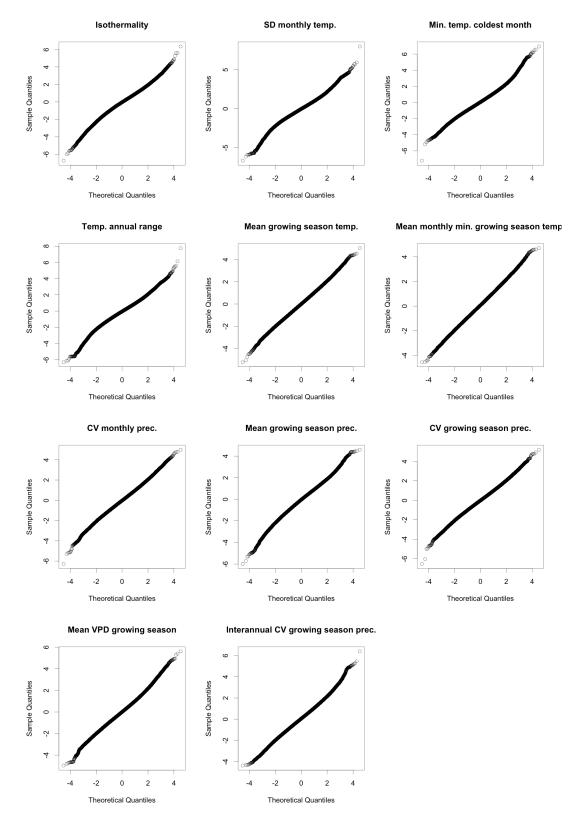


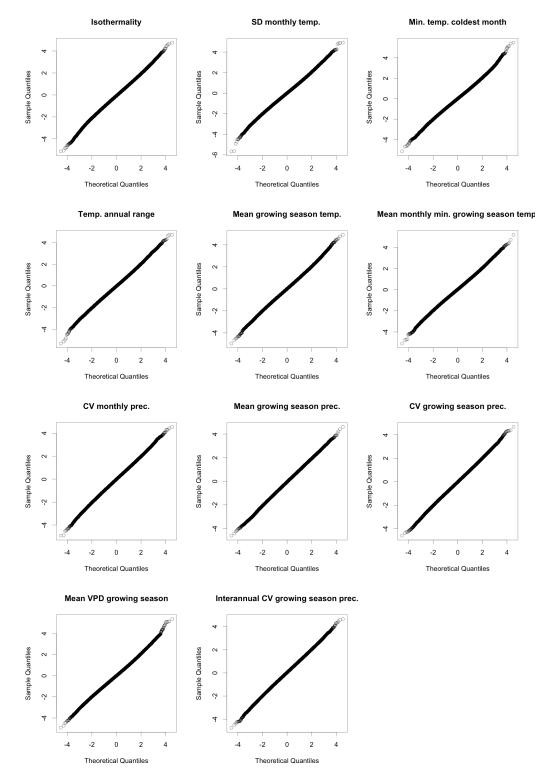


eGEI genes


UK

Spain




- 482 **Figure S6**. Quantile-quantile plots for climate association *t*-statistics for early-
- 483 flowering accessions. Observed distributions (y-axis) are compared with a
- 484 theoretical normal distribution (x-axis).

- 486 **Figure S7**. Quantile-quantile plots for climate association *t*-statistics for late-
- 487 flowering accessions. Observed distributions (y-axis) are compared with a
- 488 theoretical normal distribution (x-axis).

- 490 **Figure S8**. Quantile-quantile plots for climate association *t*-statistics for all
- 491 accessions combined. Observed distributions (y-axis) are compared with a
- 492 theoretical normal distribution (x-axis).

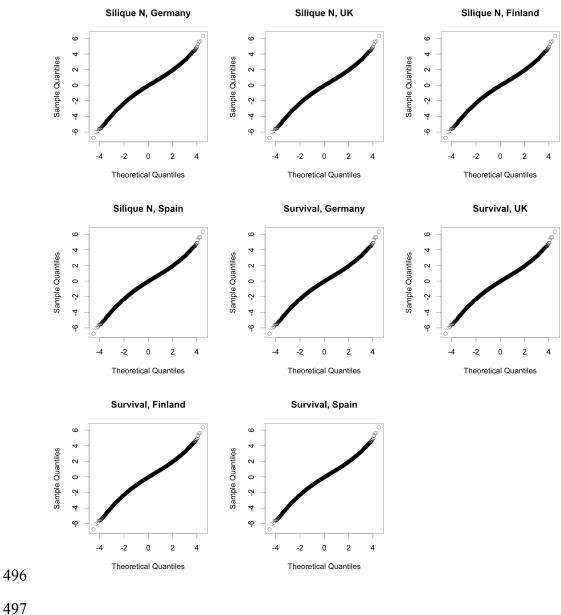
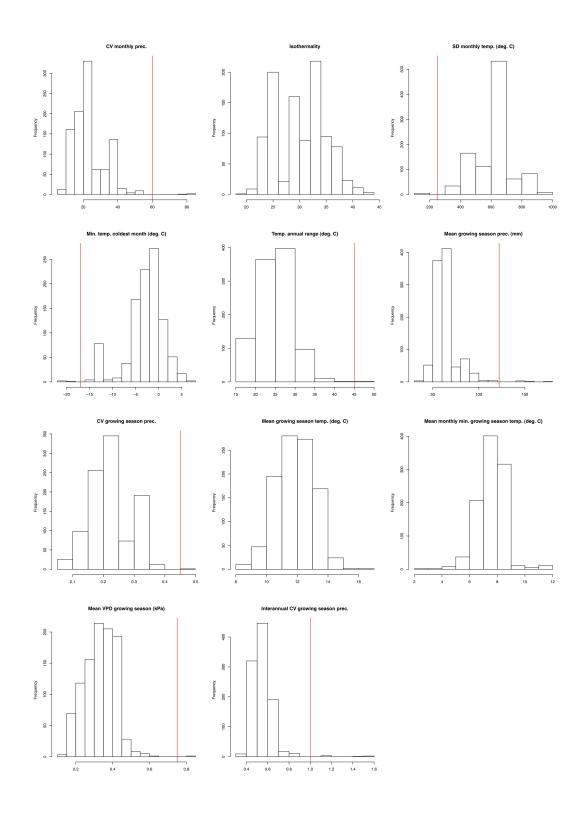
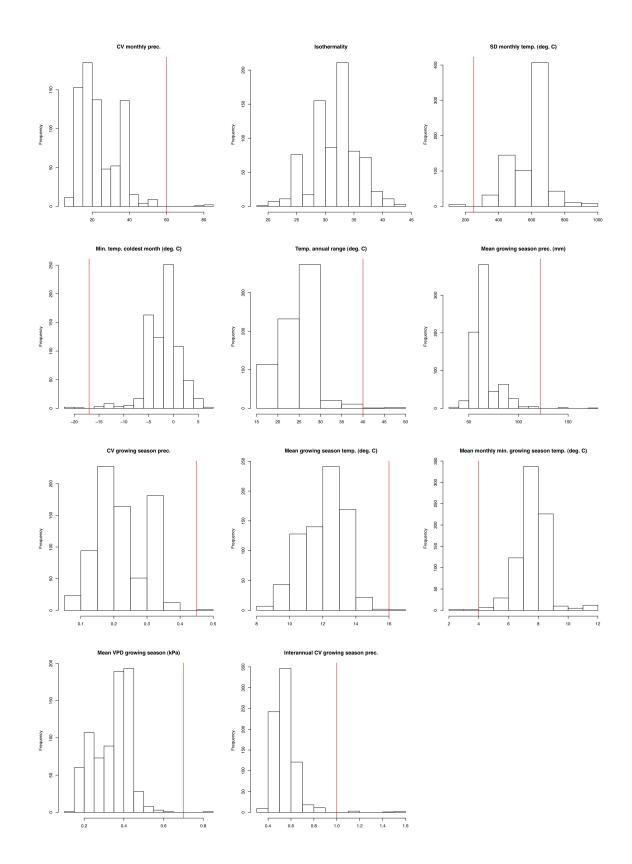


Figure S9. Quantile-quantile plots for fitness association *t*-statistics. Observed

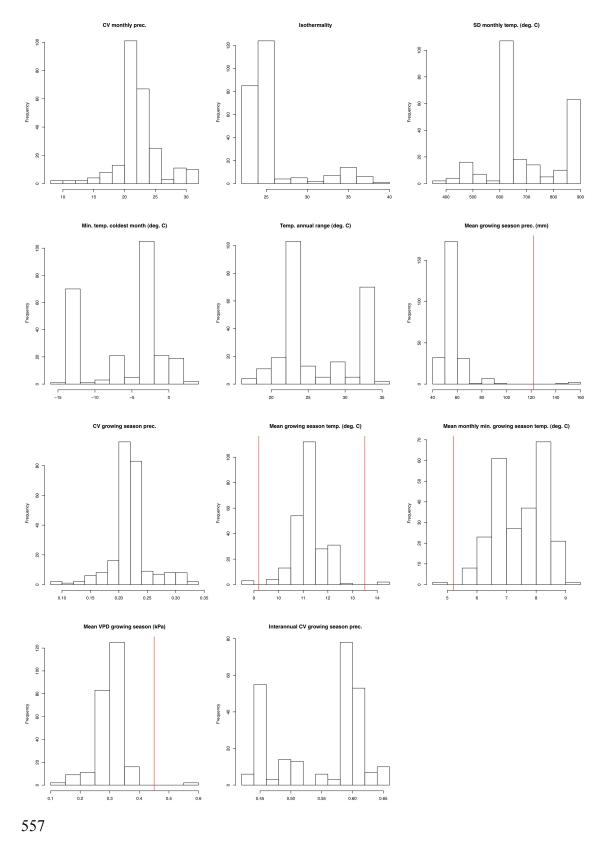

distributions (y-axis) are compared with a theoretical normal distribution (x-axis).

499 *Climate outliers removed*

- 500 Two high-altitude outlier accessions were removed, Kas-2 and Pi-2. The plots
- 501 below show the distribution of climate data for the remaining accessions. Red
- 502 lines indicate the boundary between accessions used in association mapping and
- 503 outliers excluded.
- 504 *Among all accessions*
- 505 CV monthly precipitation, accessions removed: Shahdara, Kondara, Sorbo
- 506 SD monthly temperature, accessions removed: Kz-1, Kz-9, Per-1, Rubezhnoe-1,
- 507 Stw-0
- 508 Minimum temperature coldest month, accessions removed: Kz-1, Kz-9, Per-1
- 509 Temperature annual range, accessions removed: Kz-1, Kz-9
- 510 Mean growing season precipitation, accessions removed: Ka-0, Oy-0, Ty-0, Ty-1,
- 511 UKID115, UKID120
- 512 CV growing season precipitation, accessions removed: Kondara
- 513 Mean growing season VPD, accessions removed: Lag-1-6
- 514 Interannual CV growing season precipitation, accessions removed: Ayu-Dag-3,
- 515 Kondara, Kz-1, Kz-9, Shahdara, Sorbo
- 516 All other climate variables had no outliers
- 517
- 518


- **Figure S10.** Distributions of climate variables among panels with both early and
- 520 late-flowering accessions combined. Red lines show outlier thresholds.

522 Among early-flowering accessions


- 523 CV monthly precipitation, accessions removed: Shahdara, Kondara, Sorbo
- 524 SD monthly temperature, accessions removed: Kz-1, Kz-9, Per-1, Rubezhnoe-1,
- 525 Stw-0
- 526 Minimum temperature coldest month, accessions removed: Kz-1, Kz-9, Per-1
- 527 Temperature annual range, accessions removed: Kz-1, Kz-9, Per-1
- 528 Mean growing season precipitation, accessions removed: Ka-0, Oy-0, Ty-0
- 529 CV growing season precipitation, accessions removed: Kondara
- 530 Mean growing season temperature, accessions removed: Lag-1-6
- 531 Mean monthly minimum growing season temperature, accessions removed: Alc-
- 532 0, Ka-0, Kz-1, Kz-9
- 533 Mean growing season VPD, accessions removed: Lag-1-6
- 534 Interannual CV growing season precipitation, accessions removed: Ayu-Dag-3,
- 535 Kondara, Kz-1, Kz-9, Shahdara, Sorbo
- 536 All other climate variables had no outliers
- 537

- **Figure S11.** Distributions of climate variables among panels with early-flowering
- 539 accessions. Red lines show outlier thresholds.

- 541 *Among late-flowering accessions*
- 542 Mean growing season precipitation, accessions removed: Ty-1, UKID115,
- 543 UKID120
- 544 Mean growing season temperature, accessions removed: Blh-1, Blh-2, Mc-0,
- 545 UKID115, UKID120
- 546 Mean monthly minimum growing season temperature, accessions removed: Mc-0
- 547 Mean growing season VPD, accessions removed: Blh-1 Blh-2
- 548 All other climate variables had no outliers
- 549
- 550
- 551
- 552
- 553
- 554

- **Figure S12.** Distributions of climate variables among panels with late-flowering
- 556 accessions. Red lines show outlier thresholds.

