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SUPPLEMENTAL METHODS 13 

 14 

Climate data  15 

Hijmans et al. (2005) created WorldClim data by spatially interpolating 1950-16 

2000 weather station data and resolving it to 30” grid squares. The authors 17 

(Hijmans et al. 2005) estimated mean monthly minimum, mean, and maximum 18 

temperatures and mean monthly precipitation averaged across years of the time 19 

period. Furthermore, Hijmans et al. (2005) derived variables of climatic extremes 20 

and variability.  21 

 We used Climate Research Unit (CRU) humidity and temperature data to 22 

approximate vapor pressure deficit (VPD), which is the difference between water 23 

vapor partial pressure and maximum potential pressure at a given air temperature, 24 

and indicates evaporative demand on plants (Johnson and Ferrell 1983). CRU data 25 

come from 1961-1990 weather station data that were subsequently interpolated to 26 

10’ resolution (New et al. 2002) .  27 

 We used a third database to estimate inter-annual variability in 28 

precipitation. The National Centers for Environmental Prediction (NCEP) 29 

generated Reanalysis data on a T62 grid (resolution ~ 210 km) for the years 1948-30 

2009 (data provided by NOAA/OAR/ESRL PSD, http://www.esrl.noaa.gov/psd/ ) 31 

(Kalnay et al. 1996). We used monthly surface precipitation rates to calculate 32 

each calendar month’s coefficient of variation (CV) across years (Lasky et al. 33 
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2012).  34 

   35 

Growing season climate – We previously used temperature and precipitation 36 

data to model the months of the year when accessions may be growing (climate 37 

diagram model) (Walter and Lieth 1960; Lasky et al. 2012). Putative growing 38 

months were specified as all months having abundant soil moisture and mean 39 

temperature ≥ 4ºC. We considered soil moisture to be abundant in a given month 40 

if mean precipitation (mm) ≥ 2 * mean temperature (ºC) (Walter and Lieth 1960).  41 

 We used growing season predictions to calculate growing season climate 42 

conditions for each accession, consisting of mean values of monthly precipitation, 43 

VPD, and minimum and mean temperature. We also calculated the CV of mean 44 

monthly precipitation within the growing season and the mean inter-annual CV of 45 

growing season month's precipitation. 46 

 We selected eleven climate variables we hypothesized would represent 47 

selective gradients due to drought and cold stress in order to test for SNP-climate 48 

associations. Six climate variables described the growing season: 1) mean 49 

monthly precipitation, 2) coefficient of variation (CV) of mean monthly 50 

precipitation, 3) mean VPD at mean monthly conditions, 4) mean inter-annual CV 51 

of mean monthly precipitation, 5) mean monthly mean temperature, and 6) mean 52 

monthly minimum temperature. Five variables described yearlong climate 53 

conditions: 1) CV of mean monthly precipitation, 2) isothermality (average 54 
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diurnal temperature range / annual range), 3) standard deviation (SD) of monthly 55 

temperature, 4) minimum temperature of coldest month, and 5) annual 56 

temperature range. 57 

 58 

Association studies of climate and fitness under acclimation to abiotic stress 59 

Mixed model - We used the Efficient Mixed-Model Association (EMMA) 60 

mapping linear mixed model (Kang et al. 2008) to test SNP associations with 61 

climate and fitness in new GWAS (i.e. not previously published). EMMA 62 

includes a kinship random effect to attempt to control for population structure. 63 

Hancock et al. (2011) previously used non-parametric partial Mantel tests for 64 

SNP-climate association tests to reduce the influence of accessions occupying 65 

outlier climates. We chose not to use partial Mantel tests, which use permutations 66 

to generate null distributions, because Mantel permutations may be poor null 67 

models for data heavily influenced by spatially autocorrelated processes (e.g. 68 

climatic gradients, population structure, Raufaste and Rousset 2001; Goslee and 69 

Urban 2007; Guillot and Rousset 2013). Partial Mantel tests of climate-SNP 70 

associations by Hancock et al. (2011) generated extremely high numbers of 71 

associations with the lowest possible p-value, which the authors hypothesized 72 

indicates that these tests performed poorly at controlling for population structure. 73 

Instead, we used EMMA, and culled accessions from each analysis that we 74 

identified as outliers by visually inspecting climate histograms (Figures S10-S12). 75 
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In contrast to a partial Mantel results (Hancock et al. 2011), our quantile-quantile 76 

plots compared theoretical and observed test statistics (Figures S6-S9) indicate 77 

our models follow the null much more closely, albeit with small enrichments of 78 

strong associations (low p-values) as expected if a small number of loci are 79 

involved in local adaptation. For example, we found between a 1- and 7-fold 80 

enrichment of SNPs in the lower 0.001 p-value tail compared to the null 81 

expectation; in contrast to the 156- to 368-fold enrichment found by Hancock et 82 

al. (2011). The lack of a large enrichment of low p-values in our mixed model 83 

approach signifies that our model is likely controlling for the large portion of 84 

population structure that is collinear with climate (Lasky et al. 2012). Note that 85 

this approach is highly conservative because we expect that a portion of the 86 

genome-wide divergence between populations captured by the kinship matrix will 87 

be caused by local adaptation to climate. 88 

 We used EMMA to test the null hypothesis that the mean climate 89 

inhabited by accessions with one allele was equal to the mean climate inhabited 90 

by the alternative allele, while controlling for population structure (Kang et al. 91 

2008; Yoder et al. 2014). In fitness association tests, we tested the null hypothesis 92 

that the fitness of accessions with one allele was equal to the fitness of the 93 

alternative allele. Formally stated  94 

y= X β+ u+ e  (eqn. 1) 95 

where y is the n x 1 vector of observed climate data for each accession (total of n 96 
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accessions). For association mapping with fitness, y was a vector of accession 97 

fitness data. X is an n x q matrix of data for q fixed effects, consisting of intercept 98 

and SNP effects. β is a q x 1 vector giving the slope of the fixed effects. The u 99 

term gives the random error due to kinship 100 

Var (u)= σ g
2 K  (eqn. 2) 101 

with K being the n x n kinship matrix. The e term gives the random error of each 102 

accession 103 

Var (e)= σ e
2 I   (eqn. 3). 104 

The kinship matrix was constructed using identity in-state of SNPs (Kang et al. 105 

2008). The significance of SNP-climate or SNP-fitness relationships, β1, was 106 

assessed using t-tests, the p-values of which indicate the significance of SNP 107 

associations to climate or fitness (Kang et al. 2008).  108 

 All climate variables were scaled to have a mean of 0 and a standard 109 

deviation of 1. Survival data were arcsin square-root transformed in order to 110 

improve normality. Only SNPs with a minor allele frequency greater than 0.1 111 

among tested accessions were analyzed in order to avoid spurious significant 112 

associations (Atwell et al. 2010).   113 

     114 

GWAS stratified by flowering time – The study of Des Marais et al. (2012), 115 

which provided our drought stress gene expression data, split microarray 116 
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experiments into early and late-flowering groups of accessions (in the absence of 117 

vernalization) because flowering time groups may have varied phenology and 118 

life-history that affects response to abiotic stress (McKay et al. 2003; Donohue 119 

2005; Korves et al. 2007). We followed Des Marais et al. (2012) and our previous 120 

study (Lasky et al. 2012), conducting a subset of GWAS on putative early and 121 

late-flowering groups.  122 

 Because flowering time data were only available for 476 of the 1,307 123 

accessions with genomic data, in the previous study we used data from the 476 to 124 

predict flowering time variation in the remaining accessions (Lasky et al. 2012) . 125 

Methods are described in greater detail in Lasky et al. (2012). We used data from 126 

13 common garden experiments in different environments, all without 127 

vernalization (Table S10, Figure S4) (Shindo et al. 2005; Zhao et al. 2007; Atwell 128 

et al. 2010; Li et al. 2010; Kenney 2012) because vernalization accelerates the 129 

flowering of late-flowering putative winter annuals, which would have limited our 130 

ability to distinguish life history variation (Stinchcombe et al. 2004). We then 131 

used these empirical flowering time data to categorize accessions using a SNP-132 

based model of flowering-time category for accessions lacking data.  133 

 For the flowering time model, we used candidate SNPs identified in the 134 

original flowering time association studies (Atwell et al. 2010; Li et al. 2010) and 135 

SNPs within 100 kb of FRI and FLC, two interacting genes in the vernalization-136 

sensitivity pathway (Michaels and Amasino 1999; Stinchcombe et al. 2004; Zhao 137 
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et al. 2007), giving 857 total SNPs as predictor variables (SNP data from Horton 138 

et al. 2012). We modeled flowering category with support vector machines 139 

(SVM), a type of classification model flexible enough to deal with interaction and 140 

non-linear effects. SVM based on predictor SNPs and empirical flowering time 141 

categories predicted a total of 765 early-flowering and 248 late-flowering 142 

accessions of the 1,003 accessions used in climate association mapping. We 143 

previously experimentally validated flowering time categories predicted using 144 

SVM and found our predictions were correct for 24 of 27 accessions (89%) 145 

previously lacking flowering time data (Lasky et al. 2012). Although there are 146 

limitations to predicting flowering time from genotype, the included experiments 147 

span a variety of environments and thus we believe our categories capture 148 

ecologically important flowering time variation.  149 

 150 

Enrichment of genes with expression plasticity  151 

We assessed whether genes having abiotic stress treatment effects (eSR) or 152 

accession by treatment effects (eGEI) on expression were more likely than 153 

randomly selected genes to have SNPs associated with signatures of selection, 154 

climate and fitness. In enrichment tests, we tested null hypotheses stating, in 155 

essence, that SNPs near eSR and eGEI genes had equal climate, fitness, and 156 

selection statistics as did SNPs from randomly chosen genes. We used a 157 

permutation enrichment test based on that of Segrè et al. (2010). The test 158 
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compares the proportion of candidate genes (eSR or eGEI genes) having nearby 159 

SNPs with strong associations to the proportion of randomly selected genes 160 

having nearby SNPs with strong associations (Figure S3). Typically, existing 161 

methods link to a gene all SNPs within a window of a defined number of base 162 

pairs of the gene's coding region (e.g. Segrè et al. 2010; Cabrera et al. 2012). 163 

However, recombination rates and linkage disequilibrium (LD) in diverse 164 

genotype panels vary extensively across the Arabidopsis genome (Horton et al. 165 

2012). Thus the information a SNP contains about variation in nearby genes a 166 

given distance away is highly heterogeneous across the genome. In order to 167 

account for this heterogeneity, we used an adaptive window based on local rates 168 

of LD to link SNP association signals to nearby genes (SNP data from Horton et 169 

al. 2012). We identified a window surrounding genes where the smoothed average 170 

minimum correlation between SNPs (Pearson's r) was greater than 0.3. We first 171 

averaged the maximum distance where r > 0.3 from each SNP with the two 172 

neighboring SNPs on either side. We then averaged those distances for all SNPs 173 

within 5 kb of the coding region of each gene to get the linkage window for each 174 

gene. If there were no SNPs within 5 kb, we set the linkage window for a gene as 175 

the average linkage distance for the nearest SNP.  176 

 In order to calculate the enrichment test statistic for climate and fitness 177 

associations, we first found the lowest association p-value among SNPs linked to 178 

each gene in the candidate list (eSR or eGEI genes). If a single SNP had the 179 
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lowest p-value for multiple genes, then the SNP was only included once in the 180 

candidate list. Typically, >90% genes had a unique SNP having the lowest p-181 

value for that gene (i.e. the low p-value SNP was not the low p-value SNP for an 182 

additional gene). Next, we calculated the 5th percentile of p-values for all SNPs of 183 

a particular association study. We then found the proportion of candidate SNP p-184 

values falling below the 5th percentile and considered this proportion the observed 185 

enrichment test statistic. For direct comparisons of eSR and eGEI enrichments we 186 

calculated the difference between gene lists (eSR – eGEI) in their proportion of 187 

genes falling in the 5th percentile p-values. 188 

 We then created a null distribution by permuting gene classifications as 189 

eSR, eGEI or neither circularly around the genome 10,000 times in order to 190 

maintain LD patterns and the number of genes in each category (excluding the 191 

same genes that were excluded in analyses of microarrays described above). For 192 

each random gene set we calculated a test statistic in the same way as the 193 

observed test statistic. We then compared observed test statistics to permuted test 194 

statistics. Finally, we conducted a two-tailed permutation-based hypothesis test 195 

because gene lists might be biased toward many or few strong SNP associations 196 

to climate and fitness and selection statistics. To conduct the two-tailed test we 197 

determined the proportion of random sets with a test statistic in the tail beyond 198 

our observed statistic and doubled this proportion to get a two-tailed permutation 199 

p-value. This was the p-value for the null hypothesis that the stress responsive 200 
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candidate genes co-occurred randomly with respect to strong SNP associations 201 

(Segrè et al. 2010).  202 

 203 

Promoter motif polymorphisms from resequencing data 204 

We quantified ABRE and DRE/CBF motifs across the 1000 bp promoters of the 205 

first 80 genomes of the 1001 Arabidopsis genomes project (Cao et al. 2011). 206 

Quantification of the number of motifs was conducted on the transcribed strand 207 

with custom perl scripts. Based on past studies, we counted ABRE type motifs 208 

only in the 5' to 3' orientation with the transcribed gene (Zhang et al. 2005; 209 

Maruyama et al. 2012; Fujita et al. 2013). In contrast, DRE/CBF type motifs have 210 

been show to be functional in both the 5' to 3' and 3' to 5' orientations (Geisler et 211 

al. 2006) and so we counted them in both directions.  212 

 For each gene set, we tested whether each motif showed differences in 213 

frequency among accessions or in variance of frequency compared to random 214 

genes. We tested the aggregated enrichment of gene lists for all motif variants of 215 

the same core using the test statistic of O’Brien (1984). The O’Brien (1984) 216 

method allows calculation of a non-parametric statistic for multivariate responses 217 

(here the multiple variants of each core motif). For each gene, we calculated the 218 

mean frequency and variance in frequency of the motif among of accessions (out 219 

of 80). We then ranked the mean frequency and variance in frequency of each 220 

gene and averaged across motif variants to get a statistic for each gene. For 221 
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variance in frequency we only included motif-gene combinations where at least 222 

one accession had the motif. Because different motif variants differed widely in 223 

genome-wide occurrence, the number of genes with missing variance 224 

observations differed widely among motif variants. Thus for variance in 225 

frequency, we standardized ranks to mean zero and unit standard deviation for 226 

each motif variant in order to balance the influence of different motif variants. For 227 

each gene list, we then calculated an observed enrichment as the mean gene-level 228 

statistic. Observed statistics were compared to 10,000 circular permutations of 229 

gene list categories. 230 

 We also conducted tests of gene list enrichment with each motif variant 231 

individually. For these tests, we calculated observed enrichment as on raw 232 

frequency and variance in frequency data (in contrast to rank values used above) 233 

averaged across genes in the gene list. Observed statistics were compared to 234 

10,000 circular permutations of gene list categories (results shown in Tables S7 & 235 

S9). 236 

 237 

RESULTS 238 

 239 

Climate association enrichments for combined flowering time categories  240 

Among accessions of both flowering time categories combined, drought eGEI 241 

genes were most strongly associated with intra-annual CV of monthly 242 
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precipitation (z = 2.97, p = 0.0036; Table S2). By contrast, drought eSR genes 243 

had a significantly low proportion of SNPs associated with mean monthly 244 

growing season precipitation (z = -2.06 p = 0.0412). Cold eGEI genes were most 245 

significantly enriched for SNP associations with the standard deviation of 246 

monthly temperature (z = 2.12, p = 0.0316; Table S2). Cold eSR genes, even 247 

more so than drought eSR genes, tended to have fewer associations to temperature 248 

climatic variables. Cold eSR genes had significantly fewer SNP associations with 249 

mean growing season temperature (z = -2.29, p = 0.0224) and monthly minimum 250 

growing season temperature compared to genomic controls (z = -2.07, p = 251 

0.0404). In direct comparison with eGEI genes, eSR genes had tended to have 252 

fewer SNP associations with climate, significantly for SD of monthly temperature 253 

(z = -2.58, p = 0.0064), CV of monthly precipitation (z = -2.41, p = 0.0166) and 254 

CV of monthly growing season precipitation (z = -2.04, p = 0.0406, Table S2). 255 

 256 
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Tables 351 

Table S1. Results for enrichment tests with selection statistics. Enrichments 352 

(frequency of genes in list having SNPs in the 5th percentile of test selection 353 

statistics) are calculated as a z-score using the distribution from null permutations. 354 

Gene lists with significant enrichment of selection statistics are shown in bold. 355 

Tests were not stratified by flowering time because selection statistics were 356 

calculated on a panel with both types [2]. 357 

Selection  Gene list Abiotic stress Mean 
 

Permutation  

statistic 
  

(enrichment z-
score) 

 
test p 

      PHS eSR Cold 2.38 
 

0.0258 

 
eSR Drought 2.57 

 
0.0198 

 
eGEI Cold -1.42 

 
0.1526 

 
eGEI Drought -0.21 

 
0.8384 

 
eSR - eGEI Cold 2.38 

 
0.0120 

 
eSR - eGEI Drought 1.13 

 
0.2596 

      CLR  eSR Cold 0.86 
 

0.3938 

 
eSR Drought 1.14 

 
0.2518 

 
eGEI Cold -0.41 

 
0.6720 

 
eGEI Drought 0.31 

 
0.7520 

 
eSR - eGEI Cold 0.71 

 
0.4766 

 
eSR - eGEI Drought 0.02 

 
0.9914 

      Fst  eSR Cold 0.54 
 

0.5928 

 
eSR Drought 0.29 

 
0.7652 

 
eGEI Cold -1.16 

 
0.2402 

 
eGEI Drought 2.46 

 
0.0142 

 
eSR - eGEI Cold 1.37 

 
0.1692 

 
eSR - eGEI Drought -2.30 

 
0.0258 

      MAF eSR Cold -4.18 
 

<0.0002 

 
eSR Drought -2.43 

 
0.0168 

 
eGEI Cold 1.66 

 
0.1002 

 
eGEI Drought 1.96 

 
0.0434 

 
eSR - eGEI Cold -3.10 

 
0.0022 

 
eSR - eGEI Drought -2.62 

 
0.0106 



 18 

Table S2. Results for enrichment tests with climate associations. The enrichment 358 

of candidate gene sets with associations to cold-related climate variables. 359 

Enrichments (frequency of genes in list having SNPs in the 5th percentile for p-360 

values) are calculated as a z-score using the distribution from null permutations. 361 

Gene lists with significant enrichment of climate variables are shown in bold. 362 

Accessions Climate variable Gene list 
Abiotic 
stress 

Frequency of 
significant SNPs z-
score 

Permutation 
test p 

      
      All Isothermality eSR Cold -0.044 0.9516 
All SD monthly temperature eSR Cold -1.401 0.1650 
All Minimum temperature of coldest month eSR Cold -0.866 0.3882 
All Temperature annual range eSR Cold -0.597 0.5534 
All Mean growing season temperature eSR Cold -2.287 0.0224 
All Mean monthly minimum growing season temperature eSR Cold -2.073 0.0404 
All CV monthly precipitation eSR Drought 1.607 0.1170 
All Mean monthly growing season precipitation eSR Drought -2.061 0.0412 
All CV monthly growing season precipitation eSR Drought -0.549 0.5736 
All Mean growing season VPD eSR Drought -0.063 0.9298 
All Inter-annual CV of growing season precipitation eSR Drought -0.107 0.9234 
All Isothermality eGEI Cold -1.412 0.1538 
All SD monthly temperature eGEI Cold 2.123 0.0316 
All Minimum temperature of coldest month eGEI Cold 0.615 0.5372 
All Temperature annual range eGEI Cold 1.598 0.1132 
All Mean growing season temperature eGEI Cold 0.444 0.6474 
All Mean monthly minimum growing season temperature eGEI Cold -0.641 0.5178 
All CV monthly precipitation eGEI Drought 2.968 0.0036 
All Mean monthly growing season precipitation eGEI Drought -0.447 0.6494 
All CV monthly growing season precipitation eGEI Drought 1.932 0.0534 
All Mean growing season VPD eGEI Drought -0.112 0.9238 
All Inter-annual CV of growing season precipitation eGEI Drought 1.275 0.1972 

All Isothermality 
eSR - 
eGEI Cold 1.389 0.1666 

All SD monthly temperature 
eSR - 
eGEI Cold -2.580 0.0064 

All Minimum temperature of coldest month 
eSR - 
eGEI Cold -0.901 0.3702 

All Temperature annual range 
eSR - 
eGEI Cold -1.786 0.0750 

All Mean growing season temperature 
eSR - 
eGEI Cold -1.218 0.2200 

All Mean monthly minimum growing season temperature 
eSR - 
eGEI Cold -0.071 0.9300 

All CV monthly precipitation 
eSR - 
eGEI Drought -2.410 0.0166 

All Mean monthly growing season precipitation 
eSR - 
eGEI Drought -0.137 0.8940 

All CV monthly growing season precipitation 
eSR - 
eGEI Drought -2.042 0.0406 

All Mean growing season VPD 
eSR - 
eGEI Drought 0.091 0.9428 

All Inter-annual CV of growing season precipitation 
eSR - 
eGEI Drought -1.271 0.1982 

      Early-
flowering Isothermality eSR Cold -2.362 0.0168 
Early-
flowering SD monthly temperature eSR Cold -2.311 0.0198 
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Early-
flowering Minimum temperature of coldest month eSR Cold -2.661 0.0080 
Early-
flowering Temperature annual range eSR Cold -1.884 0.0622 
Early-
flowering Mean growing season temperature eSR Cold -3.176 0.0010 
Early-
flowering Mean monthly minimum growing season temperature eSR Cold -3.317 0.0012 
Early-
flowering CV monthly precipitation eSR Drought -1.115 0.2654 
Early-
flowering Mean monthly growing season precipitation eSR Drought -1.120 0.2664 
Early-
flowering CV monthly growing season precipitation eSR Drought -1.807 0.0760 
Early-
flowering Mean growing season VPD eSR Drought -0.289 0.7792 
Early-
flowering Inter-annual CV of growing season precipitation eSR Drought -1.760 0.0738 
Early-
flowering Isothermality eGEI Cold 2.123 0.0336 
Early-
flowering SD monthly temperature eGEI Cold 1.499 0.1296 
Early-
flowering Minimum temperature of coldest month eGEI Cold 1.629 0.1034 
Early-
flowering Temperature annual range eGEI Cold 1.878 0.0630 
Early-
flowering Mean growing season temperature eGEI Cold 1.890 0.0602 
Early-
flowering Mean monthly minimum growing season temperature eGEI Cold 2.320 0.0192 
Early-
flowering CV monthly precipitation eGEI Drought 1.757 0.0756 
Early-
flowering Mean monthly growing season precipitation eGEI Drought -0.639 0.5254 
Early-
flowering CV monthly growing season precipitation eGEI Drought 2.597 0.0146 
Early-
flowering Mean growing season VPD eGEI Drought 0.371 0.7124 
Early-
flowering Inter-annual CV of growing season precipitation eGEI Drought 2.283 0.0208 
Early-
flowering Isothermality 

eSR - 
eGEI Cold -2.612 0.0074 

Early-
flowering SD monthly temperature 

eSR - 
eGEI Cold -1.972 0.0482 

Early-
flowering Minimum temperature of coldest month 

eSR - 
eGEI Cold -2.186 0.0282 

Early-
flowering Temperature annual range 

eSR - 
eGEI Cold -2.257 0.0264 

Early-
flowering Mean growing season temperature 

eSR - 
eGEI Cold -2.546 0.0080 

Early-
flowering Mean monthly minimum growing season temperature 

eSR - 
eGEI Cold -3.024 0.0022 

Early-
flowering CV monthly precipitation 

eSR - 
eGEI Drought -2.020 0.0438 

Early-
flowering Mean monthly growing season precipitation 

eSR - 
eGEI Drought 0.287 0.7792 

Early-
flowering CV monthly growing season precipitation 

eSR - 
eGEI Drought -3.062 0.0024 

Early-
flowering Mean growing season VPD 

eSR - 
eGEI Drought -0.443 0.6520 

Early-
flowering Inter-annual CV of growing season precipitation 

eSR - 
eGEI Drought -2.721 0.0072 

      Late-flowering Isothermality eSR Cold 0.563 0.5738 
Late-flowering SD monthly temperature eSR Cold -0.192 0.8664 
Late-flowering Minimum temperature of coldest month eSR Cold 1.362 0.1750 
Late-flowering Temperature annual range eSR Cold -0.463 0.6390 
Late-flowering Mean growing season temperature eSR Cold -2.437 0.0138 
Late-flowering Mean monthly minimum growing season temperature eSR Cold -0.692 0.5016 
Late-flowering CV monthly precipitation eSR Drought 0.575 0.5682 
Late-flowering Mean monthly growing season precipitation eSR Drought -1.838 0.0668 
Late-flowering CV monthly growing season precipitation eSR Drought 0.043 0.9560 
Late-flowering Mean growing season VPD eSR Drought 0.506 0.6264 
Late-flowering Inter-annual CV of growing season precipitation eSR Drought -1.466 0.1500 
Late-flowering Isothermality eGEI Cold 0.865 0.3902 
Late-flowering SD monthly temperature eGEI Cold 1.692 0.1002 
Late-flowering Minimum temperature of coldest month eGEI Cold 1.501 0.1444 
Late-flowering Temperature annual range eGEI Cold 0.080 0.9276 
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Late-flowering Mean growing season temperature eGEI Cold -0.675 0.5098 
Late-flowering Mean monthly minimum growing season temperature eGEI Cold -1.024 0.3058 
Late-flowering CV monthly precipitation eGEI Drought 2.328 0.0182 
Late-flowering Mean monthly growing season precipitation eGEI Drought 1.345 0.1792 
Late-flowering CV monthly growing season precipitation eGEI Drought 1.629 0.1070 
Late-flowering Mean growing season VPD eGEI Drought 1.750 0.0800 
Late-flowering Inter-annual CV of growing season precipitation eGEI Drought 0.638 0.5278 

Late-flowering Isothermality 
eSR - 
eGEI Cold -0.693 0.4934 

Late-flowering SD monthly temperature 
eSR - 
eGEI Cold -1.762 0.0822 

Late-flowering Minimum temperature of coldest month 
eSR - 
eGEI Cold -1.085 0.2754 

Late-flowering Temperature annual range 
eSR - 
eGEI Cold -0.225 0.8264 

Late-flowering Mean growing season temperature 
eSR - 
eGEI Cold -0.086 0.9318 

Late-flowering Mean monthly minimum growing season temperature 
eSR - 
eGEI Cold 0.826 0.4122 

Late-flowering CV monthly precipitation 
eSR - 
eGEI Drought -2.161 0.0304 

Late-flowering Mean monthly growing season precipitation 
eSR - 
eGEI Drought -1.777 0.0796 

Late-flowering CV monthly growing season precipitation 
eSR - 
eGEI Drought -1.599 0.1118 

Late-flowering Mean growing season VPD 
eSR - 
eGEI Drought -1.583 0.1110 

Late-flowering Inter-annual CV of growing season precipitation 
eSR - 
eGEI Drought -0.971 0.3320 
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Table S3. Results for enrichment tests with fitness associations. Enrichments 366 

(frequency of genes in list having SNPs in the 5th percentile for p-values) are 367 

calculated as a z-score using the distribution from null permutations. Gene lists 368 

with significant enrichment of fitness variables are shown in bold. Tests were not 369 

stratified by flowering time because of limited sample size in fitness experiments. 370 

Fitness component Location Abiotic stress Gene list 
Frequency of 
significant  Permutation  

    
SNPs z-score test p 

      Survival Finland eGEI cold 0.20 0.8270 
Survival Finland eGEI drought 0.83 0.4052 
Survival Germany eGEI cold -0.56 0.5888 
Survival Germany eGEI drought 0.50 0.6102 
Survival Spain eGEI cold 1.07 0.2880 
Survival Spain eGEI drought 0.95 0.3414 
Survival UK eGEI cold -1.36 0.1712 
Survival UK eGEI drought -1.03 0.3028 
Survival Finland eSR cold -1.49 0.1382 
Survival Finland eSR drought 0.03 0.9692 
Survival Germany eSR cold -1.40 0.1604 
Survival Germany eSR drought -0.06 0.9422 
Survival Spain eSR cold -3.67 0.0008 
Survival Spain eSR drought -1.60 0.1066 
Survival UK eSR cold -2.92 0.0046 
Survival UK eSR drought -2.08 0.0360 
Survival Finland eSR - eGEI cold -0.70 0.4754 
Survival Finland eSR - eGEI drought -0.80 0.4112 
Survival Germany eSR - eGEI cold 0.08 0.9326 
Survival Germany eSR - eGEI drought -0.50 0.6026 
Survival Spain eSR - eGEI cold -2.36 0.0202 
Survival Spain eSR - eGEI drought -1.39 0.1638 
Survival UK eSR - eGEI cold 0.36 0.7152 
Survival UK eSR - eGEI drought 0.41 0.6794 

      Silique N Finland eGEI cold 0.49 0.6178 
Silique N Finland eGEI drought 0.60 0.5478 
Silique N Germany eGEI cold 1.05 0.2924 
Silique N Germany eGEI drought -0.16 0.8698 
Silique N Spain eGEI cold 0.50 0.6226 
Silique N Spain eGEI drought -0.80 0.4258 
Silique N UK eGEI cold 0.09 0.9384 
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Silique N UK eGEI drought -1.51 0.1282 
Silique N Finland eSR cold -2.19 0.0338 
Silique N Finland eSR drought -0.76 0.4478 
Silique N Germany eSR cold -0.12 0.9052 
Silique N Germany eSR drought -0.36 0.7028 
Silique N Spain eSR cold -1.13 0.2590 
Silique N Spain eSR drought -0.74 0.4630 
Silique N UK eSR cold -1.42 0.1556 
Silique N UK eSR drought -1.11 0.2626 
Silique N Finland eSR - eGEI cold -1.24 0.2232 
Silique N Finland eSR - eGEI drought -0.79 0.4336 
Silique N Germany eSR - eGEI cold -1.09 0.2784 
Silique N Germany eSR - eGEI drought 0.06 0.9570 
Silique N Spain eSR - eGEI cold -0.87 0.3738 
Silique N Spain eSR - eGEI drought 0.58 0.5632 
Silique N UK eSR - eGEI cold -0.57 0.5708 
Silique N UK eSR - eGEI drought 1.15 0.2506 

 371 
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Table S4. Results for enrichment tests with selection statistics based on 376 

resequencing of 80 accessions. The mean statistic for genes in each gene list, 377 

standardized to the null permutations, is shown as “Mean (z-score).” Gene lists 378 

with significant enrichment of selection statistics are shown in bold. Tests were 379 

conducted without stratifying by flowering time because resequencing data were 380 

from too few accessions. 381 

 382 

Statistic Gene list Abiotic stress Mean Permutation  

   

(enrichment z-
score) test p 

     Ka/Ks eSR Drought -15.76 <0.0002 

 
eSR Cold -16.35 <0.0002 

 
eGEI Drought -0.74 0.4651 

 
eGEI Cold -4.76 <0.0002 

 
eSR - eGEI Drought -3.93 0.0004 

 
eSR - eGEI Cold -1.03 0.3013 

     Promoter θ eSR Drought -3.560 0.0066 

 
eSR Cold -3.300 0.0329 

 
eGEI Drought 2.190 0.0248 

 
eGEI Cold 1.580 0.1181 

 
eSR - eGEI Drought -3.580 0.0042 

 
eSR - eGEI Cold -3.320 0.0043 
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Table S5. [attached .xls file] Table of accessions included in the various data sets 385 
analyzed in this study.  386 
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Table S6. Enrichment of gene lists for mean rank of motif counts (O’Brien 1984). 387 

The mean statistic for genes in each gene list, standardized to the null 388 

permutations, is shown as a z-score. For example, a z-score > 0 indicates the 389 

motif is more common in the gene list compared to random genes. Gene lists with 390 

a significant motif frequency are shown in bold. DRE/CBFs are read both forward 391 

and reverse (2d) or only one direction at a time (1d). 392 

 393 

Motif Treatment 
Mean eSR 
Z 

Mean eSR 
p 

Mean eGEI 
Z Mean eGEI p 

Mean eSR - 
Mean eGEI 
Z 

Mean eSR - 
Mean eGEI p 

        ABRE drought 5.86 <0.0002 0.48 0.6314 1.36 0.1754 
ABRE cold 1.91 0.0570 12.55 <0.0002 -2.89 0.0044 
DRE/CBF 
2d drought 2.87 0.0038 -1.69 0.0812 2.50 0.0124 
DRE/CBF 
2d cold 1.10 0.2682 3.00 0.0010 -0.05 0.9722 
DRE/CBF 
1d drought 3.24 0.0012 -0.81 0.4278 1.75 0.0748 
DRE/CBF 
1d cold 1.28 0.2108 1.24 0.2118 0.77 0.4370 

 394 

 395 
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Table S7. The enrichment of specific motifs in the promoters of genes with 398 

transcriptional plasticity. The mean statistic for genes in each gene list, 399 

standardized to the null permutations, is shown as a z-score. For example, a z-400 

score > 0 indicates the motif is more common in the gene list compared to random 401 

genes. Gene lists with a significant motif frequency are shown in bold. Core 402 

motifs are shown in bold. Gene lists with a significant motif frequency are shown 403 

in bold. DRE/CBFs are read both forward and reverse (2 directions) or only one 404 

direction at a time (F-forward or R-reverse). 405 

Motif Treatment 
Mean eSR 
Z 

Mean eSR 
p 

Mean eGEI 
Z 

Mean eGEI 
p 

Mean eSR - 
Mean eGEI 
Z 

Mean eSR - 
Mean eGEI 
p 

        ABREs 
       ACGT   drought 4.34 0.0000 0.42 0.6826 0.94 0.3602 

ACGT   cold 1.43 0.1516 9.53 0.0000 -2.25 0.0236 
ACACGTGG  drought 4.40 0.0000 0.49 0.5994 0.86 0.4034 
ACACGTGG  cold 1.20 0.2278 1.99 0.0496 0.42 0.6768 
ACGTG  drought 6.09 0.0000 0.32 0.7468 1.56 0.1224 
ACGTG  cold 2.21 0.0318 12.80 0.0000 -2.68 0.0072 
ACGTGG  drought 4.80 0.0000 -0.66 0.5254 2.10 0.0300 
ACGTGG  cold 1.84 0.0698 8.16 0.0000 -1.32 0.1840 
ACGTGT  drought 4.42 0.0000 0.78 0.4300 0.57 0.5628 
ACGTGT  cold 1.46 0.1460 9.18 0.0000 -1.93 0.0532 
CACGTG  Gbox drought 7.14 0.0000 -0.10 0.9252 2.28 0.0202 
CACGTG  Gbox cold 2.47 0.0156 10.70 0.0000 -1.54 0.1176 
CACGTT  TGbox drought -0.43 0.6742 -0.52 0.6108 0.38 0.7146 
CACGTT  TGbox cold -1.16 0.2444 0.00 0.9916 -1.12 0.2648 
CCACGTGG  drought 3.53 0.0006 0.56 0.5578 0.52 0.6110 
CCACGTGG  cold 1.09 0.2826 8.89 0.0000 -2.27 0.0184 

        DRE/CBFs 2 directions 
       GCCGAC CAGCCG   drought 3.24 0.0012 -1.88 0.0596 2.80 0.0032 

GCCGAC CAGCCG   cold 1.55 0.1178 2.97 0.0024 0.40 0.6906 
AGCCGAC CAGCCGA   drought 2.74 0.0068 -0.80 0.4338 1.61 0.0892 
AGCCGAC CAGCCGA   cold 0.70 0.4834 2.85 0.0060 -0.36 0.7304 
GGCCGAC CAGCCGG   drought -0.42 0.6836 -1.04 0.3010 0.89 0.3782 
GGCCGAC CAGCCGG   cold 0.69 0.4754 -0.14 0.8922 0.72 0.4624 

        DRE/CBFs 1 direction 
       GCCGAC  F drought 3.28 0.0004 -1.89 0.0526 2.82 0.0014 

GCCGAC  F cold 1.54 0.1252 2.96 0.0028 0.40 0.7006 
CAGCCG  R drought 1.66 0.0912 0.68 0.4868 -0.17 0.8594 
CAGCCG  R cold 1.10 0.2746 -4.71 0.0000 2.79 0.0066 
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AGCCGAC  F drought 2.75 0.0070 -0.82 0.4248 1.61 0.0916 
AGCCGAC  F cold 0.69 0.4924 2.85 0.0056 -0.38 0.7252 
CAGCCGA  R drought 1.75 0.0780 -1.61 0.0926 2.09 0.0262 
CAGCCGA  R cold 0.48 0.6102 2.51 0.0130 -0.45 0.6608 
CAGCCGG  R drought 0.62 0.5320 1.76 0.0908 -1.53 0.1330 
CAGCCGG  R cold 0.20 0.8102 -1.41 0.1578 0.71 0.4726 
GGCCGAC  F drought -0.42 0.6708 -1.04 0.3016 0.89 0.3832 
GGCCGAC  F cold 0.71 0.4680 -0.15 0.8916 0.73 0.4492 
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Table S8. Enrichment of gene lists for mean rank of variance in motif frequency 411 

among accessions. The mean statistic for genes in each gene list, standardized to 412 

the null permutations, is shown as a z-score. For example, a z-score > 0 indicates 413 

that genes having the motif have higher variance in motif frequency among 414 

accessions than expected. Gene lists with a significant motif frequency are shown 415 

in bold. Gene lists with a significant motif frequency are shown in bold. 416 

DRE/CBFs are read both forward and reverse (2d) or only one direction at a time 417 

(1d). 418 

 419 

 420 

 421 

Motif Treatment Var. eSR Z Var. eSR p Var. eGEI Z Var. eGEI p 
Var. eSR - 
Var. eGEI Z 

Var. eSR - Var. 
eGEI p 

        ABRE drought -7.08 <0.0002 2.16 0.0336 -4.48 <0.0002 
ABRE cold -3.38 0.0006 -0.64 0.5048 -2.93 0.0040 
DRE/CBF 
2d drought -1.13 0.2602 -1.42 0.1604 1.05 0.2920 
DRE/CBF 
2d cold -1.02 0.3154 -2.21 0.0270 -0.18 0.8542 
DRE/CBF 
1d drought -1.22 0.2192 -1.63 0.1008 1.22 0.2228 
DRE/CBF 
1d cold -1.21 0.2352 -0.61 0.5260 -0.94 0.3414 

 422 

 423 
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Table S9. Variance among accessions in the count of motifs. The mean statistic 426 

for genes in each gene list, standardized to the null permutations, is shown as a z-427 

score. For example, a z-score > 0 indicates that genes having the motif have 428 

higher variance in motif frequency among accessions than expected. Gene lists 429 

with a significant motif frequency are shown in bold. Core motifs are shown in 430 

bold. Gene lists with a significant motif frequency are shown in bold. DRE/CBFs 431 

are read both forward and reverse (2 directions) or only one direction at a time (F-432 

forward or R-reverse).  433 

  434 

Motif Treatment 
Var. eSR 
Z 

Var. eSR 
p 

Var. eGEI 
Z 

Var. 
eGEI p 

Var. eSR - 
Var. eGEI 
Z 

Var. eSR - 
Var. eGEI 
p 

        ABREs 
       ACGT   drought -5.11 0.0000 1.38 0.1800 -2.94 0.0060 

ACGT   cold -2.23 0.0164 3.18 0.0012 -3.39 0.0002 
ACACGTGG  drought -0.85 0.3996 2.25 0.0294 -2.43 0.0194 
ACACGTGG  cold -0.53 0.6140 -2.96 0.0034 0.55 0.5662 
ACGTG  drought -5.62 0.0000 -0.02 0.9886 -1.73 0.0974 
ACGTG  cold -2.14 0.0240 0.38 0.7190 -2.19 0.0242 
ACGTGG  drought -2.17 0.0258 -0.11 0.9406 -0.56 0.5646 
ACGTGG  cold -1.52 0.1082 -2.37 0.0126 -0.57 0.5882 
ACGTGT  drought -5.27 0.0000 0.33 0.7224 -1.89 0.0646 
ACGTGT  cold -1.84 0.0552 0.87 0.3668 -2.10 0.0292 
CACGTG  Gbox drought -2.92 0.0032 -0.24 0.8180 -0.63 0.5030 
CACGTG  Gbox cold -0.90 0.3624 -2.61 0.0056 0.10 0.8848 
CACGTT  TGbox drought -3.16 0.0010 3.43 0.0072 -4.29 0.0014 
CACGTT  TGbox cold -1.21 0.1942 -0.63 0.5492 -0.93 0.3494 
CCACGTGG  drought -0.16 0.8782 -0.55 0.6134 0.49 0.6476 
CCACGTGG  cold -0.62 0.5436 -2.64 0.0062 0.35 0.7016 

        DRE/CBFs 2 directions 
       GCCGAC CAGCCG   drought -0.70 0.4802 -1.90 0.0532 1.64 0.0972 

GCCGAC CAGCCG   cold -0.81 0.4248 -1.66 0.0992 -0.17 0.8694 
AGCCGAC CAGCCGA   drought -0.45 0.6556 -1.32 0.1548 1.17 0.2280 
AGCCGAC CAGCCGA   cold -0.26 0.8270 -2.42 0.0120 0.62 0.5240 
GGCCGAC CAGCCGG   drought -0.11 0.9070 -0.44 0.6736 0.40 0.7152 
GGCCGAC CAGCCGG   cold -0.47 0.6544 0.34 0.7248 -0.57 0.5762 

        DRE/CBFs 1 direction 
       GCCGAC  F drought -0.69 0.4912 -1.92 0.0448 1.66 0.0888 

GCCGAC  F cold -0.83 0.4154 -1.66 0.0944 -0.18 0.8630 
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CAGCCG  R drought -1.64 0.0972 -1.63 0.0770 1.08 0.2600 
CAGCCG  R cold -0.74 0.4748 0.06 0.9544 -0.74 0.4644 
AGCCGAC  F drought -0.43 0.6600 -1.33 0.1566 1.18 0.2296 
AGCCGAC  F cold -0.27 0.8110 -2.42 0.0144 0.62 0.5222 
CAGCCGA  R drought -1.81 0.0706 -2.94 0.0010 2.35 0.0094 
CAGCCGA  R cold -0.26 0.8228 -0.96 0.3280 0.09 0.9092 
CAGCCGG  R drought -1.19 0.2412 -0.79 0.4114 0.44 0.7154 
CAGCCGG  R cold -0.33 0.8080 0.57 0.5834 -0.52 0.6370 
GGCCGAC  F drought -0.12 0.9064 -0.45 0.6656 0.41 0.7034 
GGCCGAC  F cold -0.47 0.6624 0.33 0.7292 -0.57 0.5808 

 435 

 436 

 437 
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Table S10.  Flowering time experiments used to fit a SNP-based model of 440 

flowering time category. 441 

 442 

 443 

 444 

  445 

Reference Photoperiod Natural light conditions Notes
(hrs)

Zhao et al. 2007 16 n/a 18 167
Zhao et al. 2007 8 n/a 18 162
Atwell et al. 2010 16 n/a 10 194
Atwell et al. 2010 16 n/a 16 193
Atwell et al. 2010 16 n/a 22 193
Zhao et al. 2007 16 n/a 23 137
Shindo et al. 2005 n/a 52º37' N, Oct. – March 20-22 153
Atwell et al. 2010 16 n/a 20 166
Li et al. 2010 n/a 41º43' N, March.-July 5-27 445 simulated natural day length and temperature
Li et al. 2010 n/a 55º43' N, May – Sep. 5-21 445 simulated natural day length and temperature
Li et al. 2010 n/a 41º43' N, Apr. – Sep. 7-28 445 simulated natural day length and temperature
Li et al. 2010 n/a 55º43' N, June – Nov. 5-21 445 simulated natural day length and temperature

16 n/a 18-22 205 drought stress applied to half of individuals

Temp. (ºC) N accessions

Kenney et al. In prep.
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Figure S1. Coding regions of eSR (blue) and eGEI (red) genes from a cold-446 

acclimation experiment (Hannah et al. 2006) mapped across the genome. Genes 447 

that are both eSR and eGEI are shown in purple. A small border is added to each 448 

gene to improve visibility.  449 
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Figure S2. Coding regions of eSR (blue) and eGEI (red) genes from a drought 451 

experiment (Des Marais et al. 2012) mapped across the genome. Genes that are 452 

both eSR and eGEI are shown in purple. A small border is added to each gene to 453 

improve visibility.  454 
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Figure S3. Schematic of permutation tests for enrichment. Representation of 456 

permutation tests for enrichment of eSR and eGEI gene sets with SNP 457 

associations to climate, fitness, or selection statistics. 1. GWAS statistics for 458 

SNPs (red) within a window where a moving average of correlation r among SNP 459 

state is > 3 are identified. 2. The observed enrichment test statistic is calculated as 460 

the proportion of genes in that set (step 1) that have a SNP with a climate, fitness, 461 

or selection statistic in the 0.05 tail of lowest p-values. 3. This proportion is then 462 

compared to a null distribution generated from randomly permuted gene sets with 463 

the same number of genes as the observed set. 464 
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Figure S4. Reaction norm of flowering time across 13 published experiments 466 

(Table S10). Lines connect accessions and open circles represent accessions not 467 

present in the adjoining experiments in the figure. Green accessions are those 468 

classified as late-flowering and blue are early-flowering. Closed black circles 469 

represent cluster means used to define early versus late-flowering groups in k-470 

means clustering conducted on accessions present in all experiments. 471 
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Figure S5. The enrichment of candidate gene sets with associations to fitness 475 

variables. Observed enrichments are calculated as a z-score using the distribution 476 

from null permutations. Enrichment of eSR genes is shown in blue, while eGEI 477 

genes are shown in red. Null permutations are shown as small gray dots ('o' p < 478 

0.1, '*' p < 0.05, '**' p < 0.01, '***' p < 0.005).  479 

 480 
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Figure S6. Quantile-quantile plots for climate association t-statistics for early-482 

flowering accessions. Observed distributions (y-axis) are compared with a 483 

theoretical normal distribution (x-axis). 484 
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 43 

Figure S7. Quantile-quantile plots for climate association t-statistics for late-486 

flowering accessions. Observed distributions (y-axis) are compared with a 487 

theoretical normal distribution (x-axis). 488 
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Figure S8. Quantile-quantile plots for climate association t-statistics for all 490 

accessions combined. Observed distributions (y-axis) are compared with a 491 

theoretical normal distribution (x-axis). 492 
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Figure S9. Quantile-quantile plots for fitness association t-statistics. Observed 494 

distributions (y-axis) are compared with a theoretical normal distribution (x-axis). 495 

 496 

 497 
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 48 

Climate outliers removed 499 

Two high-altitude outlier accessions were removed, Kas-2 and Pi-2. The plots 500 

below show the distribution of climate data for the remaining accessions. Red 501 

lines indicate the boundary between accessions used in association mapping and 502 

outliers excluded. 503 

Among all accessions 504 

CV monthly precipitation, accessions removed: Shahdara, Kondara, Sorbo 505 

SD monthly temperature, accessions removed: Kz-1, Kz-9, Per-1, Rubezhnoe-1, 506 

Stw-0 507 

Minimum temperature coldest month, accessions removed:  Kz-1, Kz-9, Per-1 508 

Temperature annual range, accessions removed: Kz-1, Kz-9 509 

Mean growing season precipitation, accessions removed: Ka-0, Oy-0, Ty-0, Ty-1, 510 

UKID115, UKID120 511 

CV growing season precipitation, accessions removed: Kondara 512 

Mean growing season VPD, accessions removed: Lag-1-6 513 

Interannual CV growing season precipitation, accessions removed: Ayu-Dag-3, 514 

Kondara, Kz-1, Kz-9, Shahdara, Sorbo 515 

All other climate variables had no outliers 516 

 517 
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 49 

Figure S10. Distributions of climate variables among panels with both early and 519 

late-flowering accessions combined. Red lines show outlier thresholds. 520 
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 51 

Among early-flowering accessions 522 

CV monthly precipitation, accessions removed: Shahdara, Kondara, Sorbo 523 

SD monthly temperature, accessions removed: Kz-1, Kz-9, Per-1, Rubezhnoe-1, 524 

Stw-0 525 

Minimum temperature coldest month, accessions removed:  Kz-1, Kz-9, Per-1 526 

Temperature annual range, accessions removed: Kz-1, Kz-9, Per-1 527 

Mean growing season precipitation, accessions removed: Ka-0, Oy-0, Ty-0 528 

CV growing season precipitation, accessions removed: Kondara 529 

Mean growing season temperature, accessions removed: Lag-1-6 530 

Mean monthly minimum growing season temperature, accessions removed: Alc-531 

0, Ka-0, Kz-1, Kz-9  532 

Mean growing season VPD, accessions removed: Lag-1-6 533 

Interannual CV growing season precipitation, accessions removed: Ayu-Dag-3, 534 

Kondara, Kz-1, Kz-9, Shahdara, Sorbo 535 

All other climate variables had no outliers 536 
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 52 

Figure S11. Distributions of climate variables among panels with early-flowering 538 

accessions. Red lines show outlier thresholds. 539 
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 54 

Among late-flowering accessions 541 

Mean growing season precipitation, accessions removed: Ty-1, UKID115, 542 

UKID120 543 

Mean growing season temperature, accessions removed: Blh-1, Blh-2, Mc-0, 544 

UKID115, UKID120 545 

Mean monthly minimum growing season temperature, accessions removed: Mc-0 546 

Mean growing season VPD, accessions removed: Blh-1 Blh-2 547 

All other climate variables had no outliers 548 

 549 

 550 

 551 

 552 
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 55 

Figure S12. Distributions of climate variables among panels with late-flowering 555 

accessions. Red lines show outlier thresholds. 556 
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