Supplementary Table 1. List of 25 genes found with the parallel mutation strategy together with their possible role in aging based on previous studies.

Gene	Organism in GenAge	Previous association to aging or related traits	References
AKAP9			
ATG7	D. melanogaster and C. elegans	Pro-longevity	
BRD8			
C1QTNF2		Weight loss	Hatoum et al. 2013
C9orf96/STKLD1			
DSC2		Dilated cardiomyopathy	
EFEMP2			
FCGBP			
FGA		Blood fibrinogen levels	
GP5			
HEMK1			
IQCK	-	Associated to BMI	Spelliotes et al. 2010
KIAA1614			
KLKB1		Blood pressure	
MNT	D. melanogaster	Pro-longevity	
MYO16	-	Age of onset in Alzheimer Disease Red blood cell count	Herold et al. 2016 Astle WJ et al. 2016
MYOF	-	Associated to muscle repair Epigenetically modified by aging	Demontis et al. 2013 Benton et al. 2017
PLTP	-	HDL levels	Global Lipids Genetics Consortium et al. 2013
PRL	-	Ames dwarf mice lacking PRL, GH and TSH live much longer than their normal siblings and exhibit many symptoms of delayed aging	Brown-Borg et al. 1996
RAD51AP1	-	double-strand break repair correlated to aging important player in the cellular senescence of yeast	Lorenzini et al. 2009 Park et al. 1999
RXFP4			
STK31	-	Age of onset in Alzheimer Disease	Mez et al. 2017
SUPV3L1	S. cerevisae	Anti-longevity	
WDR87			
ZNF233			

Supplementary Table 2. Each of the 25 amino-acid changes were assessed in three mammal longlived species. The same change in the "Increased Lifespan" group was evaluated in these species and reported in the last column. NA: not available in the 100 -way alignment. None: The long-lived species showed the reference amino-acid.

Gene	Reference	Parallel change	Long-lived not reference
AKAP9	V	I	N.A.
ATG7	A	T	N.A.
BRD8	R	Q	N.A.
C1QTNF2	A	T	N.A.
C9orf96	V	L	hetGla2, myoDav1
DSC2	V	I	hetGla2
EFEMP2	V	I	None
FCGBP	V	A	N.A.
FGA	A	V	myoDav2, myoLuc2
GP5	H	Q	hetGla2
HEMK1	Q	R	N.A.
IQCK	N	D	hetGla2*
KIAA1614	M	V	N.A.
KLKB1	T	A	myoDav2, myoLuc2
MNT	T	A	hetGla2*
MYO16	M	I	hetGla2, myoDav1, myoLuc2
MYOF	P	L	hetGla2
PLTP	P	T	None
PRL	I	M	myoDav2*, myoLuc2*
RAD51AP1	V	A	hetGla2*
RXFP4	V	A	N.A.
STK31	Y	C	myoDav2*, myoLuc2*
SUPV3L1	T	M	None
WDR87	V	I	None
ZNF233	R	Q	N.A.

[^0]Supplementary Table 3.Top significant genes ($\mathrm{p}=9 \mathrm{e}-05$) from the 5 life-history traits assessed. The genes marginally significant after FDR ($\mathrm{q}<0.1$) are highlighted in bold. Last column shows whether the gene has been previously described in relation to aging in GenAge databases and in which one.

Trait	P-value	FDR corrected p -vaue (BH)	Gene	GenAge
MLS	$3.7 \mathrm{e}-06$	$\mathbf{0 . 0 6}$	STK17B	-
MLS	$4.6 \mathrm{e}-05$	0.37	ITPR1	model org., human
Female Maturity	$2.6 \mathrm{e}-05$	0.30	HSPB6	model org.
Female Maturity	$3.8 \mathrm{e}-05$	0.30	COX5B	human, model.org
Female Maturity	$6.7 \mathrm{e}-05$	0.38	MYL2	-
Female Maturity	$8.3 \mathrm{e}-05$	0.38	SLC38A5	-
Gestation Length	$3 \mathrm{e}-06$	$\mathbf{0 . 0 4}$	IQCA1	-
Gestation Length	$3 \mathrm{e}-05$	0.15	TRIB2	-
Gestation Length	$3.7 \mathrm{e}-05$	0.15	FBXO38	-
Gestation Length	$3.8 \mathrm{e}-05$	0.15	MEF2D	model org.
Gestation Length	$6.1 \mathrm{e}-05$	0.19	SLC10A1	-
Weaning Time	$1 \mathrm{e}-05$	0.14	TMEM182	-
Weaning Time	$2.8 \mathrm{e}-05$	0.14	JARID2	-
Weaning Time	$3.6 \mathrm{e}-05$	0.14	AP4M1	model org.
Weaning Time	$4.8 \mathrm{e}-05$	0.14	PRDX1	human, model org.
Weaning Time	$5.6 \mathrm{e}-05$	0.14	POLR1D	-
Weaning Time	$5.5 \mathrm{e}-05$	0.14	S100A2	-
Weaning Time	$5.6 \mathrm{e}-05$	0.14	GFAP	Longevity.Map
Weaning Time	$6.2 \mathrm{e}-05$	0.14	CHD4	model org.
Body Mass	$\mathbf{4 . 1 e - 0 6}$	$\mathbf{0 . 0 6}$	CDC7	-
Body Mass	$\mathbf{1 . 4 e - 0 5}$	$\mathbf{0 . 0 9}$	PER3	Longevity.Map
Body Mass	$\mathbf{1 . 8 e - 0 5 ~}$	$\mathbf{0 . 0 9}$	SPRRG2	-
Body Mass	$6.2 \mathrm{e}-05$	0.2	KLHL9	-
Body Mass	$6.5 \mathrm{e}-05$	0.2	ENO3	-
Body Mass	$8.17 \mathrm{e}-05$	0.2	FANCD2OS	-
Body Mass	$9.3 \mathrm{e}-05$	0.2	-	

Supplementary Table 4. FDR corrected p-values (within mitochondrial genes) of PGLS association between each mitochondrial gene and each of the assessed life-history traits. Lower table represents PGLS p-values of gene root-to-tip omegas including mitochondrial-wide omegas as covariate. Results shown in the upper part of the table did not include mitochondrial-wide omegas as covariate in the PGLS.

Without mitocondrial-wide omegas					
	MaximumLongevity	AdultWeight	FemaleMaturity	Gestation	Weaning
ATP6	0,040	$4.72 \mathrm{e}-10$	0,367	1,000	0,255
ATP8	0,905	0,242	0,389	1,000	0,939
COX1	0,374	NA	0,572	1,000	0,939
COX2	0,338	0,242	0,367	1,000	0,489
COX3	0,034	0,281	1,000	1,000	0,760
CYTB	0,006	0,242	0,236	1,000	0,105
ND1	0,034	0,047	0,980	1,000	0,358
ND2	0,338	0,242	NA	1,000	0,765
ND3	0,338	0,505	0,572	1,000	0,340
ND4	0,302	0,242	1,000	1,000	0,806
ND4L	0,338	0,242	NA	1,000	0,810
ND5	0,124	0,242	0,367	1,000	0,358
ND6	0,726	0,599	NA	1,000	0,939
With mitocondrial-wide omegas					
	MaximumLongevity	AdultWeight	FemaleMaturity	Gestation	Weaning
ATP6	0,916	2,20E-06	0,800	0,477	0,893
ATP8	0,916	0,763	0,745	0,477	0,893
COX1	0,916	NA	0,836	0,477	0,893
COX2	0,916	0,980	0,800	0,949	0,893
COX3	0,916	0,980	0,800	0,611	0,893
СYTB	0,916	0,980	0,745	0,638	0,893
ND1	0,916	0,673	0,800	0,761	0,893
ND2	0,916	0,965	0,800	0,617	0,893
ND3	0,916	0,980	0,824	0,611	0,893
ND4	0,916	0,980	0,800	0,611	0,893
ND4L	0,916	0,980	0,745	0,477	0,893
ND5	0,916	0,980	0,800	0,623	0,893
ND6	0,932	0,980	0,800	0,477	0,893

Supplementary Table 5. Life history data used. In gray, species present in the UCSC alignment.

Species	UCSC version	Family	MLS (y)	LQ	Body weight (g)	Female maturity (d)	Gestation (d)	Weaning (d)
Homo sapiens	hg38	Hominidae	122.5	4.6	62035	4745	280	639
Pan troglodytes	panTro4	Hominidae	59.4	2.4	44983.5	3376	229	1111
Pan paniscus	panPan1	Hominidae	55	2.2	39925	3194	232	635
Gorilla gorilla	gorGor3	Hominidae	55.4	1.9	139842	2829	256	834
Pongo abelii	ponAbe2	Hominidae	58	2.2	55000	4380	227	1440
Nomascus leucogenys	nomLeu3	Hylobatidae	44.1	2.4	6000	2555	210	720
Macaca mulatta	rheMac3	Cercopithecidae	40	2.1	8235	1231	165	292
Macaca fascicularis	macFas5	Cercopithecidae	39	2.1	6362.5	1238	165	242
Papio anubis	papAnu2	Cercopithecidae	25.2	1.2	17730	2555	178.96	420
Chlorocebus sabaeus	chlSab2	Cercopithecidae	13	0.7	5620	730	165	365
Nasalis larvatus	nasLar1	Cercopithecidae	25.1	1.2	14617.5	1460	166	213
Rhinopithecus roxellana	rhiRox1	Cercopithecidae	29.5	1.4	14750	1642.5	195	365
Callithrix jacchus	calJac3	Callitrichidae	22.8	2	255.2	477	144	62
Saimiri boliviensis	saiBol1	Cebidae	30.3	2.3	615	1000.3	158	150
Tarsius syrichta	tarSyr2	Tarsiidae	16	1.6	119.2	547.5	179	83
Microcebus murinus	micMur1	Cheirogaleidae	18.2	2	64.8	243	61	37
Otolemur garnettii	otoGar3	Galagonidae	18.3	1.3	1300	600	132	140
Cercocebus atys	Caty	Cercopithecidae	26.8	1.4	8600	1650	167	300
Colobus angolensis	Cang	Cercopithecidae	35.3	1.8	8625	700	162.5	450
Macaca nemestrina	Mnem	Cercopithecidae	37.6	2	7912.5	1125	172	324
Mandrillus leucophaeus	Mleu	Cercopithecidae	39	1.8	18250	1277	179	487
Rhinopithecus bieti	Rbie	Cercopithecidae	NA	NA	9960	NA	NA	NA
Propithecus coquereli	Pcoq	Indridae	31	1.8	4190	1277	141	180.96
Aotus nancymaae	Anan	Cebidae	16	1.2	788	211	133	13
Cebus capucinus	Ccap	Cebidae	54	3.3	2655	1505	162	521

Supplementary Table 6. Number of genes and species per each gene alignment after applying the pipeline for including the new 8 primate species. In gray, the number of gene alignments that include more than 17 primate species.

$№$ species	№ of genes
2	37
3	64
4	87
5	107
6	133
7	204
8	263
9	380
10	458
11	673
12	800
13	938
14	1055
15	1269
16	1386
17	1255
18	1170
19	1329
20	1442
21	1418
22	1371
23	986
24	646
25	192

Supplementary Table 7. GO terms selected for each of the molecular hallmarks of aging (LópezOtín, 2013).

Hallmark of Aging	GO terms included
Genomic Instability	DNA repair (GO:0006281) Nuclear lamina (GO:00005652)
Telomere Attrition	Telomere maintenance (GO:0000723) Telomere capping (GO:0016233)
Epigenetic Alterations	Histone modification (GO:0016570) DNA methylation (GO:0006306) Chromatine remodeling (GO:0006338)
Loss of Proteostasis	Chaperone-mediated protein folding (GO:0061077) Autophagy (GO:0006914) Ubiquitin-proteasome system (GO:0043161)
Deregulated Nutrient Sensing	Insulin receptor signaling Pathway (GO:0008286) TOR signaling (GO:0031929)
Mitochondrial Dysfunction	Response to ROS (GO:0000302) Mitochondrial genome maintenance (GO:0000002)
Cellular senescence	Cellular senescence (GO:0090398)
Stem Cell Exhaustion	Stem cell proliferation (GO:0072089)
Altered Intracellular Communication	Inflammatory response (GO:0006954) Inflammasome complex (GO:0061702)

Supplementary Figures Legends

Supplementary Figure 1. Spearman correlations between all life-history traits used in the study.

Supplementary Figure 2. Sequential threshold selection from 0 to 2 standard deviations from the family mean. In every interval from 0.6 to 1.4 standard deviations, the same 3 species were included in the Increased Lifespan group, suggesting that this grouping was the more consistent across several cut-offs (Results). Nonetheless, we performed the analyses selecting 0.5 (less stringent) and 1.5 standard deviations (more stringent) thresholds, which modified the number of included species in the Increased Lifespan group to 4 (addition of Callythrix jacchus) and 2 (drop of Macaca fascicularis), respectively. Using a soft cut-off of 0.5 SD , only one gene was found: a change in Q497R residue affecting the CNTN5 gene. Interestingly, this gene is found in the LongevityMap database. Using a threshold of 1.5 SD, only 11 genes were found to harbor parallel changes within Homo sapiens and Macaca mulatta compared to the Control group. These genes were slightly enriched in musculoskeletal abnormalities and diseases (adjP=0.0126). Among them, one gene (COL6A3) was also present in the LongevityMap database.

Supplementary Figure 3. Multiple alignment of each gene discovered in the parallel mutation approach across the 17 primate species. White: non-conserved; purple: similar; blue:>50\% conserved amino-acid.

Supplemental Figure 4. Distribution of parallel mutations in the test groups from a random sampling in the 17 species tree. Each column represent a different sampling protocol, described in methods. Red triangles show the empirical number of parallel differences observed between hg38, macFas5 and rheMac3.

Supplementary Figure 5. Venn diagram showing the number of overlapping genes between the list of 25 parallel mutated genes (Common), the list of human aging genes downloaded from GenAge (Human), the list of aging genes in model animals downloaded from GenAge (Models), the set corresponding to human genetic variants associated with longevity also downloaded from AnAge genes (Longevity), and the gene set from mortality/aging GO term (GO). All lists of genes were obtained on $06 / 14 / 2016$. Note that three genes (ATG7, MNT and SUPV3L1) from the discovered gene set were present in another Aging gene list (Models).

Supplemental Figure 6. Phylogenetic regressions of primate life-history traits and genome-wide omega. P-values for the PGLS regression are displayed inside each plot. Note that only gestation length was significantly correlated to the genome-wide omega value.

Supplemental Figure 7. Correlation between p-values obtained in the PGLS regression using three different species trees. UCSC tree was downloaded from the 20-way alignment data (ucsc); chronogram (chrono) and phylogram (phylo) trees were downloaded from 10KTrees webpage. Notice that all the analyses in this study were performed using the chronogram tree from 10kTrees.

Supplemental Figure 8. The number of overlapping occurrences between MLS, weaning time, gestation and female maturity (in red) and body mass (in blue) are plotted together with a random distribution of $4 / 5$ bootstrapped phenotypes 1000 times. The number of overlapping significant genes is much higher than expected in the studied phenotypes.

Supplementary Figure 9. A) Heat map of GO, KEGG, Pathway Commons and diseases enrichment created using the enrichment analysis of overlapping significant genes between the 4 phenotypes (first column), genes showing a p-value <0.01 in at least three life-history traits (2nd column) and genes showing a p-value <0.01 in MLS, weaning time, female maturity and gestation length. B) Venn diagram of the genes with a p-value < 0.01 in the assessed life-history traits. C) Venn Diagram of significant genes (p-value<0.05) excluding body mass.

Supplementary Figure 10. Correlation plots between phenotype data from AnAge and ADW databases regarding four representative traits.

Supplementary Figure 11. A) Species included in the Increased Lifespan group are shown in red in the phylogenetic tree. Illustrations of the four levels of bootstrap to evaluate the significance in the number of parallel mutations are displayed in the figures: B) In the first level, shared mutations were evaluated within any possible grouping of 3 primate species (in yellow). C) In the second level, combinations of two Cercopithecidade (yellow) and one outgrup (green) were assessed for shared mutations. D) Third resampling consisted in combinations of two Cercopithecidae (yellow) and one Hominidae (green). E) Finally, combinations of two Cercopithecidae species (in yellow) plus Homo sapiens (in red) were evaluated. F) Phylogenetic tree including the new primates used. Species that were included in the Increased Lifespan group are shown in red.

Supplementary Figure 12. Violin plots showing the minimum number of species every mitochondrial gene needed to calculate λ correctly using the Pagel's λ method from nlme package. Distributions represent the maximum number of species used before an error appeared in calculating lambda (100 bootstraps of random subtraction of one specie without replacement). Roughly, when having less than 40 species it is not adequate to use Pagel's λ method and then, Brownian motion method should be prioritized.

MLS		\square			
0.78	Female Mat.				
0.64	0.74	Gestation			
0.67	0.71	0.68	Weaning		
0.56	0.59	0.53	0.51	Weight	
0.83	0.46	0.35	0.41	0.2	LQ

Suppl. Figure 3

AKAP9		ATG7			BRD8			C1QTNF2			C9orf96			DSC2			
cal Jac3		3880	caljac3		25	cal Jac3		1205		$\operatorname{COA} A(G) A A A$				28			
saiBol1	RRLGTVGSGST	3879	saiBol1	Silisgatienp	125	saiBol1	burrevlept	1128	${ }_{\text {pantro4 }}^{\text {panPan1 }}$	Cligpalgeat	15 15	${ }_{\text {chaibold }}$	HMTFVSGSFk	${ }_{303}^{288}$	calJac3	[GEVTVDEN	525
hg38	RRLGT LSSGST	3890	hg38	KSGTALENP	125	rheMac3	EMRQELLEPIC	1205		CLCPALG	5	rhemac	HTFLSGSF	${ }^{303}$	saiBol1 rheMac3	WVTVDE	525 502
${ }_{\text {gorchor3 }}$	${ }_{\text {RRLLGTVGSCST }}$	3814 3890	${ }_{\text {pon }}^{\text {ponAbe2 }}$	STKSGAALENP	$\begin{array}{r}125 \\ 85 \\ \hline\end{array}$	mackas	Eurievleal.	1088	rheMac3	clegt	15	macFas	FVS	${ }_{303}^{303}$	${ }_{\text {macFas5 }}$	TGNVT DD	525
panPan1	RRLGTVQSGST	3833	panPan1	Stikscaalenp	125	rhiRox1	evrreviea	1205	${ }_{\text {macFass }}^{\text {mapAnu2 }}$	CLEGP ALICPAAAA	${ }_{15}^{15}$	${ }_{\text {chilsab2 }}$	HITFVSGSFKS	${ }_{303}$	papanu2	cewvivd	525
ponabe 2	RRLGTVGSGST	3751	gorGor3	STKSGAALENP	125 125	${ }_{\text {papanu2 }}$	$\frac{\text { RrevLe }}{\text { RREVLE }}$	${ }_{1205}^{1205}$	cail Jac3	palgpa	15	nasLar 1	IITPVSGSE	${ }_{3}^{263}$	nasLar1	IGGVTVDEN	525
nomLeu3 rheMac3	RRLGTVGS	${ }_{3875}^{3886}$	${ }_{\text {chen }}^{\text {nomLeu3 }}$	SITKSAALENP	${ }_{125}^{125}$	${ }_{\text {ch38 }}$	EMRIQEVLEC	${ }_{1205}^{1205}$	saiBol1	clegalegana	15	rhiRox1	HITPVSGSFS	303 303	rhiRox1	VDEN	${ }_{5}^{525}$
${ }_{\text {macFas5 }}$	RRLGT MSGST	3890	papAnu2	STKSGAALENP	125	gorGor3	Eurreviba	1112	${ }_{\text {chasLar1 }}$	clgralg ana	${ }_{15}^{15}$	${ }_{\text {gorGor }}$	Hitrvig	${ }_{303}$	${ }_{\text {panTr }}$ pat	[GNVTVDEs	525 525
papAnu2		3889	rheMac3	STKSGTALEPP	125	panTro4	Burrevieg	${ }^{1225}$	rhiRox1	clepplagraa	15	panpan 1	HITTVRES	303 303	${ }_{\text {hg }}$	TGWVTDE	525
${ }_{\text {chisab }}$		3890 3809	${ }^{\text {mactas }}$	SIKSGAALENP	${ }_{125}$	${ }_{\text {pren }}^{\text {panAane2 }}$	Eurrevleqia	${ }_{1205}^{1205}$	${ }_{\text {hg38 }}^{\text {nomleu3 }}$	CLGPTLCPAAA CLGPALGPAAA	15 15	${ }_{\text {ngen }}^{\text {ng38 }}$		388 288	${ }_{\text {gorcor }}$ gonde2	TGWVTVDE)	525 525
rhiRox 1	RRLGTVQSGST	3888	rhiRox1	STKSGAALENP	125	${ }_{\text {nomLeu3 }}$	burrevienia	1198	gorcor3	clgralgpaAd	15	nomileu3	HITTVRGS	${ }^{214}$	nomieu3	tavvivde	525
${ }_{\text {tarsyr }}$	Rrictvasgsi	3878	${ }_{\substack{\text { tarsyr2 } \\ \text { micMur1 }}}$	sinscaternp	125 111	${ }_{\substack{\text { tarsyr2 } \\ \text { micMur1 }}}^{\text {cel }}$	EMOREVLEDİ	${ }_{868}^{1203}$	michur	CLGPA WPAAA	${ }^{14}$	tarsyr 2	HSTPVSSFKS	${ }^{303}$	micMur1 $^{\text {cen }}$		${ }_{5}^{444}$
OtoGar3	RRLGTVGSGSI	3824	${ }_{0}$ OtoGar3	EiKschaibin	125	otoGar3	[uabevlepia	1201	tarSyr2	CLGPA	${ }_{9}^{14}$	otocar3	DITFVKNEFSS	${ }_{303}^{234}$	${ }_{\text {tarsyr2 }}^{\text {otoGar3 }}$	KGKVIVDENS	${ }_{473}^{525}$
EFEMP2		FGA			GP5			HEMK1			IQCK			KIAA1614			
	NHR V/IEDODE																
nomLeu3	MYRCVWEPGR	265	calJac3	RLQKAPPEEWRA	250	$1 \mathrm{Jac3}$	Cumsec	75	calJac3	QCIOELSSRRM	105	cal Jac3 sai Bol1	RPSSSAANSSFT		caljac3	ampmiderisay	
${ }_{\text {chlisab2 }}^{\text {char }}$	QYRCVNEPGR	265 265	${ }_{\text {sh38 }}^{\text {saibol1 }}$		${ }_{250}^{250}$	Saibol1 nasLar1	LQNHSFSG	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\underset{\substack{\text { saibol1 } \\ \text { rhellac3 }}}{ }$	QCIQELSS	105 105	${ }_{\text {chen }}^{\text {panTro4 }}$	KPSSCTNSET	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	saibol1 rheMac3	${ }_{\text {a }}^{\text {ARAPMPMERISAV }}$ R	18 18
ponAbe2	gYacvsepg	264	gorGor3	QLQRAPP	250	rhiRox 1	Lomisfscmi	75	macFas5	QCIRELSS	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	anPan1	KPSCSTNSSFT	${ }_{25}^{25}$	macFas5	RASPVEGTSAV	35
${ }_{\text {pantrou }}^{\text {panfen }}$		265 265	${ }_{\text {pantron }}^{\text {panPant }}$	QLQKAPPEWKA	250 250	macFass rheMac3	LOMGSFSCMT	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	${ }_{\text {papan }}^{\text {paph }}$	MCIQELSSR	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	gorgor3	KPSCFTTS	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	${ }_{\text {papanu2 }}$	Raspmbersav	${ }_{35}^{35}$
hy38	QYRC NEPGR	265	ponAbe2	glikappewra	250	papAnu2	LOMASFSGMT	75	nasLar1	Ciciexssp	57	rhemac3	KPSCSTDSS	25	nasLar1	RASXMECTSAV	18
nasLar1 rhi Rox 1		154 265	nomLeu3 nasLar1	QLqKappew	250 250	${ }_{\text {chis }}^{\text {chisab2 }}$	HSFSGMT	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	${ }_{\text {rhinox }}$ Poonde	MCIOELSSR	105 105	${ }^{\text {macrass }}$ papanu2	KPSCSTNSSE	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	${ }_{\text {rhir }}^{\text {rhirax }}$	Raspmetisay	35 35
papAnu2	gyrcvnepg	265	rhiRox1	QLQEAPPE	${ }^{250}$	panpan 1	LOS Sisfscmi	75	nomleu3	OCIQELSSRRI	105	nastar 1	KPSCSTNS	25	gorGor3	TASPMEC	35
${ }_{\text {coile }}^{\text {caijac3 }}$		265 265	rheMac3 macFas5	QLQEVYPPPWEWA	${ }_{250}^{250}$	${ }_{\text {gorGor3 }}$	qsFsg	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	${ }_{\text {pantron }}^{\text {panPan }}$	GCiqelsshril	76 105	${ }_{\text {rhincab2 }}$	KPSCSTNSSFT	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	${ }_{\text {hanfan }}^{\text {ha }}$	TASPVEGTSAV	35 18
rheMac3	QYRC NEPGR	265	рарAnu2	DLQKASPEWKA	250	ponAbe2	sFscmi	75	gorcor3		105	ponabe2	KPSCSTNSS	25	ponAbe2	taspmegtsav	35
${ }_{\text {mack }}^{\text {macas }}$ tarsyr2		${ }_{265}^{260}$	${ }_{\text {charsyr2 }}$	QLotataplewan	250 250	${ }_{\text {n }}{ }_{\text {nomileu3 }}$	SSEVMMTV	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	${ }_{\text {Larsyr2 }}$	CCIRELSSR	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	${ }_{\text {tarSyr2 }}$	ELSCSANSS	$\begin{aligned} & 25 \\ & 24 \end{aligned}$	${ }_{\text {nomileu3 }}$	RASPMEGEMNSHV	18
3	*		r1	QLQRAPPEEKA	250	101					105			21	Mur 1		
micMur 1	QYRCVNEPGRF	211	otoGar3	QLQKAPPEWRA	250	otoGar3		75	otocar3	kciqelsmbri	105	toGar3	EPSGSGMSSLI	25	otoGar3	rampmevtisav	35
KLKB1		MYO16			mYoF			PLTP			PRL			RAD51AP1			
																ASHADOMOHSH	
calJac3	YENTfFRGGD		calJac3	LLCNMSIRM	1175	calJac3	PNDPSGPSV	$\begin{aligned} & 140 \\ & 100 \end{aligned}$	calJac3 saiBol1	ASTAPPPSTAA	396	caljac3 saiBol1	MaDISQKDFLS	1110	${ }_{\text {tarSyr }}$	MASKAAVQdRR	165 53
${ }_{\text {sain }}^{\text {saibol1 }}$	LYENTFFRGG	35 35	${ }_{\text {shemac }}$	PHLQRISIR	1175	${ }_{\text {panTro4 }}$	Phipndpseps	140	panTro4	ASTAPP	440	rheMac3	ADOM	110	calJac3	AASKAAV	
panPan1	Y Yentrfag	35	macFas5	Qhillokisi	1175	panPa	PHPNDPSGPSV	140 140	${ }_{\text {panpan1 }}$	ASTAPPPST	440 440	s5	ARo	110	11	AASKAA	162 165 165
${ }_{\text {hg38 }}^{\text {gorGor3 }}$	LYentriged	35 35	${ }_{\text {p }}$ papanu2		1175	gorGor3	ndPs	140	ponAbe2	AStapppst	378	${ }_{\text {chisab2 }}$	ACOINQKD	110	panPan1	AASKAAVQORX	165
ponabe2	ETPFRG	35	nasLar1	LQKMS	1116	ponAbe2	PiPND	140	nomieu3	AP	440	nasLaraKdFL	74	ponAbe2	SK	55
nomLeu3	Yentrfrg	35	rhiRox1	mllokMsirg	1175	nomLeu3	PhPMDPS	140	${ }^{\text {hg } 38}$	ASTAPTPS	440	friRox	AMOINQUDFL	110		AASKA	165
rhemac3	YENAFFR	35	panTro4	PhlquMsira	1175		Phpmpsecrsv	140		ASTAF	438	${ }_{\text {panirou }}$	ARQINQKDFL	1110	gorcor3	Aaskangin	
${ }^{\text {macFas }}$	LYentiprch	${ }_{35}$	panfan1		1175	${ }_{\text {ch1Sab2 }}$	NDP	140	macFas5	ASTAPTPSTAA	440	gorGor3	AQOINQR	110	papAnu2	Aaskanv	165
chisab2	LYENTFFR	35	hg38	ahllofisira	1175	papAnu2	PHPNDPS	140	ch1Sab2	astapppstad	440	nomLeu3	ARO	110	chisab2	askany	165
nasLar1	YENTPFRGG	35	ponabe2	HLLqKMSIRO	1168	rheMac3 macFas5	Pipnd	140	nasLar1		${ }_{40}^{421}$		ADQiNQKDFLS	110	rheMac3	Aaskanamark	165 165
${ }_{\text {rex }}^{\text {ruirox }}$ tarsyr2	LYENTFPR	35 35	${ }_{\text {nomLeu3 }}$		${ }_{1173}^{1175}$	${ }_{\text {macFass }}$	ND	140 110	${ }_{\text {tarSyr2 }}$	ASSAPPPSTAA	${ }_{440}^{44}$	${ }_{\text {nicMur1 }}$	ADQITHEDEL	110	macFass nasLar1	AASKAAABQRK	${ }_{165}^{165}$
cMur1	TFF	35	michur1	Qhllakmsi	956	micMur ${ }^{\text {d }}$		140	micMur 1		431	otoca		110	rhiR	anskanvoqra	165
otoGar3	QNTFPR	35	otoGar3		1126	otogar3	PHPNDP	140	otoGar3	ASSASPPSMA	438	tarSy	aqQirhid	110	otoGar3	AASKAAvQ	59

Suppl. Figure 3 (contd)

Suppl. Figure 4

Suppl. Figure 5

Suppl. Figure 6

Longevity vs GW omegas

Gemome-Wide Omegas

Gestation vs GW omegas

Gemome-Wide Omegas

Gemome-Wide Omegas

Weaning vs GW omegas

Gemome-Wide Omegas

	Species	
(1) hg38	10 chlSab2	(9) saiBol1
(2) panTro4	11 nasLar1	20 Ccap
(3) panPan1	12 rhiRox1	21 Anan
(4) gorGor3	13 Rbie	22 tarSyr2
$(5$ ponAbe2	14 Caty	23 micMur1
6 nomLeu3	15 Cang	24 otoGar3
7 rheMac3	16 Mnem	25 Pcoq
8 macFas5	17 Mleu	
9 papAnu2	18 calJac3	

F Maturity vs GW omegas

Gemome-Wide Omegas

Body Mass vs GW omegas

Gemome-Wide Omegas

Suppl. Figure 7

Random merging between 4 lists

Suppl. Figure 9

B

C

Gestation

Maximum Lifespan

Birth Mass

Adult Weight

Suppl. Figure 11

Suppl. Figure 12

[^0]: * Shares the very same aminoacid change than " Increased Lifespan" group.

