1	
2	
3	
4	
5	
6	
7	Supplementary Information
8	
9	Human-mediated admixture and selection shape the diversity on the
10	modern swine (Sus scrofa) Y chromosomes
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

2	6
4	υ

Table of Contents

27	1. Supplementary Notes4
28	Note S1. The quality of SNP calling4
29	Note S2. The coverage of the Y chromosome
30	Note S3. South Chinese pigs contribute to the development of modern European breeds
31	Note S4. Nucleotide diversity in the Y chromosome haplogroups9
32	Note S5. Sex-biased effect may partially contribute to low nucleotide diversity in the MSY region.
33	
34	Note S6. The divergence time of the MSY haplotypes11
35	Note S7. Introduction to the heterogeneous stock construction
36	2. Supplementary Methods12
37	Samples and genome sequencing
38	SNP calling
39	Population genetic analysis using autosomal data15
40	Evolutionary history analysis using Y chromosome data16
41	3. Supplementary Tables18
42	Supplementary Table S1. Samples Information
43	Supplementary Table S2. Sequencing Statistics of 205 samples
44	Supplementary Table S3. SNPs statistics of 200 Eurasian pigs along the whole genome
45	Supplementary Table S4. D-statistics test for the phylogenetic relationships among pig populations
46	from different geographic regions
47	Supplementary Table S5. Comparison of nucleotide diversity on autosomes and in the MSY region.
48	
49 50	Supplementary Table S6. Higher than expected frequency of European Y chromosomes in Asian pig
50	populations

51	Supplementary Table S7. The parameters of the best-fitted demographic models of the target pairs of
52	European and Chinese pig populations
53	Supplementary Table S8. The possibility of the simulated European Y frequency in Chinese pigs
54	that match observed frequency in Chinese pigs
55	Supplementary Table S9. The geographical distribution of the two haplogroups in a large panel of
56	426 male pigs from around the globe
57	Supplementary Table S10. 44 Models tested by jModeltest for the build 11.1 Y chromosome41
58	Supplementary Table S11. Estimates of the TMRCA of phylogenetic nodes of particular interest
59	using the MSY sequence via BEAST when divergence time estimates of Sus verucosus (JVWP) and
60	Sus scrofa was set as 4.2 million years ago
61	Supplementary Table S12. Estimates of the TMRCA of phylogenetic nodes of particular interest
62	using the MSY sequence via BEAST when divergence time estimates of Sus verucosus (JVWP) and
63	Sus scrofa was set as 1.36 million years ago
64	Supplementary Table S13. Filter standard set as default options in the variant calling of Platypus43
65	4. Supplementary Figures
66	Supplementary Figure S1. SNPs accuracy validation by the data of 60K chip array and dual-
67	resequencing
68	Supplementary Figure S2. Autosomal SNP distribution of 200 Eurasian pigs
69	Supplementary Figure S3. Depth distribution along the effective regions on the Y chromosome and
70	chromosome 18 of Eurasian pigs based on Build 11.1 reference genome in a window size of 100 Kb
71	with a step size of 50 Kb
72	Supplementary Figure S4. The pattern of heterozygous position distribution on the Y chromosome
73	derived from the initial called 81,057 SNPs among all male individuals
74	Supplementary Figure S5. The pattern of heterozygous position distribution on the Y chromosome
75	derived from 68,387 SNPs after removing SNPs same as the SNPs called by the reads of female
76	individuals misaligned to Y chromosome reference sequence among all male individuals
77	Supplementary Figure S6. The comparison of heterozygous sites distribution on the Y chromosome
78	derived from 68,387 SNPs after removing SNPs same as the SNPs called by the reads of female

80	(European pigs) and Haplogroup E (Chinese pigs)49
81	Supplementary Figure S7. The comparison of heterozygous sites distribution on the MSY among
82	Haplogroup A, Haplogroup E (European pigs) and Haplogroup E (Chinese pigs)50
83	Supplementary Figure S8. The CV error for the ADMIXTURE analysis at K values ranging from 2
84	to 7
85	Supplementary Figure S9. Determination of the migration edge number in the TreeMix model and
86	residual heatmap with 4 migration events
87	Supplementary Figure S10. Median joining haplotype network of MSY sequences (n = 102)53
88	Supplementary Figure S11. The different haplotype patterns between the Y chromosome and the X
89	chromosome in Eurasian pigs54
90	Supplementary Figure S12. Comparison of nucleotide variability within the proximal and distal
91	regions of the Y chromosome and on autosomes
92	Supplementary Figure S13. Different phylogenetic relationships of Sus revealed by Y chromosome,
93	mtDNA and autosomes
94	Supplementary Figure S14. Median joining haplotype network of chrM sequences (n = 102)57
95	Supplementary Figure S15. Comparisons of allele frequency spectra (AFS) between the modelled
96	and real data of four pairs of European and Chinese pig populations using $\partial a \partial i$
97	Supplementary Figure S16. Comparison of fatness traits between the male pigs with Chinese
98	chromosome Y and with European chromosome Y59
99	Supplementary Figure S17. Estimated percentage of the Asian component of European pigs from an
100	unsupervised ADMIXTURE analysis with K = 260
101	5. Supplementary References
102	
103	

104 1. Supplementary Notes

105 Note S1. The quality of SNP calling

We employed BWA to map cleaned reads from 205 samples to Build 11.1 of the *Sus* scrofa reference genome and subsequently used Picard and GATK to process the mapped reads. Then we performed a two-round procedure of SNP calling using Platypus (detailed process in **supplementary methods**). Finally, a total of 37,542,852 SNPs for the 205 animals were obtained, of which 36,332,442, 1,167,598, 42,288 and 524 SNPs were on autosomes, the X chromosome, the Y chromosome and the mitochondrial DNA, respectively.

There were two Sumatran wild boars, one Celebes wild boar, one Java warty pig and one African warthog in the present 205 samples. We identified that Sumatran wild boars were largely different from Eurasian pigs. The other three animals were outgroups to *Sus scrofa*, which have many specific SNPs different from *Sus scrofa*.

117 To assess accuracy of the SNP calls, we excluded the above five animals and 118 compared the 200-pig SNP dataset to the SNPs on the porcine 60K BeadChip 119 genotyping array (Illumina) in 98 pigs (supplementary table S2). Among the SNPs 120 called from whole-genome resequencing, 53,908 polymorphic loci present in the 60K 121 chip array were extracted. 99.4% of informative SNPs had the same genotypes in the 122 sequencing data as in the 60K chip arrays (supplementary fig. S1). In addition, we 123 sequenced six pigs twice and called their SNPs using Platypus. We find that 99.6% were 124 consistent with the SNPs of their duplicate individuals (supplementary fig. S1). Both 125 validations demonstrated high quality and reliability of our present SNP calls.

We compared our SNP dataset of 200 Eurasian pigs with Build 151 of the *Sus scrofa* dbSNP dataset from the NCBI database. We found that 81.3% (29,554,672) of the SNPs on autosomes were exactly the same as the reference SNPs and 18.7% (6,777,770) were novel (**supplementary fig. S2 and supplementary table S3**). Among these novel

130 SNPs, 53.0% (3,594,384 SNPs) have MAF less than or equal to 0.05 in the 200 Eurasian

131 pigs. Of the 36.3 million SNPs, 14.2% have minor allelic frequency (MAF) less than

132 or equal to 0.02, 33.2% have MAF less than or equal to 0.05, 49.4% have MAF less

than or equal to 0.10, and 50.6% have MAF greater than 0.10.

134 Note S2. The coverage of the Y chromosome

135 The Y chromosome is notorious for being hard to assemble, with potentially multiple 136 segmental duplications. Recently, a draft assembly of the pig Y chromosome (VEGA62) were generated by sequencing BAC and fosmid clones from the Duroc breed and 137 138 incorporating information from optical mapping and fiber-FISH (Skinner et al. 2016). 139 The improved porcine sex chromosomes were included in Build 11.1 of the Sus scrofa 140 reference genome with comprehensive gene annotation and variant information. These 141 improved assemblies allowed us to generate a comprehensive analysis of the 142 evolutionary history of pigs from the perspective of sex chromosomes, especially from 143 the unique genetic perspective of patrilineal inheritance. Before further analyses, we 144 investigated the landscape of the Y chromosome in the perspective of coverage and 145 depth.

In Build 11.1 (VEGA62 version), the total length of the Y chromosome is 43.5Mb,
but the actual effective length is 20.5 Mb, which is mainly divided into three segments:
0 Mb - 10.5 Mb, 19.5 Mb - 25.5 Mb, 39.5 Mb - 43.5 Mb. In addition, there is a 1.6Mb
unplaced Y chromosome sequences contained in Build 11.1.

The observed coverage on the Y of certain individual is as expected given the haploid status of the Y and the observed genome-wide coverage for that individual. We calculated the depth of each base covered on the Y chromosome. In the whole effective range (including the unassembled region), the average number of bases across all males is 16,300,379. The average depth (median) is 12X. 13,998,561 bases are with depth greater than or equal to 5X, which accounted for 85.9% of the valid sequences. 156 1,925,952 bases are more than or equal to 2 times of the average depth, accounting for 157 11.8% of the effective sequence, mainly distributed in the HSFY (heat shock 158 transcription factor, Y chromosome) and the PB (proximal block) regions. The average 159 depth in a 100Kb window sliding along the Y chromosomes with a step size of 50Kb 160 across all 103 individuals was plotted (supplementary fig. S3A). We also extracted 161 chromosome 18 as the representative of autosomal and drew the corresponding depth 162 map (supplementary fig. S3B). The average ratio of Y chromosome depth to those of chromosome 18 across Eurasian male individuals was 0.51 with a standard deviation 163 164 of 0.047 (supplementary fig. S3C). These results show that the coverage of the Y in 165 general is consistent with its haploid state.

166 There are many heterozygous sites observed on the Y, which results from segmental 167 duplications and possible mapping error. We initially obtained a total of 81,057 SNPs. 168 The distribution of heterozygotes is shown in supplementary fig. S4A. Furthermore, 169 we use a 150Kb window sliding along the Y chromosome to calculate the 170 heterozygosity rate on the Y (supplementary fig. S4C). The heterozygosity rate 171 fluctuates very little in the homologous region of Y chromosome (PAR) and fluctuate 172 greatly in HSFY and PB regions. This disorderly volatility is an indicative of segmental 173 duplications. Subsequently, 12670 SNPs on Y chromosome and on the Y-linked contig 174 of male individuals, which were same as the SNPs called by the reads of female 175 individuals misaligned to Y chromosome reference sequence, were excluded due to the 176 possible bias. We also drew a map showing the distribution of heterozygous loci, the 177 distribution of SNPs, and the change of the heterozygosity rate on Y chromosome after 178 this filtering procedure (supplementary fig. S5). Moreover, we found the number of 179 heterozygous sites within Haplogroup A (8748.40 ± 762.08) is significantly larger than that of Haplogroup E (European pigs and Chinese pigs: 6062.68 ± 993.63 and 6903.83180

181 \pm 704.87, respectively) with P values of 1.05E-17 and 3.19E-07, respectively 182 (supplementary fig. S6). We specifically extract MSY data from that of the whole Y 183 sequences. We found the number of heterozygous sites within Haplogroup A (5516.38 184 \pm 691.31) is significantly larger than that within Haplogroup E (European pigs and 185 Chinese pigs: 2904.61 ± 334.49 and 3146.33 ± 372.40 , respectively) with P values of 186 5.76E-40 and 1.21E-16, respectively. The number of heterozygous sites within 187 Haplogroup E (European pigs) and Haplogroup E (Chinese pigs) is not significantly 188 different (supplementary fig. S7). When it comes to heterozygous SNPs, we replaced 189 them with missing data on the non-homologous part of Y chromosome for subsequent 190 analyses.

191 The depth of the effectively covered region in the PB interval (19.5 Mb - 25.5 Mb, 192 with grey background in **supplementary fig. S3D**) of individuals within Haplogroup E 193 is abnormally high, while those within Haplogroup A is relatively in a normal range. 194 We calculated the average depth and the average normalized depth in the PB interval. 195 The average depth in PB interval is the average depth derived from the above sliding-196 window method in this region across individuals. To obtain average normalized depth, 197 the depth in each window of each individual is firstly divided by the average depth of whole chromosome 18 of that individual, then average depth of all windows in this 198 199 region is obtained, and average depth among individuals is finally calculated. 200 Eventually, the average depth and the average normalized depth in the PB region of 201 individuals within Haplogroup E are 16.25 ± 5.70 and 0.83 ± 0.07 , respectively, while 202 those of individuals within Haplogroup A are 11.82 ± 1.59 and 0.49 ± 0.04 , respectively. 203 The former is significantly higher than the latter (p=1.55E-07 and p=6.81E-053)204 corresponding to the average depth and the average normalized depth, respectively, T 205 test).

206 Note S3. South Chinese pigs contribute to the development of modern European207 breeds

208 Introgression from Asian pigs into European pigs during the Industrial Revolution is 209 well documented (Phillips and Hsu 1944; McLaren 1990; Giuffra et al. 2000; White 210 2011). Previously several research groups detected Asian pig introgression in European 211 pig genomes. Groenen et al. (2012) used the D-statistic to find that ~35% of the 212 genomes of European pig breeds have introgression from Asian pigs; Bosse et al. (2014) 213 estimated ~20% Asian fraction in modern European pigs using a total of 2,377,607 214 autosomal markers; Bianco et al. (2015) used 60K chips to investigate 31 American and 215 European pig populations (or breeds) originating from Europe and found they had 10-216 30% of introgressed DNA from Asian lineages. We also used 60K chip to investigate 217 39 Chinese and Western pig breeds, and we found that Large White and Landrace had respectively about a 19% and 12% Asian fraction when K = 2, but as the K value 218 219 increased, the Asian fraction slightly declined (Ai et al. 2014). More recently, we 220 resequenced 69 Chinese local pigs with high quality (coverage depth $> 25\times$) and downloaded the whole-genome sequence data for 42 European and Asian pigs 221 222 submitted by Wageningen University. Using these data, we also detected a ~19% 223 Chinese fraction in European pigs when K = 2, and almost all of the introgression in 224 European pig genomes was of South Chinese origin when K = 3 (Ai et al. 2015).

However, in our present study, 7-13% of the Asian fractions were estimated in several European commercial pigs like Large White, Landrace, Creole, and Pietrain pigs when K = 2, which was slightly lower than the previous reports. The introgression in European pig genomes was mainly of South Chinese origin, and tiny amounts of East Chinese origin were also detected when K > 2 (**Fig. 1D**). We considered two major reasons possibly contributing to this difference in proportion: (1) different European pig samples and (2) higher-density and high-quality SNPs. 232 In the present study, our test samples included 67 European pigs. Among these 233 European pigs, we resequenced 31 domestic pigs at high coverage (average depth of 234 29.9×), downloaded data for 25 domestic pigs submitted by three different research 235 groups from the NCBI SRA database (supplementary table S2), and downloaded data 236 for 11 European wild boars submitted by two groups from Wageningen University and 237 Centre For Research in Agrigenomics from the NCBI SRA database (supplementary 238 table S2). Except for European wild boars, all European domestic pigs in this study 239 were different from the ones in the previous works described above. In this study, we 240 obtained 36.3 million autosomal SNPs in the 200-pig population. The number of SNPs 241 used here was much higher than in previous studies (i.e. 2,377,607 autosomal markers 242 in (Bosse et al. 2014); 60K SNP chips in (Bianco et al. 2015) and in (Ai et al. 2014)).

243 To further validate our results, we used all autosomal reference variants (n= 244 62,117,429) in Sus scrofa dbSNP (build 151) as known variants to guide individual 245 genotyping for the 200 Eurasian pigs via Platypus with the parameters "--246 source=KnownVaiants.vcf.gz --minPosterior=0 --getVariantsFromBAMs=0". We 247 gained 34,918,325 autosomal SNPs in the 200-pig population. Then, an unsupervised 248 Admixture analysis was computed for the 200 individuals. Similarly, the estimated 249 Asian fractions in European pigs were lower than previous reports, and the introgressed 250 fractions in European pigs were of South Chinese origin with K = 2 (supplementary 251 fig. S13).

In summary, we consider that different samples and high-density, high-quality SNPs contribute to the different results for Asian introgression fraction in European pigs. We believe our SNP calling results and demographic and evolutionary history results inferred by autosomal SNPs are reliable and robust.

256 Note S4. Nucleotide diversity in the Y chromosome haplogroups

257 To learn more about evolutionary history of the Y chromosome, we calculated

258 nucleotide variability at the genomic level and within the MSY region in sequenced 259 males. The MSY region had a significantly lower level of nucleotide diversity 260 compared to autosomes (supplementary fig. S11 and supplementary table S5). 261 Moreover, all nucleotide variability parameters were lower in European pigs in 262 Haplogroup E than in Chinese pigs in Haplogroup A (supplementary fig. S11). This 263 could be explained by the fact that European wild boars suffered a more dramatic 264 decrease in population size than Asian wild boars during the Last Glacial period (Fig. 265 1F).

266 Note S5. Sex-biased effect may partially contribute to low nucleotide diversity in 267 the MSY region.

268 Although many factors (such as nutrition, season of birth, stress, mother's age and 269 parity, social status, and disease) have been shown to be associated with sex ratio at 270 birth, the male:female ratio of offspring in pigs was consistently around 1:1 (Nishida et 271 al. 1977; Alfonso 2005). However, several reports showed that sex ratio is significantly 272 or slightly skewed towards females in free-roaming wild boar populations. For 273 examples, the male:female ratio of wild boar populations living in southern Poland is 274 approximately 1:2 (Merta et al. 2015); the male:female ratio of wild boars living in a 275 tropical forest, Southwest China, is estimated to be 1:1.2 (Guo et al. 2017).

276 The wild boar (Sus scrofa) is a polygynous mammal with large litters (FernaNdez-277 Llario et al. 1999). Boars are typically social animals living in female-dominated 278 populations, and adult males tend to be solitary outside the breeding season (Marsan 279 and Mattioli 2013). During the breeding season, males drive off young animals and 280 persistently chase the sows in a female-dominated population. Males fiercely fights 281 potential rivals, and a single male can mate with five to 10 sows (Baskin and Danell 282 2003). In the modern pig farming, farmers raise more reproducing sows than boars to 283 keep benign production system. Usually the boar:sow ratio is 1:20 under natural service, and less than 1:150 using artificial insemination (AI) technology (Taylor and Roese
2006; Safranski 2008)

In summary, almost no sex-bias exists in the new-birth offspring in pigs, but stronger boars in wild populations are potential rivals, and high-performance boars are artificially selected, and their sperm is used extensive in modern pig farming. These facts might contribute to a sex ratio skewed towards females in pigs. The extent of this sex-bias effect needs to be further investigated.

We have observed low nucleotide diversity in the MSY region, and its value is far less than the theoretical ratio of one quarter compared to autosomes (**supplementary table S5**). If we roughly treat wild boar sex ratio of 1:2 (Merta et al. 2015) as the sexbias weight, the observed ratio is still lower than the theoretical one (1:8). Therefore, sex-biased effect may partially contribute to low nucleotide diversity in the MSY region, and there must be other biological mechanisms, such as selection, contributing to low nucleotide diversity as well.

-

298 Note S6. The divergence time of the MSY haplotypes

299 FASTA formatted sequence files were used to construct phylogenetic tree via BEAST. 300 Before constructing the phylogenetic tree, we tested 44 candidate models by 301 jModelTest (Posada 2008). According to the value of Akaike information criterion, the 302 best-fit model was identified as the TVM model, and the second best-fit model was the 303 GTR model (detailed model test in supplementary table S8). Because the TVM model 304 is not implemented in BEAST and considering the site heterogeneity model, we 305 selected the GTR+ Γ model as the best-fit model to estimate the divergence time using 306 a strict molecular clock by BEAST. Split times and 95% highest posterior density 307 intervals in the trees were estimated with 10,000,000 MCMC samples. The divergence 308 time between Sus verucosus (JWP) and Sus scrofa (CB11-2) was set to be 4.2 million years (Frantz et al. 2013) and 1.36 million years (Zhang M. et al. manuscript submitted) 309

310 as the calibration constraint.

311 Note S7. Introduction to the heterogeneous stock construction

312 We constructed a heterogeneous pig population crossing eight pig breeds consisting 313 of 4 western commercial pig breeds (including Duroc, Landrace, Large White and 314 Pietrain) and 4 Chinese local breeds (including Erhualian, Laiwu, Bamaxiang and 315 Tibetan), using a disc rotation breeding system. The special breeding system can avoid 316 the increase of inbreeding coefficient and ensure the even genetic contribution of each 317 of eight founder breeds. The details of stock construction were described by (Ji et al. 318 2018). After six years' breeding, the sixth-generation offspring of this population (F6) 319 were composed of 836 progeny, including 448 females and 388 males. We sequenced 320 all 836 piglets to an average genome coverage of 7.8× (Ji et al. 2018; Zhang et al. 2021). 321 As expected, variation was roughly uniformly distributed across the genome of this 322 heterogeneous stock. Also, this was a unique pig population with both Asian and European MSY haplotypes. Among the 388 males, there were 150 individuals with 323 324 Asian MSY haplotypes and 238 individuals with European MSY haplotypes.

325 2. Supplementary Methods

326 Samples and genome sequencing

We sequenced the genomes of 80 Chinese and European pigs. 83 Chinese pigs were sequenced in our previous study (Ai et al. 2015; Zhu et al. 2017). These pigs include 24 South Chinese domestic pigs, 33 North Chinese domestic pigs, 36 West Chinese domestic pigs, 33 East Chinese domestic pigs, six South Chinese wild boars and 31 European domestic pigs. Of these animals, Chinese pigs were from 16 geographically diverse breeds, European pigs were from 4 commercial breeds (**supplementary table S1**). 334 The genome sequencing was conducted as previously described (Ai et al. 2015). 335 Genomic DNA was extracted from ear tissue using a standard phenol-chloroform 336 method, and then individually sheared into fragments of 200-800 bp using the Covaris 337 system (Life Technologies); DNA fragments were treated according to the Illumina 338 DNA sample preparation protocol. These treated fragments were end-repaired, A-tailed, 339 ligated to paired-end adaptors, and PCR amplified with 500 bp (or 350 bp) inserts for 340 library construction. Sequencing was performed to generate 100 bp (or 125 bp, 150 bp) 341 paired-end reads on a HiSeq 2000 (or 2500) platform (Illumina) according to the 342 manufacture's standard protocols.

343 SNP calling

344 We downloaded genome sequence data for 42 pigs, one African warthog 345 (Phacochoerus africanus), one Java warty pig (Sus verrucosus) and one Celebes warty 346 pig (Sus celebensis) from the NCBI SRA database (https://www.ncbi.nlm.nih. gov/sra). 347 These data were integrated into the sequence data obtained in this study, resulting in a 348 205-sample high-quality data set (supplementary table S1 and S2). Cleaned reads 349 from all individuals were aligned to the Sus scrofa reference genome (build 11.1) using 350 BWA (Li and Durbin 2009). The mapped reads were subsequently processed by sorting, 351 duplicate marking, indel realigning, and base quality recalibrating by Picard 352 (http://picard.sourceforge.net) and GATK (McKenna et al. 2010). Sequencing coverage 353 and depth of each sample were calculated using genomecov implemented in Bedtools 354 (Quinlan and Hall 2010).

A two-round procedure of SNP calling was performed using Platypus (Rimmer et al.
2014). In the first round, SNPs were individually called with the default parameters
below:

358 python Platypus.py callVariants --bamFiles=input.bam --refFile=ref.fa -359 output=VariantCalls.vcf

360 Detailed default options were shown here: 'assemblyRegionSize': 1500, 361 'trimReadFlank': 0, 'assembleBadReads': 1, 'minVarDist': 9, 'trimSoftClipped': 1, 362 'minReads': 2, 'qualBinSize': 1, 'maxHaplotypes': 50, 'filterVarsByCoverage': 1, 363 'maxSize':1500, 'originalMaxHaplotypes': 50, 'skipDifficultWindows': 0, 'parseNCBI': 364 0, 'skipRegionsFile': None, 'noCycles': 0, 'trimAdapter': 1, 'minPosterior': 0, 365 'assembleAll': 1, 'trimOverlapping': 1, 'filterDuplicates': 1, 'abThreshold': 0.001, 366 'minFlank': 10, 'bufferSize': 100000, 'fileCaching': 0, 'useEMLikelihoods': 0, 367 'coverageSamplingLevel': 30, 'calculateFlankScore': 0, 'filterReadsWithUnmapped 368 Mates': 1, 'qdThreshold': 10, 'maxVariants': 8, 'scThreshold': 0.95, 369 'filterReadsWithDistantMates': 1, 'maxReads': 5000000, 'badReadsWindow': 11, 370 'genIndels': 1, 'largeWindows': 0, 'minMapQual': 20, 'maxVarDist': 15, 'maxGOF': 30, 371 150. 'minGoodQualBases': 20, 'refCallBlockSize': 1000. 'rlen': 372 'countOnlyExactIndelMatches': 0. 'longHaps': 0. 'HLATyping': 0. 373 'filterReadPairsWithSmallInserts': 1, 'minBaseQual': 20, 'getVariantsFromBAMs': 0, 374 'genSNPs': 1, 'assemble': 0, 'assemblerKmerSize': 15, 'minVarFreq': 0.05, 375 'alignScoreFile': ", 'verbosity': 2, 'compressReads': 0, 'rmsmqThreshold': 40, 376 'filteredReadsFrac': 0.70. 'outputRefCalls': 0. 'badReadsThreshold': 15. 377 'hapScoreThreshold': 4, 'sbThreshold': 0.001, 0, 'assembleBrokenPairs': 378 'mergeClusteredVariants': 1, 'maxGenotypes': 1275, 'nInd': 1.

In the SNP calling output, the variants were classified into nine categories marked with different FILTER labels, including PASS, HapScore, Q20, MQ, QD, SC, badReads, alleleBias, and strandBias (**supplementary table S11**). High-quality variants were marked with "PASS"; low-quality variants were marked with the other eight labels. The high-quality SNPs marked with "PASS" by Platypus with default parameters were retained. All "PASS" SNPs from all samples were merged together to form a total SNP set (84,923,342 SNPs). We removed the non-biallelic SNPs from this SNP set and

386 obtained 83,702,124 biallelic SNPs. These biallelic SNPs were treated as known 387

variants to guide the second-round individual genotyping for all the samples via

388 Platypus with the parameters "--source=KnownVaiants.vcf.gz --minPosterior=0 --

389 getVariantsFromBAMs=0". SNPs in VCF format were transformed to Plink format by

390 a custom Perl script based on genotype log10-likelihoods of AA, AB and BB genotypes.

391 Low-quality genotypes with likelihood P-value > 0.1 were set as missing genotypes

392 (NA). All SNPs except those on the Y chromosome were filtered with the criteria MAF >

393 0.01 and SNP call rates > 80%. For SNPs on the Y chromosome, only male individuals

394 were used to call SNPs with the criteria MAF > 0.009 and call rates > 80%.

395 Population genetic analysis using autosomal data

396 A total of 36,332,442 qualified SNPs on autosomes were used to calculate genetic 397 distance among all individuals using Plink as previously described (Ai et al. 2013). The 398 average proportion of alleles shared was calculated as Dst:

$$Dst = \frac{IBS2 + 0.5 \times IBS1}{N}$$

400 where IBS1 and IBS2 are the number of loci which share either 1 or 2 alleles identical 401 by state (IBS), respectively, and N is the number of loci tested. Genetic distance 402 between all pairwise combinations of individuals was calculated as 1-Dst. A neighbor-403 joining tree was then constructed for all individuals using Neighbor in PHYLIP v3.69 404 (Felsenstein 2005) and visualized by FigTree software (http://beast.bio. 405 ed.ac.uk/FigTree).

Population genetic structure was inferred using the maximum likelihood approach 406 407 implemented in ADMIXTURE v1.20 (Alexander et al. 2009). The ADMIXTURE 408 program was run in an unsupervised manner with a variable number of clusters (K = 2409 to 6). Principal component (PC) analysis was conducted using Smartpca in EIGENSOFT v6.0 (Price et al. 2006). To avoid artifacts caused by linkage 410

411 disequilibrium (LD), we excluded SNPs with $r^2 \ge 0.4$ in the PC analysis.

412 TreeMix (Pickrell and Pritchard 2012) was used to infer the patterns of historical 413 splits and mixture among Eurasian pig populations in the context of Suidae, with 1,000 414 SNPs grouped together in an LD block (-k 1000) and migration events from 0 to 10, 415 respectively. The data was pruned using PLINK toolset (version: 1.90) with parameters 416 "--indep-pairwise 50 10 0.4" before TreeMix analyses. We further used *qpDstat* from 417 AdmixTools (Patterson et al. 2012) to calculate D-statistics in form of D(H1, H2; H3,418 Outgroup) with default parameters to show if population H1 is symmetrically related 419 to H2 and H3 or shares an excess of alleles with either of the two, with standard errors 420 computed with a block jackknife. Based on the result of more symmetrically relation 421 between EHL and JH compared to MIN, which was inferred by D(EHL, JH; MIN, JWP) 422 equal to 0.015 with Z value 7.971, and other possible migration implied by D statistics 423 (supplementary table S4), we preferred the result of TreeMix with 4 migration events 424 based on the result of the R package OptM (Fitak 2019) with the linear method 425 (supplementary fig. S9). Then 1000 bootstrap were performed with parameter "-426 bootstrap" to validate the pattern with 4 migration events when running TreeMix.

427 Evolutionary history analysis using Y chromosome data

428 For the SNPs-calling procedure on Y chromosome and on a 1.6 Mb unmapped Y-429 linked contig, some additional quality control was conducted. We exclude the reads 430 containing the "SA:Z" and "XA:Z" flags, so that the reads aligned uniquely to the Y 431 chromosome can be extracted, reducing the error of the alignment on Y-chromosome. 432 Then, the two-round SNP calling was performed using Platypus (Rimmer et al. 2014), 433 as it was as for autosomal SNPs. Additionally, for SNPs on the Y chromosome, we 434 replace the heterozygous SNPs with missing on the Y chromosome and then filter under 435 the criterion MAF > 0.009 and SNP call rates > 80%. Moreover, parts of SNPs on Y 436 chromosome and on the Y-linked contig of male individuals, which were same as the 437 SNPs called by the reads of female individuals misaligned to Y chromosome reference 438 sequence, were excluded due to the possible bias. Finally, a total of 42,288 high-quality 439 SNPs on Y chromosome and the Y-linked contig in the 103 male individuals passed the 440 criteria MAF > 0.009 and call rates > 80%, which were used to show the Y chromosome 441 haplotype, reconstruct the phylogenic tree, perform haplotype network and estimate Y 442 chromosome divergence time.

Pairwise nucleotide differences per site within (dx) and between (dxy) populations
were calculated by the following formulas as previously described (Ai et al. 2015):

445
$$d_{x} = \frac{2}{n_{x}(n_{x}-1)l} \sum_{i=1}^{n_{x}-1} \sum_{i'=i+1}^{n_{x}} k_{ii}$$

446
$$d_{xy} = \frac{1}{n_x n_y l} \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} k_{ij}$$

where k represents the number of differences among haplotypes within a target region, i and j denote haplotypes from populations x and y, respectively, with primes indicating additional haplotypes from the same population. The expression for dy is identical to that for dx but with i replaced by j and nx replaced by ny. I denotes the effective length of the sequence without gaps in the target region.

To investigate global distribution of the haplotypes within the distal and proximal regions on the Y chromosome, we employed six tag SNPs representing these regions from Illumina Porcine 60K Chip in 426 Eurasian pigs from 82 geographically diverse populations. Segregating sites, Theta and Pi values were calculated for autosomes and the MSY region in 50 kb windows with a step size of 25 kb using VariScan (Hutter et al. 2006).

458

3. Supplementary Tables

No	Breed	Population code	Sample Size	Origin	Group	References
Chin	ese pigs	couc	Size			
1	Bama Xiang	BMX	6	Bama, Guangxi	South Chinese domestic pig (SCDP)	Ai, et al., 2015, Nature genetics
1	Bama Xiang	BMX	6	Bama, Guangxi	South Chinese domestic pig (SCDP)	This study
2	Wuzhishan	WZS	6	Qiongshan, Hainan	South Chinese domestic pig (SCDP)	Ai, et al., 2015, Nature genetics
3	Luchuan	LUC	6	Luchan, Guangxi	South Chinese domestic pig (SCDP)	Ai, et al., 2015, Nature genetics
4	Min	MIN	6	Lanxi, Heilongjiang	North Chinese domestic pig (NCDP)	Ai, et al., 2015, Nature genetics
5	Laiwu	LWU	6	Laiwu, Shandong	North Chinese domestic pig (NCDP)	Ai, et al., 2015, Nature genetics
5	Laiwu	LWO	9	Laiwu, Shandong	North Chinese domestic pig (NCDP)	This study
6	Hetao	HT	6	Wuyuan, Inner Mongolia	North Chinese domestic pig (NCDP)	Ai, et al., 2015, Nature genetics
7	Bamei	BAM	6	Huangzhong, Qinghai	North Chinese domestic pig (NCDP)	Zhu,et al., 2017, Genomic
/	Damer	DAW	0	Thuangzhong, Qinghai	North Chinese domestic pig (NCDI)	evolution and selection
8	Baoshan	BS	6	Baoshan, Yunnan	West Chinese domestic pig (WCDP)	Zhu,et al., 2017, Genomic
				,		evolution and selection
9	Neijiang	NJ	6	Neijiang, Sichuan	West Chinese domestic pig (WCDP)	Zhu,et al., 2017, Genomic
	t C					evolution and selection
10	Jinhua	Л	6	Jinhua, Zhejiang	East Chinese domestic pig (ECDP)	Zhu,et al., 2017, Genomic
						evolution and selection
11	Erhualian	EHL	5	Wuxi, Jiangsu	East Chinese domestic pig (ECDP)	Ai, et al., 2015, Nature genetics
			22	Wuxi, Jiangsu	East Chinese domestic pig (ECDP)	This study
14	Tibetan (Sichuan)	SCT	6	Litan, Sichuan	West Chinese domestic pig (WCDP)	Ai, et al., 2015, Nature genetics
			6	Litan, Sichuan	West Chinese domestic pig (WCDP)	This study
			1	Sichuan	West Chinese domestic pig (WCDP)	Li, et al., 2013, Nature genetics
15	Tibetan (Yunnan)	YNT	6	Diqing, Yunnan	West Chinese domestic pig (WCDP)	Ai, et al., 2015, Nature genetics
			6	Diqing, Yunnan	West Chinese domestic pig (WCDP)	This study
16	South Chinese Wild	CWB	2	Jiangxi, Nanchang	Chinese wild boar (CWB)	Ai, et al., 2015, Nature genetics
	Boar					
			2	Jiangxi, Shangyou	Chinese wild boar (CWB)	Ai, et al., 2015, Nature genetics
			2	Zhejiang, Xiangshan	Chinese wild boar (CWB)	Ai, et al., 2015, Nature genetics
Euro	pean pigs					
17	White Duroc	WDU	10	USA (Originated from	European domestic pig (EDP)	This study
				Europe)		
18	Large White	LW	7	France, Europe	European domestic pig (EDP)	This study
			6	Europe	European domestic pig (EDP)	Kim, et al., 2015, Plos one
19	Duroc	DU	11	Europe	European domestic pig (EDP)	Kim, et al., 2015, Plos one
	Pietrain	PT	6	Europe	European domestic pig (EDP)	This study
20	Iberian	Ib	1	Spain, Europe	European domestic pig (EDP)	Ramírez, et al., 2014, Heredity
21	Creole	Cr	1	Europe	European domestic pig (EDP)	Ramírez, et al., 2014, Heredity
22	Landrace	LR	3	Europe	European domestic pig (EDP)	Kim, et al., 2015, Plos one
~~			8	Europe	European domestic pig (EDP)	This study
23	Mangalica	MG	3	Hungary, Europe	European domestic pig (EDP)	Molnár, et al., 2014, BMC Genomics
24	European Wild Boar	EUW	1	Europe	European wild boar (EWB)	Ramírez, et al., 2014, Heredity
	DUAI		10	Europe	European wild boar (EWB)	Frantz, et al., 2015, Nature Genetics

Supplementary Table S1. Samples Information.

Sumatran pig

25	Sumatran Wild	SWB	2	\	Sumatran wild boar (SWB)	Groenen, et al., 2012, Nature
	Boar					
Outg	groups					
26	Celebes Wild Boar	CWP	1	\	Outgroup	Groenen, et al., 2012, Nature
27	Java Warty Pig	JWP	1	/	Outgroup	Groenen, et al., 2012, Nature
28	African Common	AWP	1	\	Outgroup	Groenen, et al., 2012, Nature
	Warthog					

No	Breed	Sample ID	Population	Inferred	mtDNA	Y	Coverage ^a	Depth	ChrY	60Kchip	References
Chin			code	Sex	Origin	haplogroup		(×)	Depth (×)		
	ese pigs	00111	CULD	F 1	ct '	,	0.077	25.0		a 1	
1	South Chinese Wild Boar	CB11-1	CWB	Female	Chinese	/	0.977	25.9	/	Scanned	Ai, et al., 2015, Nature genetics
2	South Chinese Wild Boar	CB11-2	CWB	Male	Chinese	Asian	0.981	28.2	13.5	Scanned	Ai, et al., 2015, Nature genetics
3	South Chinese Wild Boar	CB11-3	CWB	Female	Chinese	/	0.977	27.6	/	Scanned	Ai, et al., 2015, Nature genetics
4	South Chinese Wild Boar	CB11-4	CWB	Male	Chinese	Asian	0.979	21.7	10.7	Scanned	Ai, et al., 2015, Nature genetics
5	South Chinese Wild Boar	CB11-5	CWB	Male	Chinese	Asian	0.975	20.5	9.8	Scanned	Ai, et al., 2015, Nature genetics
6	South Chinese Wild Boar	CB11-6	CWB	Male	Chinese	Asian	0.975	21.8	10.3	Scanned	Ai, et al., 2015, Nature genetics
7	Wuzhishan	CB1-1	WZS	Female	Chinese	/	0.977	26.1	/	Scanned	Ai, et al., 2015, Nature genetics
8	Wuzhishan	CB1-2	WZS	Female	Chinese	/	0.976	26.2	/	Scanned	Ai, et al., 2015, Nature genetics
9	Wuzhishan	CB1-3	WZS	Female	Chinese	/	0.976	25.7	/	Scanned	Ai, et al., 2015, Nature genetics
10	Wuzhishan	CB1-4	WZS	Male	Chinese	European	0.981	25.5	13.5	Scanned	Ai, et al., 2015, Nature genetics
11	Wuzhishan	CB1-5	WZS	Male	Chinese	European	0.981	26.2	13.9	Scanned	Ai, et al., 2015, Nature genetics
12	Wuzhishan	CB1-6	WZS	Female	Chinese	/	0.975	26.9	/	Scanned	Ai, et al., 2015, Nature genetics
13	Luchuan	CB12-1	LUC	Female	Chinese	/	0.972	23.9	/	Scanned	Ai, et al., 2015, Nature genetics
14	Luchuan	CB12-2	LUC	Female	Chinese	/	0.977	26.6	/	Scanned	Ai, et al., 2015, Nature genetics
15	Luchuan	CB12-3	LUC	Female	Chinese	/	0.978	28.5	/	Scanned	Ai, et al., 2015, Nature genetics
16	Luchuan	CB12-4	LUC	Female	Chinese	/	0.974	27.2	/	Scanned	Ai, et al., 2015, Nature genetics
17	Luchuan	CB12-5	LUC	Female	Chinese	/	0.976	27.0	/	Scanned	Ai, et al., 2015, Nature genetics
18	Luchuan	CB12-6	LUC	Female	Chinese	/	0.977	25.0	/	Scanned	Ai, et al., 2015, Nature genetics
19	Bama Xiang	CB8-1	BMX	Female	Chinese	/	0.976	26.7	/	Scanned	Ai, et al., 2015, Nature genetics
20	Bama Xiang	CB8-2	BMX	Female	Chinese	/	0.977	28.5	/	Scanned	Ai, et al., 2015, Nature genetics
21	Bama Xiang	CB8-3	BMX	Female	Chinese	/	0.977	26.0	/	Scanned	Ai, et al., 2015, Nature genetics

Supplementary Table S2. Sequencing Statistics of 205 samples.

22	Bama Xiang	CB8-4	BMX	Female	Chinese	/	0.977	27.2	/	Scanned	Ai, et al., 2015, Nature genetics
23	Bama Xiang	CB8-5	BMX	Female	Chinese	/	0.977	27.3	/	Scanned	Ai, et al., 2015, Nature genetics
24	Bama Xiang	CB8-6	BMX	Female	Chinese	/	0.977	27.2	/	Scanned	Ai, et al., 2015, Nature genetics
25	Bama Xiang	CB8-7	BMX	Female	Chinese	/	0.992	30.7	/	/	This study
26	Bama Xiang	CB8-8	BMX	Female	Chinese	/	0.992	30.1	/	/	This study
27	Bama Xiang	CB8-9	BMX	Female	Chinese	/	0.976	26.6	/	/	This study
28	Bama Xiang	CB8-10	BMX	Male	Chinese	Asian	0.980	30.4	14.7	/	This study
29	Bama Xiang	CB8-11	BMX	Male	Chinese	Asian	0.979	26.6	12.9	/	This study
30	Bama Xiang	CB8-12	BMX	Male	Chinese	Asian	0.980	29.8	9.7	/	This study
31	Baoshan	CB27-1	BS	Male	Chinese	European	0.982	25.5	14.0	/	Zhu,et al., 2017, Genomic evolution and selection
32	Baoshan	CB27-2	BS	Male	Chinese	European	0.981	25.1	13.7	/	Zhu,et al., 2017, Genomic evolution and selection
33	Baoshan	CB27-3	BS	Male	Chinese	European	0.981	25.5	14.0	/	Zhu,et al., 2017, Genomic evolution and selection
34	Baoshan	CB27-4	BS	Female	Chinese	/	0.978	25.8	/	/	Zhu,et al., 2017, Genomic evolution and selection
35	Baoshan	CB27-5	BS	Female	Chinese	/	0.977	29.2	/	/	Zhu,et al., 2017, Genomic evolution and selection
36	Baoshan	CB27-6	BS	Female	Chinese	/	0.977	27.8	/	/	Zhu,et al., 2017, Genomic evolution and selection
37	Neijiang	CB25-1	NJ	Male	Chinese	Asian	0.981	27.2	13.4	/	Zhu,et al., 2017, Genomic evolution and selection
38	Neijiang	CB25-2	NJ	Male	Chinese	Asian	0.981	27.2	14.0	Scanned	Zhu,et al., 2017, Genomic evolution and selection
39	Neijiang	CB25-3	NJ	Female	Chinese	/	0.978	27.6	/	/	Zhu,et al., 2017, Genomic evolution and selection
40	Neijiang	CB25-4	NJ	Male	Chinese	Asian	0.980	24.5	13.0	Scanned	Zhu,et al., 2017, Genomic evolution and selection

41	Neijiang	CB25-5	NJ	Male	Chinese	Asian	0.981	24.9	13.0	Scanned	Zhu,et al., 2017, Genomic evolution and selection
42	Neijiang	CB25-6	NJ	Male	Chinese	Asian	0.980	26.2	13.1	/	Zhu, et al., 2017, Genomic evolution and selection
43	Tibetan (Yunnan)	CB22-1	YNT	Male	Chinese	Asian	0.981	25.6	13.0	Scanned	This study
44	Tibetan (Yunnan)	CB22-2	YNT	Male	Chinese	European	0.982	29.2	16.0	Scanned	This study
45	Tibetan (Yunnan)	CB22-3	YNT	Male	Chinese	Asian	0.981	26.3	13.2	/	This study
46	Tibetan (Yunnan)	CB22-4	YNT	Male	Chinese	Asian	0.981	25.6	12.9	Scanned	This study
47	Tibetan (Yunnan)	CB22-5	YNT	Male	Chinese	Asian	0.981	25.0	12.4	/	This study
48	Tibetan (Yunnan)	CB22-6	YNT	Male	Chinese	Asian	0.981	25.3	12.9	Scanned	This study
49	Tibetan (Yunnan)	CB3-1	YNT	Male	Chinese	Asian	0.982	27.7	13.6	/	Ai, et al., 2015, Nature genetics
50	Tibetan (Yunnan)	CB3-2	YNT	Male	Chinese	Asian	0.980	28.6	14.4	Scanned	Ai, et al., 2015, Nature genetics
51	Tibetan (Yunnan)	CB3-3	YNT	Male	Chinese	Asian	0.981	28.1	13.7	Scanned	Ai, et al., 2015, Nature genetics
52	Tibetan (Yunnan)	CB3-4	YNT	Male	Chinese	Asian	0.982	26.8	12.6	Scanned	Ai, et al., 2015, Nature genetics
53	Tibetan (Yunnan)	CB3-5	YNT	Male	Chinese	Asian	0.982	26.6	13.4	Scanned	Ai, et al., 2015, Nature genetics
54	Tibetan (Yunnan)	CB3-6	YNT	Male	Chinese	Asian	0.981	22.1	12.7	Scanned	Ai, et al., 2015, Nature genetics
55	Tibetan (Sichuan)	CB23-1	SCT	Male	Chinese	Asian	0.981	25.8	12.8	Scanned	This study
56	Tibetan (Sichuan)	CB23-2	SCT	Male	Chinese	Asian	0.981	28.9	15.4	Scanned	This study
57	Tibetan (Sichuan)	CB23-3	SCT	Male	Chinese	Asian	0.980	25.5	13.2	Scanned	This study
58	Tibetan (Sichuan)	CB23-4	SCT	Male	Chinese	Asian	0.981	28.2	14.6	Scanned	This study
59	Tibetan (Sichuan)	CB23-5	SCT	Male	Chinese	Asian	0.981	25.0	13.1	Scanned	This study
60	Tibetan (Sichuan)	CB23-6	SCT	Male	Chinese	Asian	0.980	26.2	13.1	Scanned	This study
61	Tibetan (Sichuan)	CB4-1	SCT	Female	Chinese	/	0.976	27.1	/	Scanned	Ai, et al., 2015, Nature genetics
62	Tibetan (Sichuan)	CB4-2	SCT	Female	Chinese	/	0.976	26.2	/	Scanned	Ai, et al., 2015, Nature genetics
63	Tibetan (Sichuan)	CB4-3	SCT	Male	Chinese	Asian	0.980	26.3	13.5	Scanned	Ai, et al., 2015, Nature genetics
64	Tibetan (Sichuan)	CB4-4	SCT	Male	Chinese	Asian	0.980	26.8	13.9	Scanned	Ai, et al., 2015, Nature genetics

65	Tibetan (Sichuan)	CB4-5	SCT	Male	Chinese	Asian	0.980	28.3	14.6	Scanned	Ai, et al., 2015, Nature genetics
66	Tibetan (Sichuan)	CB4-6	SCT	Male	Chinese	Asian	0.979	27.0	13.5	Scanned	Ai, et al., 2015, Nature genetics
67	Tibetan (Sichuan)	SRS387327	SCT	Female	Chinese	/	0.978	34.3	/	/	Li, et al., 2013, Nature genetics
68	Jinhua	CB20-1	JH	Female	Chinese	/	0.977	24.8	/	Scanned	Zhu,et al., 2017, Genomic evolution and selection
69	Jinhua	CB20-2	JH	Female	Chinese	/	0.977	29.5	/	Scanned	Zhu,et al., 2017, Genomic evolution and selection
70	Jinhua	CB20-3	JH	Male	Chinese	Asian	0.981	25.3	13.0	Scanned	Zhu,et al., 2017, Genomic evolution and selection
71	Jinhua	CB20-4	JH	Male	Chinese	Asian	0.980	27.0	14.2	Scanned	Zhu,et al., 2017, Genomic evolution and selection
72	Jinhua	CB20-5	JH	Female	Chinese	/	0.977	24.4	/	Scanned	Zhu,et al., 2017, Genomic evolution and selection
73	Jinhua	CB20-6	JH	Male	Chinese	Aisan	0.981	26.4	13.7	/	Zhu,et al., 2017, Genomic evolution and selection
74	Erhualian	CB10-1	EHL	Female	Chinese	/	0.976	27.6	/	Scanned	Ai, et al., 2015, Nature genetics
75	Erhualian	CB10-2	EHL	Female	Chinese	/	0.976	26.9	/	Scanned	Ai, et al., 2015, Nature genetics
76	Erhualian	F0-1190	EHL	Female	Chinese	/	0.977	25.8	/	Scanned	This study
77	Erhualian	F0-126	EHL	Female	Chinese	/	0.977	26.2	/	/	This study
78	Erhualian	F0-142	EHL	Female	Chinese	/	0.977	25.9	/	Scanned	This study
79	Erhualian	F0-146	EHL	Female	Chinese	/	0.977	25.5	/	Scanned	This study
80	Erhualian	F0-174	EHL	Female	Chinese	/	0.977	26.1	/	Scanned	This study
81	Erhualian	F0-196	EHL	Female	Chinese	/	0.977	26.0	/	Scanned	This study
82	Erhualian	F0-292	EHL	Female	Chinese	/	0.977	25.7	/	Scanned	This study
83	Erhualian	F0-38	EHL	Female	Chinese	/	0.977	24.6	/	Scanned	This study
84	Erhualian	F0-52	EHL	Female	Chinese	/	0.977	25.9	/	Scanned	This study
85	Erhualian	F0-54	EHL	Female	Chinese	/	0.977	25.5	/	Scanned	This study
86	Erhualian	F0-58	EHL	Female	Chinese	/	0.977	26.3	/	Scanned	This study

88ErhualianF0-74EHLFemaleChinese/0.97726.6/ScannedThis study89ErhualianF0-124EHLFemaleChinese/0.97837.2/ScannedThis study90ErhualianF0-202EHLFemaleChinese/0.97937.0/ScannedAi, et al., 2015, Nature genetic91ErhualianF0-90EHLFemaleChinese/0.97835.9/ScannedAi, et al., 2015, Nature genetic92ErhualianF0-94EHLFemaleChinese/0.97936.6/ScannedAi, et al., 2015, Nature genetic93ErhualianCB10-3EHLMaleChineseAsian0.98025.912.5/This study94ErhualianCB10-4EHLMaleChineseAsian0.98127.112.7/This study95ErhualianCB10-5EHLMaleChinese/0.97732.9//This study96ErhualianCB10-6EHLFemaleChinese/0.97732.9//This study97EthualianCB10-6EHLFemaleChinese/0.97732.9//This study96ErhualianCB10-6EHLFemaleChinese/0.97732.9///This study97Ethualian <t< th=""><th></th></t<>	
90ErhualianF0-202EHLFemaleChinese/0.97937.0/ScannedAi, et al., 2015, Nature genetic91ErhualianF0-90EHLFemaleChinese/0.97835.9/ScannedAi, et al., 2015, Nature genetic92ErhualianF0-94EHLFemaleChinese/0.97936.6/ScannedAi, et al., 2015, Nature genetic93ErhualianCB10-3EHLMaleChineseAsian0.98025.912.5/This study94ErhualianCB10-4EHLMaleChineseAsian0.98127.112.7/This study95ErhualianCB10-5EHLMaleChineseAsian0.98127.712.3ScannedThis study96ErhualianCB10-6EHLFemaleChinese/0.97732.9//Mis study	
91ErhualianF0-90EHLFemaleChinese/0.97835.9/ScannedAi, et al., 2015, Nature genetic92ErhualianF0-94EHLFemaleChinese/0.97936.6/ScannedAi, et al., 2015, Nature genetic93ErhualianCB10-3EHLMaleChineseAsian0.98025.912.5/This study94ErhualianCB10-4EHLMaleChineseAsian0.98127.112.7/This study95ErhualianCB10-5EHLMaleChineseAsian0.98127.712.3ScannedThis study96ErhualianCB10-6EHLFemaleChinese/0.97732.9//Male	
92ErhualianF0-94EHLFemaleChinese/0.97936.6/ScannedAi, et al., 2015, Nature genetic93ErhualianCB10-3EHLMaleChineseAsian0.98025.912.5/This study94ErhualianCB10-4EHLMaleChineseAsian0.98127.112.7/This study95ErhualianCB10-5EHLMaleChineseAsian0.98127.712.3ScannedThis study96ErhualianCB10-6EHLFemaleChinese/0.97732.9//This study	cs
93ErhualianCB10-3EHLMaleChineseAsian0.98025.912.5/This study94ErhualianCB10-4EHLMaleChineseAsian0.98127.112.7/This study95ErhualianCB10-5EHLMaleChineseAsian0.98127.712.3ScannedThis study96ErhualianCB10-6EHLFemaleChinese/0.97732.9//This study	cs
94ErhualianCB10-4EHLMaleChineseAsian0.98127.112.7/This study95ErhualianCB10-5EHLMaleChineseAsian0.98127.712.3ScannedThis study96ErhualianCB10-6EHLFemaleChinese/0.97732.9//This study	CS
95ErhualianCB10-5EHLMaleChineseAsian0.98127.712.3ScannedThis study96ErhualianCB10-6EHLFemaleChinese/0.97732.9//This study	
96 Erhualian CB10-6 EHL Female Chinese / 0.977 32.9 / / This study	
97 Erhualian CB10-7 EHL Female Chinese / 0.977 30.9 / / This study	
98ErhualianCB10-8EHLFemaleChinese/0.97827.8//This study	
99 ErhualianCB10-9EHLFemaleChinese/0.97725.4//This study	
100 ErhualianCB10-10EHLMaleChineseAsian0.98025.112.4/This study	
101 LaiwuCB9-1LWUMaleChineseAsian0.97925.512.4ScannedAi, et al., 2015, Nature genetic	CS
102 LaiwuCB9-2LWUMaleChineseAsian0.97924.011.7ScannedAi, et al., 2015, Nature genetic	cs
103 LaiwuCB9-3LWUMaleChineseAsian0.98027.713.1ScannedAi, et al., 2015, Nature genetic	CS
104 LaiwuCB9-4LWUMaleChineseAsian0.98026.712.9ScannedAi, et al., 2015, Nature genetic	CS
105 LaiwuCB9-5LWUMaleChineseAsian0.98026.713.8ScannedAi, et al., 2015, Nature genetic	cs
106 LaiwuCB9-6LWUMaleChineseAsian0.98026.313.3ScannedAi, et al., 2015, Nature genetic	CS
107 LaiwuCB9-7LWUFemaleChinese/0.97725.4//This study	
108 LaiwuCB9-8LWUFemaleChinese/0.97727.0//This study	
109 LaiwuCB9-9LWUFemaleChinese/0.97724.3//This study	
110 LaiwuCB9-10LWUFemaleChinese/0.97630.4//This study	
111LaiwuCB9-11LWUMaleChineseAsian0.98132.213.2/This study	

112	Laiwu	CB9-12	LWU	Male	Chinese	Asian	0.980	25.6	12.6	/	This study
113	Laiwu	CB9-13	LWU	Male	Chinese	Asian	0.980	28.5	13.1	/	This study
114	Laiwu	CB9-14	LWU	Male	Chinese	Asian	0.980	33.2	16.1	/	This study
115	Laiwu	CB9-15	LWU	Male	Chinese	Asian	0.980	28.7	13.4	/	This study
116	Bamei	CB26-1	BAM	Male	Chinese	Asian	0.979	23.3	12.1	Scanned	Zhu,et al., 2017, Genomic evolution and selection
117	Bamei	CB26-2	BAM	Male	Chinese	Asian	0.981	23.3	11.5	Scanned	Zhu,et al., 2017, Genomic evolution and selection
118	Bamei	CB26-3	BAM	Male	Chinese	Asian	0.981	28.2	13.6	Scanned	Zhu,et al., 2017, Genomic evolution and selection
119	Bamei	CB26-4	BAM	Male	Chinese	Asian	0.980	23.8	12.0	Scanned	Zhu,et al., 2017, Genomic evolution and selection
120	Bamei	CB26-5	BAM	Male	Chinese	Asian	0.980	26.3	13.7	Scanned	Zhu,et al., 2017, Genomic evolution and selection
121	Bamei	CB26-6	BAM	Male	Chinese	Asian	0.981	24.3	12.3	Scanned	Zhu,et al., 2017, Genomic evolution and selection
122	Hetao	CB6-1	HT	Female	Chinese	/	0.975	26.0	/	Scanned	Ai, et al., 2015, Nature genetics
123	Hetao	CB6-2	HT	Female	Chinese	/	0.975	25.1	/	Scanned	Ai, et al., 2015, Nature genetics
124	Hetao	CB6-3	HT	Male	Chinese	European	0.971	20.4	11.3	Scanned	Ai, et al., 2015, Nature genetics
125	Hetao	CB6-4	HT	Male	Chinese	Asian	0.979	24.5	12.0	Scanned	Ai, et al., 2015, Nature genetics
126	Hetao	CB6-5	HT	Female	Chinese	/	0.976	25.5	/	Scanned	Ai, et al., 2015, Nature genetics
127	Hetao	CB6-6	HT	Female	Chinese	/	0.973	24.8	/	Scanned	Ai, et al., 2015, Nature genetics
128	Min	CB7-1	MIN	Female	Chinese	/	0.975	26.0	/	Scanned	Ai, et al., 2015, Nature genetics
129	Min	CB7-2	MIN	Male	Chinese	European	0.979	25.6	13.3	Scanned	Ai, et al., 2015, Nature genetics
130	Min	CB7-3	MIN	Male	Chinese	European	0.981	26.5	13.8	Scanned	Ai, et al., 2015, Nature genetics
131	Min	CB7-4	MIN	Male	Chinese	European	0.978	26.1	14.1	Scanned	Ai, et al., 2015, Nature genetics
132	Min	CB7-5	MIN	Male	Chinese	European	0.977	23.5	12.8	Scanned	Ai, et al., 2015, Nature genetics
133	Min	CB7-6	MIN	Male	Chinese	European	0.979	27.0	14.6	Scanned	Ai, et al., 2015, Nature genetics

Euro	pean pigs										
134	White Duroc	F0-73	WDU	Male	European	European	0.983	36.1	21.4	Scanned	This study
135	White Duroc	F0-75	WDU	Male	European	European	0.983	37.5	19.9	Scanned	This study
136	White Duroc	EB4-1	WDU	Male	Chinese	European	0.983	32.7	16.9	/	This study
137	White Duroc	EB4-2	WDU	Male	Chinese	European	0.982	31.0	14.5	/	This study
138	White Duroc	EB4-3	WDU	Female	European	/	0.978	26.7	/	/	This study
139	White Duroc	EB4-4	WDU	Male	Chinese	European	0.983	33.0	15.1	/	This study
140	White Duroc	EB4-5	WDU	Female	Chinese	/	0.979	28.6	/	/	This study
141	White Duroc	EB4-6	WDU	Male	European	European	0.982	28.0	14.2	/	This study
142	White Duroc	EB4-7	WDU	Female	Chinese	/	0.978	24.4	/	/	This study
143	White Duroc	EB4-8	WDU	Female	European	/	0.979	33.4	/	/	This study
144	Iberian	SRR1513307	Ib	Male	European	European	0.969	13.8	6.2	/	Ramírez, et al., 2014, Heredity
145	Creole	SRR1513309	Cr	Female	European	/	0.968	13.9	/	/	Ramírez, et al., 2014, Heredity
146	Duroc	DRC1729	DU	Female	European	/	0.979	15.2	/	/	Kim, et al., 2015, Plos one
147	Duroc	DRC1735	DU	Female	European	/	0.979	17.3	/	/	Kim, et al., 2015, Plos one
148	Duroc	DRC1795	DU	Female	European	/	0.981	17.1	/	/	Kim, et al., 2015, Plos one
149	Duroc	DRC25-24	DU	Female	European	/	0.979	16.6	/	/	Kim, et al., 2015, Plos one
150	Duroc	DRC25-78	DU	Female	European	/	0.978	14.9	/	/	Kim, et al., 2015, Plos one
151	Duroc	DRC26-23	DU	Female	European	/	0.979	16.9	/	/	Kim, et al., 2015, Plos one
152	Duroc	DRC26-66	DU	Female	European	/	0.978	15.1	/	/	Kim, et al., 2015, Plos one
153	Duroc	DRC27-20	DU	Female	European	/	0.979	17.6	/	/	Kim, et al., 2015, Plos one
154	Duroc	DRC27-81	DU	Female	European	/	0.978	15.7	/	/	Kim, et al., 2015, Plos one
155	Duroc	DRCDAA973 6	DU	Female	European	/	0.978	16.4	/	/	Kim, et al., 2015, Plos one

156	Duroc	DRCDAA973	DU	Female	European	/	0.978	15.2	/	/	Kim, et al., 2015, Plos one
157	Landrace	8 EB1-1	LR	Male	European	European	0.981	26.5	12.6	/	This study
158	Landrace	EB1-2	LR	Male	European	European	0.981	31.7	11.3	/	This study
159	Landrace	EB1-3	LR	Female	European	/	0.978	25.0	/	/	This study
160	Landrace	EB1-4	LR	Female	European	/	0.979	37.9	/	/	This study
161	Landrace	EB1-5	LR	Male	European	European	0.982	26.4	12.9	/	This study
162	Landrace	EB1-6	LR	Female	Chinese	/	0.979	34.3	/	/	This study
163	Landrace	EB1-7	LR	Female	Chinese	/	0.979	31.2	/	/	This study
164	Landrace	EB1-8	LR	Female	European	/	0.979	29.1	/	/	This study
165	Landrace	LRS_10	LR	Female	European	/	0.967	14.1	/	/	Kim, et al., 2015, Plos one
166	Landrace	LRS_11	LR	Female	European	/	0.967	14.5	/	/	Kim, et al., 2015, Plos one
167	Landrace	LRS_14	LR	Female	European	/	0.971	13.7	/	/	Kim, et al., 2015, Plos one
168	Large White	EB2-1	LW	Male	Chinese	European	0.982	24.9	13.0	/	This study
169	Large White	EB2-2	LW	Female	Chinese	/	0.978	33.9	/	/	This study
170	Large White	EB2-3	LW	Female	Chinese	/	0.978	28.6	/	/	This study
171	Large White	EB2-4	LW	Female	Chinese	/	0.978	27.0	/	/	This study
172	Large White	EB2-5	LW	Female	Chinese	/	0.978	27.5	/	/	This study
173	Large White	EB2-6	LW	Male	Chinese	European	0.981	23.5	12.4	/	This study
174	Large White	EB2-7	LW	Male	European	European	0.982	28.7	13.7	/	This study
175	Large White	YorkshireKL1	LW	Male	Chinese	European	0.979	17.0	6.9	/	Kim, et al., 2015, Plos one
176	Large White	YorkshireKL2	LW	Male	Chinese	European	0.979	16.8	7.4	/	Kim, et al., 2015, Plos one
177	Large White	YorkshireKL3	LW	Male	Chinese	European	0.981	16.4	6.5	/	Kim, et al., 2015, Plos one
178	Large White	YorkshireKL4	LW	Male	Chinese	European	0.979	16.3	6.3	/	Kim, et al., 2015, Plos one
179	Large White	YorkshireKL6	LW	Female	Chinese	/	0.977	16.9	/	/	Kim, et al., 2015, Plos one
180	Large White	YorkshireKL7	LW	Female	Chinese	/	0.978	26.1	/	/	Kim, et al., 2015, Plos one

181	Pietrain	EB3-1	PT	Male	European	European	0.982	28.9	15.0	/	This study
182	Pietrain	EB3-2	РТ	Male	European	European	0.981	27.2	14.2	/	This study
183	Pietrain	EB3-3	РТ	Male	European	European	0.983	35.4	18.3	/	This study
184	Pietrain	EB3-4	РТ	Female	Chinese	/	0.978	24.8	/	/	This study
185	Pietrain	EB3-5	РТ	Female	European	/	0.978	27.9	/	/	This study
186	Pietrain	EB3-6	PT	Male	European	European	0.983	33.8	15.7	/	This study
187	Mangalica	SRR1178916	MG	Male	European	European	0.980	16.1	8.0	/	Molnár, et al., 2014, BMC Genomics
188	Mangalica	SRR1178923	MG	Male	European	European	0.970	11.5	4.8	/	Molnár, et al., 2014, BMC Genomics
189	Mangalica	SRR1178925	MG	Male	European	European	0.980	16.5	8.5	/	Molnár, et al., 2014, BMC Genomics
190	European Wild Boar	WB25U11	EUW	Male	European	European	0.974	11.3	6.8	/	Frantz, et al., 2015, Nature Genetics
191	European Wild Boar	WB28M39	EUW	Male	European	European	0.975	13.4	6.6	/	Frantz, et al., 2015, Nature Genetics
192	European Wild Boar	SRR1513306	EUW	Male	European	European	0.982	14.9	7.5	/	Ramírez, et al., 2014, Heredity
193	European Wild Boar	WB21F04	EUW	Female	European	/	0.978	16.7	/	/	Frantz, et al., 2015, Nature Genetics
194	European Wild Boar	WB21M05	EUW	Male	European	European	0.983	23.4	8.9	/	Frantz, et al., 2015, Nature Genetics
195	European Wild Boar	WB22M03	EUW	Male	European	European	0.980	15.1	7.0	/	Frantz, et al., 2015, Nature Genetics
196	European Wild Boar	WB33U04	EUW	Male	European	European	0.981	13.3	6.7	/	Frantz, et al., 2015, Nature Genetics
197	European Wild Boar	WB42M09	EUW	Female	European	/	0.978	14.7	/	/	Frantz, et al., 2015, Nature Genetics
198	European Wild Boar	WB44U06	EUW	Female	European	/	0.978	14.1	/	/	Frantz, et al., 2015, Nature Genetics
199	European Wild Boar	WB44U07	EUW	Female	European	/	0.977	12.7	/	/	Frantz, et al., 2015, Nature Genetics
200	European Wild Boar	WB21M03	EUW	Male	European	European	0.980	15.1	6.7	/	Frantz, et al., 2015, Nature Genetics
Sum	atran wild boars										
201	Sumatran Wild Boar	ERR173176	SWB	Female	/	/	0.802	11.3	/	/	Groenen, et al., 2012, Nature
202	Sumatran Wild Boar	ERR173178	SWB	Male	/	/	0.799	11.0	3.5	/	Groenen, et al., 2012, Nature
Outg	roups								/		

203	African Common	ERR173203	AWP	Female	/	/	0.780	13.1	/	/	Groenen, et al., 2012, Nature
	Warthog										
204	Java Warty Pig	ERR977084	JWP	Male	/	/	0.980	45.7	19.4	/	Frantz, et al., 2015, Nature Genetics
205	Celebes Wild Boar	ERR173210	CWP	Female	/	/	0.819	23.9	/	/	Groenen, et al., 2012, Nature

a, The 4 genome sequence data downloaded from the NCBI SRA database, denoted with blue float number here, were extracted from their alignment files; their genome coverages were all smaller than 0.82.

Chromosome	SNPs of our data ^a	SNPs in dbSNP ^b	Common SNPs between our data and dbSNP	Proportion of common SNPs	Novel SNPs in our data compared to dbSNP	Proportion of novel SNPs
chr1	3564719	6343241	2884835	80.9%	679884	19.1%
chr2	2321609	4101086	1892176	81.5%	429433	18.5%
chr3	2213970	3699676	1786700	80.7%	427270	19.3%
chr4	2123108	3731799	1785100	84.1%	338008	15.9%
chr5	1790803	2901033	1380722	77.1%	410081	22.9%
chr6	2638342	4046647	1973616	74.8%	664726	25.2%
chr7	2088205	3575023	1730578	82.9%	357627	17.1%
chr8	2198478	3865719	1813779	82.5%	384699	17.5%
chr9	2326329	4057285	1950839	83.9%	375490	16.1%
chr10	1506527	2574859	1267666	84.1%	238861	15.9%
chr11	1502467	2564529	1236119	82.3%	266348	17.7%
chr12	1180906	1855147	922166	78.1%	258740	21.9%
chr13	2782549	4932653	2240889	80.5%	541660	19.5%
chr14	2193738	3898861	1839568	83.9%	354170	16.1%
chr15	2135572	3647251	1732300	81.1%	403272	18.9%
chr16	1430666	2458662	1195541	83.6%	235125	16.4%
chr17	1239531	2038315	1010548	81.5%	228983	18.5%
chr18	1094923	1825643	911530	83.3%	183393	16.7%
chrX	1167598	1742989	934505	80.0%	233093	20.0%
chrY	42288	21025	1642	3.9%	40646	96.1%
chrM	524	335	200	38.2%	324	61.8%

Supplementary Table S3. SNPs statistics of 200 Eurasian pigs along the whole genome.

b, Build 151 of the Sus scrofa dbSNP dataset from the NCBI database.

a, Except chrY and chrM, SNPs on the other chromosomes were called using 200 Eurassian pigs; SNPs on the chrY and chrM were called using all male pigs, including 101 Eurasian pigs, one Sumatran wild boar and one Java Warty pig.

468 Supplementary Table S4. D-statistics test for the phylogenetic relationships among

Mig	gration	Pop1 (W)	Pop2 (X)	Pop3 (Y)	Pop4 (Outgroup)	D-statistics	se.	Z score
EIII		HT	BAM	EHL	AWP	0.020	0.0019	10.371
EHL	<->HI	EHL	JH	HT	AWP	0.019	0.0020	9.826
EIII	Migration IL <-> HT IL <-> MIN IC <-> MIN IC <-> DWU IC <-> BAM IC <-> DU -> BS IC <-> DU -> BS	MIN	BAM	EHL	AWP	0.005	0.0020	2.617
EHL	<-> IVIIIN	EHL	JH	MIN	AWP	0.015	0.0019	7.971
HT <	<-> MIN	HT	BAM	MIN	AWP	0.018	0.0021	8.767
HT <	-> LWU	HT	BAM	LWU	AWP	0.011	0.0020	5.292
ШТ ~	- DAM	HT	MIN	BAM	AWP	0.016	0.0020	7.813
П	-> DAIM	HT	HT LWU BAM AWP		0.013	0.0021	5.821	
		MIN	HT	MG	AWP	0.030	0.0037	8.154
		MG	EWB	MIN	AWP	0.021	0.0023	8.996
		DU	EWB	MIN	AWP	0.023	0.0029	7.772
		LW	EWB	MIN	AWP	0.024	0.0027	8.815
		DU	MG	MIN	AWP	0.005	0.0031	1.658
		LW	MG	MIN	AWP	0.007	0.0029	2.325
		DU	MG	HT	AWP	0.013	0.0029	4.630
	MG -> MIN	DU	MG	BS	AWP	0.031	0.0025	12.525
		DU	MG	YNT	AWP	0.022	0.0024	9.197
		DU	MG	WZS	AWP	0.041	0.0030	13.683
		LW	MG	HT	AWP	0.014	0.0024	5.820
		LW	MG	BS	AWP	0.026	0.0022	11.700
		LW	MG	YNT	AWP	0.029	0.0021	14.196
		LW	MG	WZS	AWP	0.050	0.0026	18.917
European -> Asian		LW	DU	HT	AWP	0.001	0.0025	0.468
7 totali	Europe -> HT	HT	BAM	DU	AWP	0.014	0.0028	5.141
		HT	BAM	LW	AWP	0.005	0.0027	1.691
		LW	DU	YNT	AWP	0.008	0.0021	3.683
	Europe -> YNT	YNT	LUC	DU	AWP	0.006	0.0020	3.091
		YNT	LUC	LW	AWP	0.006	0.0020	2.835
		LW	DU	WZS	AWP	0.010	0.0026	3.583
	Europe -> WZS	WZS	LUC	DU	AWP	0.013	0.0019	6.515
		WZS	LUC	LW	AWP	0.013	0.0019	7.106
		DU	LW	BS	AWP	0.011	0.0021	5.209
		BS	YNT	EWB	AWP	0.003	0.0019	1.519
	recent DU -> BS	BS	YNT	DU	AWP	0.012	0.0021	5.390
	ļ Ē	BS	YNT	LW	AWP	0.001	0.0017	0.845
		LWU	WZS	Cr	AWP	0.067	0.0034	19.664
	Cr -> LWU	LWU	EHL	Cr	AWP	0.039	0.0030	13.046

469 pig populations from different geographic regions.

]	LWU	YNT	Cr	AWP	0.069	0.0029	24.024
		BMX	LUC	LW	AWP	0.009	0.0019	4.040
		BMX	LUC	DU	AWP	0.004	0.0019	2.137
	BMX -> Europe	BMX	LUC	WDU	AWP	0.007	0.0018	3.790
		BMX	LUC	PT	AWP	0.008	0.0019	4.371
Asia -> Europe		EHL	JH	LW	AWP	0.019	0.0019	9.527
		EHL	JH	DU	AWP	0.019	0.0020	9.702
	EHL -> Europe	EHL	JH	WDU	AWP	0.019	0.0019	10.147
		EHL	ЈН	РТ	AWP	0.019	0.0020	9.701
	I	WZS	MIN	SWB	AWP	0.018	0.0021	8.796
		LUC	MIN	SWB	AWP	0.018	0.0023	7.974
		BMX	MIN	SWB	AWP	0.017	0.0022	7.681
SWB	-> Asia	BS	MIN	SWB	AWP	0.013	0.0020	6.345
		YNT	MIN	SWB	AWP	0.013	0.0018	7.321
		SCT	MIN	SWB	AWP	0.014	0.0020	7.117
		HT	DU	JWP	AWP	0.017	0.0027	6.027
		MIN	DU	JWP	AWP	0.018	0.0031	5.843
		BAM	DU	JWP	AWP	0.023	0.0030	7.705
		LWU	DU	JWP	AWP	0.015	0.0031	4.819
		EHL	DU	JWP	AWP	0.020	0.0028	7.196
		ЛН	DU	JWP	AWP	0.018	0.0031	5.828
		BS	DU	JWP	AWP	0.024	0.0029	8.399
		NJ	DU	JWP	AWP	0.025	0.0029	8.653
		SCT	DU	JWP	AWP	0.026	0.0029	9.043
		YNT	DU	JWP AWP		0.025	0.0026	9.650
		LUC	DU	JWP	AWP	0.025	0.0031	8.139
		WZS	DU	JWP	AWP	0.024	0.0028	8.351
		BMX	DU	JWP	AWP	0.023	0.0028	8.226
JWP <- SV	WB -> SCW	SCW	DU	JWP	AWP	0.024	0.0028	8.474
		HT	EWB	JWP	AWP	0.019	0.0029	6.807
		MIN	EWB	JWP	AWP	0.021	0.0031	6.820
		BAM	EWB	JWP	AWP	0.026	0.0029	8.989
		LWU	EWB	JWP	AWP	0.018	0.0032	5.695
		EHL	EWB	JWP	AWP	0.023	0.0028	8.150
		ЛН	EWB	JWP	AWP	0.021	0.0032	6.615
		BS	EWB	JWP	AWP	0.027	0.0029	9.154
		NJ	EWB	JWP	AWP	0.028	0.0030	9.374
		SCT	EWB	JWP	AWP	0.029	0.0028	10.298
		YNT	EWB	JWP	AWP	0.028	0.0027	10.543
		LUC	EWB	JWP	AWP	0.028	0.0032	8.526
		WZS	EWB	JWP	AWP	0.026	0.0029	8.923
		BMX	EWB	JWP	AWP	0.026	0.0029	8.749

	SCW	EWB	JWP	AWP	0.026	0.0028	9.552				
	HT	MG	JWP	AWP	0.016	0.0030	5.383				
	MIN	MG	JWP	AWP	0.018	0.0031	5.645				
	BAM	MG	JWP	AWP	0.022	0.0030	7.438				
	LWU	MG	JWP	AWP	0.015	0.0032	4.536				
	EHL	MG	JWP	AWP	0.019	0.0029	6.747				
	ЛН	MG	JWP	AWP	0.018	0.0032	5.417				
	BS	MG	JWP	AWP	0.023	0.0030	7.710				
	NJ	MG	JWP	AWP	0.025	0.0030	8.034				
	SCT	MG	JWP	AWP	0.025	0.0029	8.653				
	YNT	MG	JWP	AWP	0.025	0.0028	8.898				
	LUC	MG	JWP	AWP	0.024	0.0032	7.506				
	WZS	MG	JWP	AWP	0.022	0.0030	7.529				
	BMX	MG	JWP	AWP	0.022	0.0031	7.272				
	SCW	MG	JWP	AWP	0.023	0.0029	7.788				
NOTE.—See supplementary table S1 for the full names of the population codes.											

473 Supplementary Table S5. Comparison of nucleotide diversity on autosomes and in the

474 MSY region.

	Pi	Pi	Pi
	(Chinese pigs	(Chinese pigs with	(European pigs with
	with Asian	European	European
	haplotypes)	haplotypes)	haplotypes)
Autosome	3.67 ×10 ⁻³	3.66×10 ⁻³	2.36×10 ⁻³
MSY	1.18×10 ⁻⁴	2.97×10 ⁻⁵	5.00×10 ⁻⁵
MSY:Autosome	1:31	1:123	1:47

477 Supplementary Table S6. Higher than expected frequency of European Y
478 chromosomes in Asian pig populations. P values are calculated using a binomial test
479 over the range of expected Y chromosome frequencies. Even when all contributions
480 from Europe are male, HT&MIN, WZS, and BS have higher than expected European
481 Y chromosome frequencies. In contrast, the lack of European mitochondria is consistent
482 with expectations.

Population	Mean X-chromosomal	Mean	<i>p</i> value range, mtDNA	p value range, Y chr		
	ancestry	autosomal	(number of European	(number of European		
		ancestry	haplotypes/sample size)	haplotypes/sample size)		
HT&MIN	0.16	0.20	0.002-1 (0/12)	0-0.022 (6/7)		
WZS	0.043	0.078	0.35-1 (0/6)	0-0.026 (2/2)		
YNT	0.021	0.045	0.32-1 (0/12)	0-0.68 (1/12)		
BS	0.025	0.074	0.38-1 (0/6)	0-0.0034 (3/3)		

483

484

485 Supplementary Table S7. The parameters of the best-fitted demographic models of

486 the target pairs of European and Chinese pig populations.

population pairs	sl	t1	nu11	nu12	m1_12	m1_21	t2	nu21	nu22	m2_12	m2_21	Nanc	Log likelihood
MIN&HT_ LW&MG	3.51E-01	5.13E-01	7.28E-01	1.78E-01	3.49E-01	2.60E+00	3.62E-02	2.67E-02	6.75E-02	6.75E+00	3.28E+00	91137.07	-1220.06
BS_WDU	9.48E-01	2.52E-01	5.66E-01	1.69E-01	2.70E-13	1.71E+00	1.90E-02	3.92E-01	1.82E-02	2.45E+00	3.19E+00	180007.45	-543.77
WZS_LW	5.02E-01	6.08E-01	9.47E-01	1.66E-01	2.25E-01	1.16E+00	1.30E-01	3.29E-01	6.56E-02	8.93E-01	5.21E+00	86643.27	-681.80
YNT_LW	3.74E-01	6.60E-01	1.21E+00	2.31E-01	2.90E-04	1.95E+00	1.13E-01	2.18E-01	7.65E-02	1.61E+00	3.52E+00	84721.51	1223.32
	487												
	488												
	489												
	490												

491 Supplementary Table S8. The possibility of the simulated European Y frequency in

nonulation pairs	number of	number of simulations that	n valua
population pairs	simulation repeats	match the observed data	<i>p</i> -value
MIN&HT_LW&MG	1000	38	0.038
BS_WDU	1000	3	0.003
WZS_LW	1000	209	0.209
YNT_LW	1000	89	0.089

492 Chinese pigs that match observed frequency in Chinese pigs.

Full_breed_name	Abbreviation	WildorDomesticType	Country	Location	Longitude	Latitude	Number	Asian haplogroup	European haplogroup	Sumatran haplotype
Hanjianghei	HJH	Domestic	China	Shanxi_Hanzhong	106.66	33.24	1	1	0	0
Ningxiang	NX	Domestic	China	Hunan_Ningxiang	112.36	28.13	1	1	0	0
Yushanhei	YSH	Domestic	China	Jiangxi_Yushan	118.17	28.76	1	1	0	0
Mi	MI	Domestic	China	Jiangsu_Changzhou	119.52	31.72	2	2	0	0
Lepinghua	LPH	Domestic	China	Jiangxi_Leping	117.15	28.98	3	3	0	0
Jinhua	ЈН	Domestic	China	Zhejiang_Jinhua	119.65	29.09	3	3	0	0
TibetTibetan1	TT1	Domestic	China	Tibet_Gongbujiangda	93.24	30.03	4	4	0	0
Tongcheng	TC	Domestic	China	Hubei_Xianning	113.8	29.23	5	5	0	0
Bamei	BAM	Domestic	China	Gansu_Longdong	107.63	35.75	6	6	0	0
Meishan	MS	Domestic	China	China_Jiading	121.27	31.38	6	6	0	0
Shaziling	SZL	Domestic	China	Hunan_Xiangtan	112.91	27.87	7	7	0	0
Neijiang	NJ	Domestic	China	Sichuan_Neijiang	104.85	29.81	8	8	0	0
Rongchang	RC	Domestic	China	Chongqing_Rongchang	106.21	29.62	8	8	0	0
Ganxi	GX	Domestic	China	Jiangxi_Shanggao	114.86	28.2	8	8	0	0
SichuanTibetan	SCT	Domestic	China	Sichuan_Litang	100.28	30	10	10	0	0
Congjiangxiang	CJX	Domestic	China	Guizhou_Congjiang	108.54	25.35	11	11	0	0
Laiwu	LWU	Domestic	China	Shandong_Laiwu	117.67	36.22	11	11	0	0
Diannan	DN	Domestic	China	Yunan_Xishuangbanna	101	21.5	14	14	0	0
Dongshan	DS	Domestic	China	Guangxi_Quanzhou	111.08	25.94	14	14	0	0
Daweizi	DWZ	Domestic	China	Hunan_Changsha	113.22	28.32	15	15	0	0
Erhualian	EHL	Domestic	China	Jiangsu_Jiaoxi	119.93	31.72	15	15	0	0
Bamaxiang	BMX	Domestic	China	Guangxi_Bama	107.25	24.15	15	15	0	0

Supplementary Table S9. The geographical distribution of the two haplogroups in a large panel of 426 male pigs from around the globe.

SouthChineseWildBoa	r SCWB	WildBoar	China	China_Shangyou	114.55	25.8	1	1	0	0
SouthChineseWildBoa	r SCWB	WildBoar	China	China_Wuyishan	117	27.93	1	1	0	0
CenterChineseWildBo	ar CCWB	WildBoar	China	China_Funiushan	111.82	33.87	1	1	0	0
NorthChineseWildBoa	r NCWB	WildBoar	China	China_North	128.07	44.36	1	1	0	0
ChineseWildboar	CWB	WildBoar	China	China	114.35	37.35	1	1	0	0
SouthChineseWildBoa	r SCWB	WildBoar	China	China_Xiangshan	119.73	29.48	2	2	0	0
SouthChineseWildBoa	r SCWB	WildBoar	China	China_Nanchang	115.89	28.85	7	7	0	0
KoreanWildBoar	KWB	WildBoar	Korea	Korea	128.52	37.94	6	6	0	0
Khabarovsk	KBR	WildBoar	Russia	Russia_Khabarovsk	135.07	48.51	1	1	0	0
PrimoskyWildBoar	RPWB	WildBoar	Russia	Russia_Primosky	135	48.72	8	8	0	0
Qingping	QP	Domestic	China	Hubei_Dangyang	112.41	31.21	2	1	1	0
Hetao	HT	Domestic	China	Inner_Mongolia_Hetao	107.42	40.75	3	2	1	0
TibetTibetan2	TT2	Domestic	China	Tibet_Milin	94.22	29.22	5	4	1	0
YunnanTibetan	YNT	Domestic	China	Yunan_Diqing	99.71	27.83	12	11	1	0
GansuTibetan	GST	Domestic	China	Gansu_Hezuo	102.91	35	6	1	5	0
Dahe	DH	Domestic	China	Yunan_Fuyuan	104.37	25.47	7	4	3	0
Mingguang	MG	Domestic	China	Yunan_Tengchong	98.5	25.02	15	8	7	0
Xiangxihei	XXH	Domestic	China	Hunan_Luxi	110.22	28.22	14	4	10	0
Putianhei	PTH	Domestic	China	Fujian_Putian	118.94	25.5	1	0	1	0
Tunchang	TUN	Domestic	China	Hainan_Tunchang	110.06	19.35	1	0	1	0
Xu	XU	Domestic	China	Anhui_Nanling	118.29	30.9	1	0	1	0
Huai	HUAI	Domestic	China	Jiangsu_Donghai	118.79	34.56	2	0	2	0
Dahuabai	DHB	Domestic	China	Guangdong_Zhongshan	113.42	22.55	8	0	8	0
Wuzhishan	WZS	Domestic	China	Hainan_Wuzhishan	109.52	18.78	8	0	8	0
Min	MIN	Domestic	China	Northeast_China	126.28	46.27	9	0	9	0

Mashen	MAS	Domestic	China	Shanxi_Datong	113.29	40.11	13	0	13	0
Iberian	IB	Domestic	Europe	Spain_IberianPeninsula	-4.09	40.49	1	0	1	0
Semirechensk	SEM	Domestic	Kazakhstan	Kazakhstan_Southeast	66.92	48.02	1	0	1	0
Hampshire	HPS	Domestic	America	America_Kentucky	-84.27	37.85	2	0	2	0
Ukrainian white-steppe	UWS	Domestic	Ukraine	Ukraine_AskainaNova	32.31	48.23	2	0	2	0
Minisib	MSB	Domestic	Russia	Russia_Novosibirsk	82.94	55.01	2	0	2	0
Mangalica	MGL	Domestic	Europe	Hungary	19.5	47.16	3	0	3	0
Ukrainian spotted steppe	USS	Domestic	Ukraine	Ukraine_AskainaNova	32.31	48.23	3	0	3	0
Belorussian pork swine	BPS	Domestic	Belorussia	Belorussia	27.95	53.71	5	0	5	0
WhiteDuroc	WD	Domestic	America	America_Southburn	-86.61	36.33	6	0	6	0
Pietrain	PI	Domestic	Europe	Belgium_Piétrain	4.92	50.72	7	0	7	0
Red White Belted	RWB	Domestic	Ukraine	Ukraine_Nikolaev	32.39	49.44	7	0	7	0
Yorkshire	LW	Domestic	Europe	England_Yorkshire	-1.76	53.81	15	0	15	0
Landrace	LR	Domestic	Europe	Denmark	9.5	56.26	18	0	18	0
Duroc	DRC	Domestic	America	America_NewEngland	-70.78	44.1	18	0	18	0
EuropeanWildboar	EWB	WildBoar	Greece	Greece_Samos	26.98	37.76	1	0	1	0
EuropeanWildboar	EWB	WildBoar	Spain	Spain_Northeast	16.97	45.63	1	0	1	0
EuropeanWildboar	EWB	WildBoar	France	France	2.21	46.23	1	0	1	0
EuropeanWildboar	EWB	WildBoar	Switzerland	Switzerland_Malcantone	10.09	47.82	1	0	1	0
Ivanovo	IVA	WildBoar	Russia	Russia_Ivanovo	40.98	57.01	1	0	1	0
Kirov	KIR	WildBoar	Russia	Russia_Kirov	49.67	58.61	1	0	1	0
Krasnodar	KSD	WildBoar	Russia	Russia_Krasnodar	38.99	45.04	1	0	1	0
Leningrad	LNG	WildBoar	Russia	Russia_Leningrad	30.34	59.94	1	0	1	0
Omsk	OMSK	WildBoar	Russia	Russia_Omsk	73.32	54.99	1	0	1	0
Saratov	SRT	WildBoar	Russia	Russia_Saratov	45.96	51.6	1	0	1	0

Tver	TVER	WildBoar	Russia	Russia_Tver	35.92	56.86	1	0	1	0
Vladimir	VDM	WildBoar	Russia	Russia_Vladimir	40.42	56.15	1	0	1	0
EuropeanWildboar	EWB	WildBoar	Netherlands	Netherlands_Veluwe	5.83	52.24	2	0	2	0
Cheliabinsk	CLB	WildBoar	Russia	Russia_Cheliabinsk	61.44	55.17	2	0	2	0
Kharkov	KK	WildBoar	Ukraine	Ukraine_Kharkov	36.23	50	2	0	2	0
Tumen	TUM	WildBoar	Russia	Russia_Tumen	65.53	57.17	2	0	2	0
Volgograd	VGG	WildBoar	Russia	Russia_Volgograd	44.51	48.71	2	0	2	0
Arhangelsk	ARH	WildBoar	Russia	Russia_Arhangelsk	40.56	64.55	3	0	3	0
Kurgan	KGN	WildBoar	Russia	Russia_Kurgan	65.31	55.47	3	0	3	0
Smolensk	SML	WildBoar	Russia	Russia_Smolensk	32.05	54.79	3	0	3	0
SumatranWildBoar	SWB	WildBoar	Indonesia	Indonesia_Sumatra	101.34	-0.58	1	0	0	1

Model	-lnL	K	AIC	delta	weight	cumWeight
TVM	21735.9018	211	43893.8036	0.0000	0.4295	0.4295
GTR	21735.9015	212	43895.8030	1.9994	0.1581	0.5876
TVM+G	21735.9035	212	43895.8071	2.0034	0.1577	0.7453
GTR+G	21735.9033	213	43897.8065	4.0029	0.0580	0.9090
TVMef	21742.8090	208	43901.6181	7.8144	8.63E-03	0.9565
TPM1uf	21741.8178	209	43901.6356	7.8319	8.56E-03	0.9651
TPM3uf	21742.3804	209	43902.7608	8.9571	4.88E-03	0.9700
SYM	21742.6264	209	43903.2527	9.4491	3.81E-03	0.9738
TVMef+G	21742.8108	209	43903.6215	9.8179	3.17E-03	0.9769
TIM1	21741.8178	210	43903.6356	9.8319	3.15E-03	0.9801
TPM1uf+G	21741.8195	210	43903.6389	9.8353	3.14E-03	0.9832
TIM3	21742.3798	210	43904.7597	10.9560	1.79E-03	0.9893
TPM3uf+G	21742.3821	210	43904.7642	10.9606	1.79E-03	0.9910
SYM+G	21742.6281	210	43905.2563	11.4526	1.40E-03	0.9924
TIM1+G	21741.8195	211	43905.6389	11.8353	1.16E-03	0.9948
TIM3+G	21742.3815	211	43906.7630	12.9593	6.59E-04	0.9972
TPM1	21747.5650	206	43907.1301	13.3264	5.48E-04	0.9977
TPM3	21748.2092	206	43908.4183	14.6147	2.88E-04	0.9985
TIM1ef	21747.3814	207	43908.7628	14.9592	2.42E-04	0.9987
TPM1+G	21747.5668	207	43909.1335	15.3299	2.01E-04	0.9989
TIM3ef	21748.0285	207	43910.0569	16.2533	1.27E-04	0.9992
TPM2uf	21746.1517	209	43910.3033	16.4997	1.12E-04	0.9993
TPM3+G	21748.2109	207	43910.4218	16.6182	1.06E-04	0.9994
TIM1ef+G	21747.3831	208	43910.7662	16.9626	8.90E-05	0.9995
HKY	21747.5741	208	43911.1482	17.3445	7.36E-05	0.9995
TIM3ef+G	21748.0302	208	43912.0604	18.2568	4.66E-05	0.9997
TIM2	21746.1517	210	43912.3034	18.4998	4.13E-05	0.9998
TPM2uf+G	21746.1534	210	43912.3068	18.5032	4.12E-05	0.9998
TrN	21747.5741	209	43913.1482	19.3446	2.71E-05	0.9999
HKY+G	21747.5758	209	43913.1516	19.3479	2.70E-05	0.9999
TIM2+G	21746.1534	211	43914.3068	20.5031	1.52E-05	0.9999
TrN+G	21747.5758	210	43915.1515	21.3479	9.94E-06	1.0000
K80	21752.9698	205	43915.9396	22.1359	6.70E-06	1.0000
TPM2	21752.4640	206	43916.9280	23.1244	4.09E-06	1.0000
TrNef	21752.7853	206	43917.5706	23.7669	2.97E-06	1.0000
K80+G	21752.9715	206	43917.9429	24.1393	2.46E-06	1.0000
TIM2ef	21752.2754	207	43918.5508	24.7472	1.82E-06	1.0000
TPM2+G	21752.4657	207	43918.9314	25.1278	1.50E-06	1.0000
TrNef+G	21752.7870	207	43919.5740	25.7704	1.09E-06	1.0000
TIM2ef+G	21752.2772	208	43920.5544	26.7508	6.67E-07	1.0000
JC	22597.8019	204	45603.6037	1709.8001	0.00E+00	1.0000

Supplementary Table S10. 44 Models tested by jModeltest for the build 11.1 Y

chromosome.

F81	22595.3073	207	45604.6146	1710.8109	0.00E+00	1.0000
JC+G	22597.8024	205	45605.6048	1711.8012	0.00E+00	1.0000
F81+G	22595.3079	208	45606.6157	1712.8121	0.00E+00	1.0000

498 Supplementary Table S11. Estimates of the TMRCA of phylogenetic nodes of

499 particular interest using the MSY sequence via BEAST when divergence time estimates

500 of Sus verucosus (JVWP) and Sus scrofa was set as 4.2 million years ago.

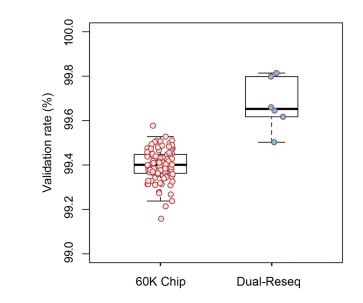
Node	Estimate of T _{MRCA} (Thousand years)	95% highest posterior density (HPD) interval
All Sus scrofa	1253	1220-1287
Sumatran wild boars and Chinese pigs with Asian haplotype	703	633-767
All pigs with Asian haplotypes	133	128-139
All pigs with European haplotypes	113	108-120
Chinese pigs with European haplotypes	25	23-27
Hetao pig and Large White	1.1	0.7-1.6
Min pig and SwallowBelly Manglica	0.9	0.6-1.3
Yunnan Tibetan pig and Large White	0.6	0.3-0.9
Wuzhishan pig and Large White	0.5	0.3-0.8
Baoshan pig and White Duroc	0.3	0.1-0.4

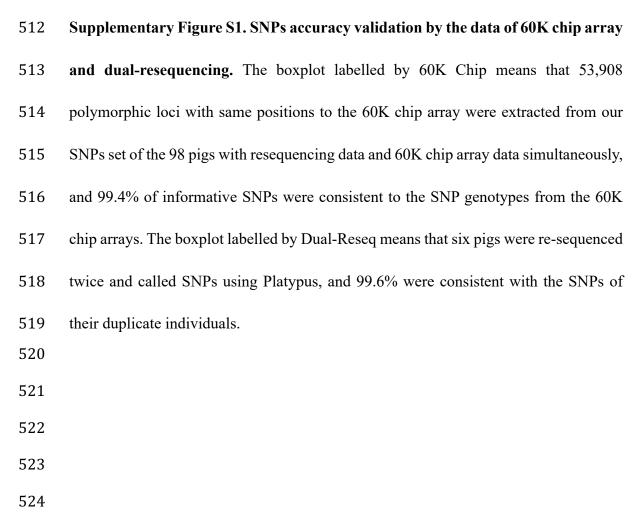
504 Supplementary Table S12. Estimates of the TMRCA of phylogenetic nodes of

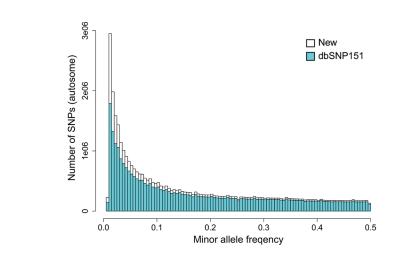
505 particular interest using the MSY sequence via BEAST when divergence time estimates

Node	Estimate of T _{MRCA} (Million years)	95% highest posterior density (HPD) interval
All Sus scrofa	0.225	0.192-0.231
Sumatran wild boars and Chinese pigs with Asian haplotype	0.216	0.189-0.223
All pigs with Asian haplotypes	0.025	0.024-0.027
All pigs with European haplotypes	0.022	0.020-0.023
Chinese pigs with European haplotypes	0.007	0.006-0.008

506 of *Sus verucosus* (JVWP) and *Sus scrofa* was set as 1.36 million years ago.


508 Supplementary Table S13. Filter standard set as default options in the variant calling

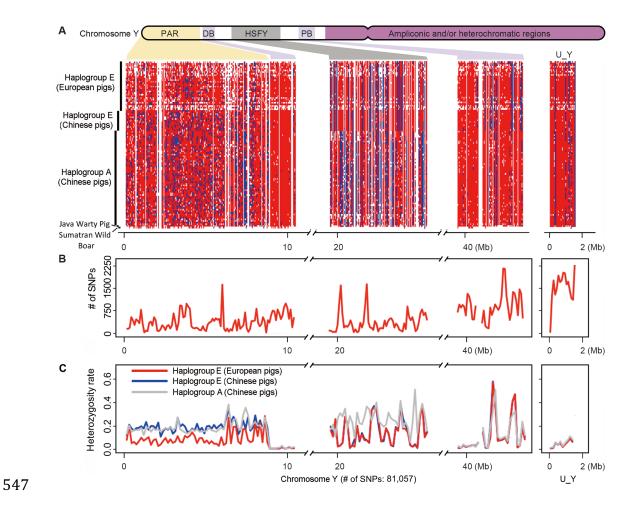

509 of Platypus.

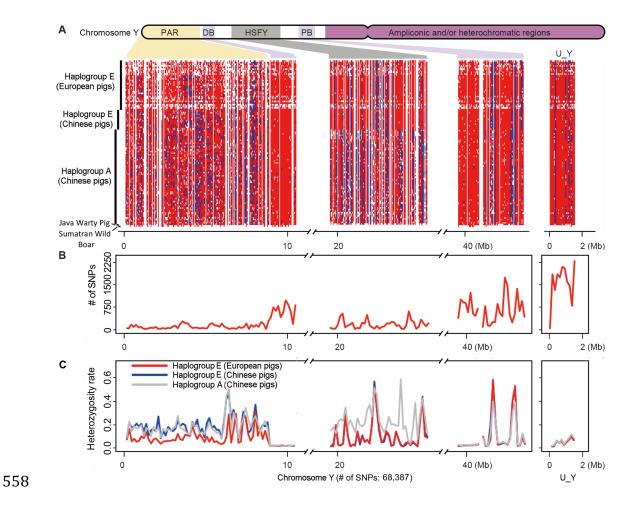

Label	Meaning	Filter
HapScore	The calling window has multiple haplotypes	>4
strandBias	Variant fails strand-bias filter	< 0.001
alleleBias	Variant fails allele-bias filter	< 0.001
badReads	Variant is supported only by low-quality reads	>15
Q20	Variant call has low posterior Phred score	< 20
MQ	Variant call has low root mean square of mapping qualities of	< 40
	reads at the variant position	
QD	Ratio of variant quality to number of supporting reads is low	< 10
SC	Sequence context surrounding variant has low complexity	> 0.95
PASS	Variant passes all filters	

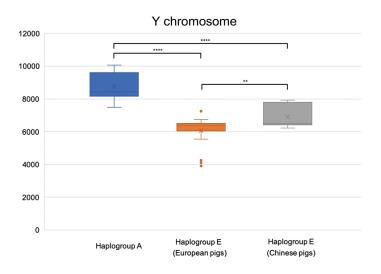
⁵⁰⁷

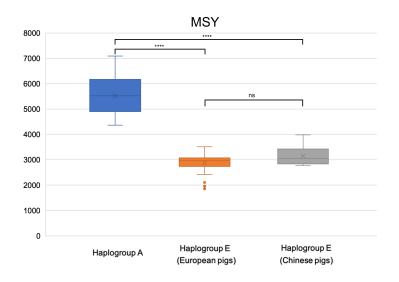
510 4. Supplementary Figures





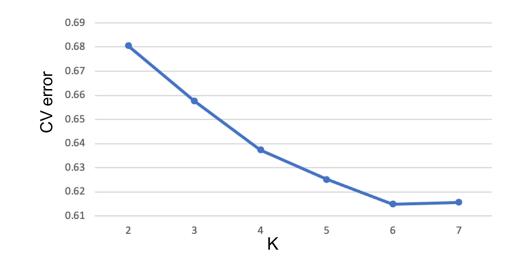

529 Supplementary Figure S2. Autosomal SNP distribution of 200 Eurasian pigs. Cyan
530 histogram indicates the distribution of SNPs shared with Build 151 of the *Sus scrofa*531 dbSNP on the NCBI GenBank database. Blank parts indicate the novel SNPs identified
532 in this study.


535 Supplementary Figure S3. Depth distribution along the effective regions on the Y 536 chromosome and chromosome 18 of Eurasian pigs based on Build 11.1 reference 537 genome in a window size of 100 Kb with a step size of 50 Kb. (A) The distribution 538 of depth along the effective regions on the Y. (B) The distribution of depth along 539 chromosome 18. (C) Boxplot of the ratio of (median) average depths of the Y and 540 chromosome 18 among Eurasian pigs. (D) The distribution of normalized depth along 541 the effective regions on the Y. The depth in each window of each individual is divided 542 by the average depth of whole chromosome 18 of that individual. Haplogroup E 543 (European pigs), Haplogroup E (Chinese pigs) and Haplogroup A (Chinese pigs) are 544 indicated by red, blue and grey, respectively. The grey background in **supplementary** 545 fig. S3D marks abnormally high depth in the PB interval (19.5Mb-25.5Mb) of 546 Haplogroup E.

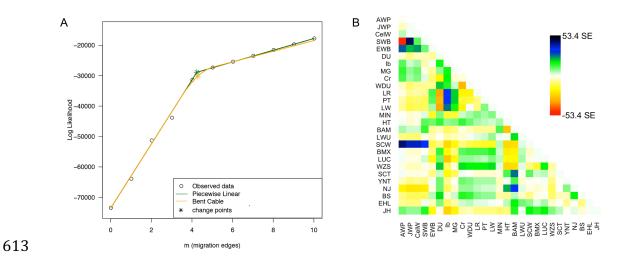

Supplementary Figure S4. The pattern of heterozygous position distribution on
the Y chromosome derived from the initial called 81,057 SNPs among all male
individuals. (A) The distribution of heterozygous sites along the Y chromosome.
Alleles that are homozygous or heterozygous are indicated by red or blue, respectively.
(B) The pattern of SNPs distribution in a window size of 150 Kb along the Y
chromosome. (C) The distribution of heterozygosity rate in a window size of 150 Kb
along the Y chromosome among Eurasian pigs.

559 Supplementary Figure S5. The pattern of heterozygous position distribution on 560 the Y chromosome derived from 68,387 SNPs after removing SNPs same as the 561 SNPs called by the reads of female individuals misaligned to Y chromosome 562 reference sequence among all male individuals. (A) The distribution of heterozygous 563 sites along the Y chromosome. Alleles that are homozygous or heterozygous are 564 indicated by red or blue, respectively. (B) The pattern of SNPs distribution in a window 565 size of 150 Kb along the Y chromosome. (C) The distribution of heterozygosity rate in 566 a window size of 150 Kb along the Y chromosome among Eurasian pigs.

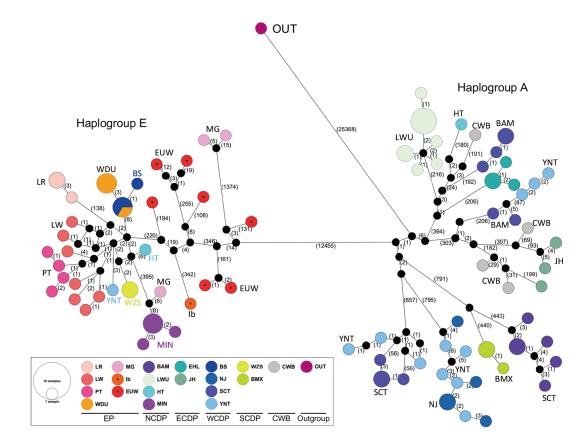
Supplementary Figure S6. The comparison of heterozygous sites distribution on
the Y chromosome derived from 68,387 SNPs after removing SNPs same as the
SNPs called by the reads of female individuals misaligned to Y chromosome
reference sequence among Haplogroup A, Haplogroup E (European pigs) and
Haplogroup E (Chinese pigs).
675
576
577
578



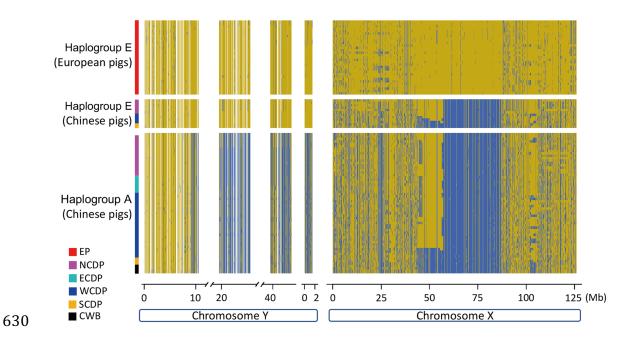
582 Supplementary Figure S7. The comparison of heterozygous sites distribution on

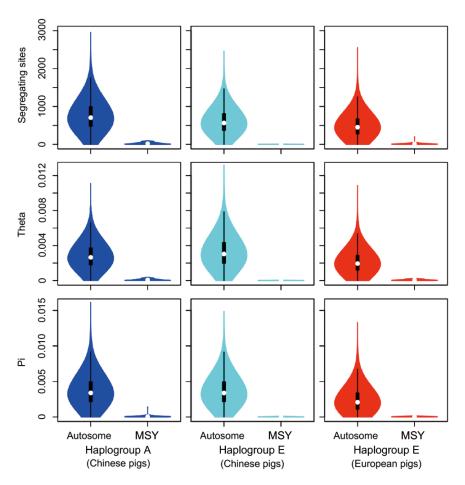

583 the MSY among Haplogroup A, Haplogroup E (European pigs) and Haplogroup

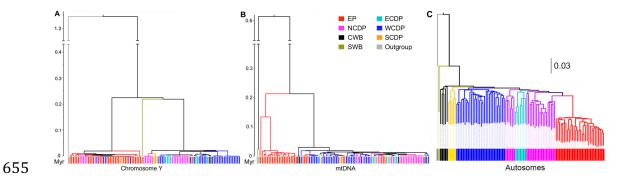
584 **E** (Chinese pigs).
585
586
587
588
589
590
591
592
593
593
594
595
595
596
597

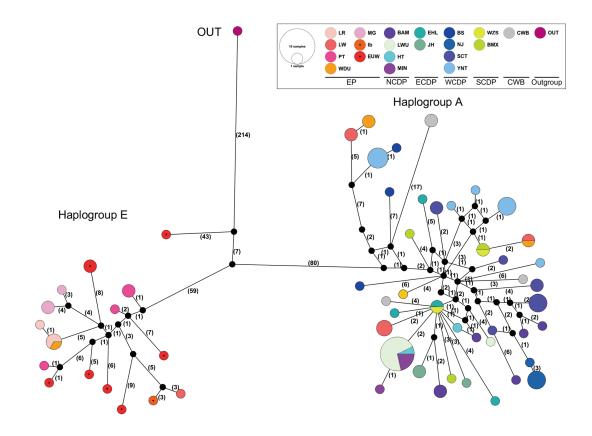


599 Supplementary Figure S8. The CV error for the ADMIXTURE analysis at K values

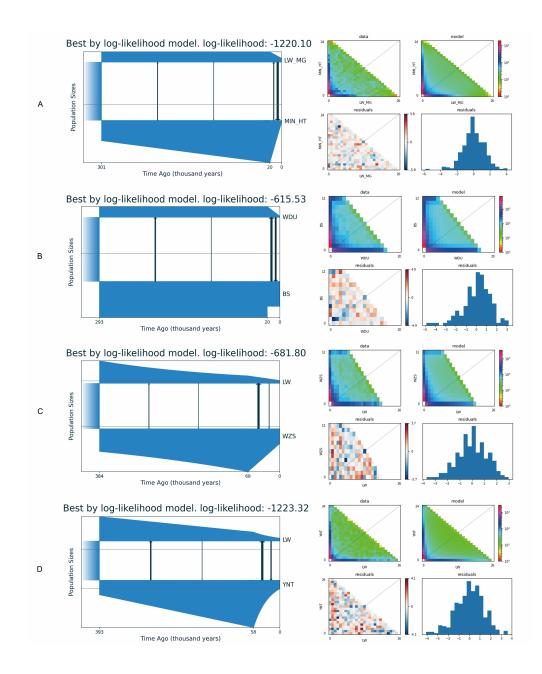

600 ranging from 2 to 7.


614 Supplementary Figure S9. Determination of the migration edge number in the 615 TreeMix model and residual heatmap with 4 migration events. (A) Observed Log 616 likelihood values are plotted against the number of migration edges tested from 0 to 10, 617 and two models are fitted to the data. Both the piecewise and the Bent Cable fitting 618 delivered an optimal value of 4 for the number of migration edges (change points). (B) 619 Residual fit from the maximum likelihood tree with four migration edges. The 620 abbreviations EP, NCDP, ECDP, WCDP, SCDP, and CWB are as in Figure 1; Full names of the pig breeds are detailed in Supplementary Table S1. B. 621 622

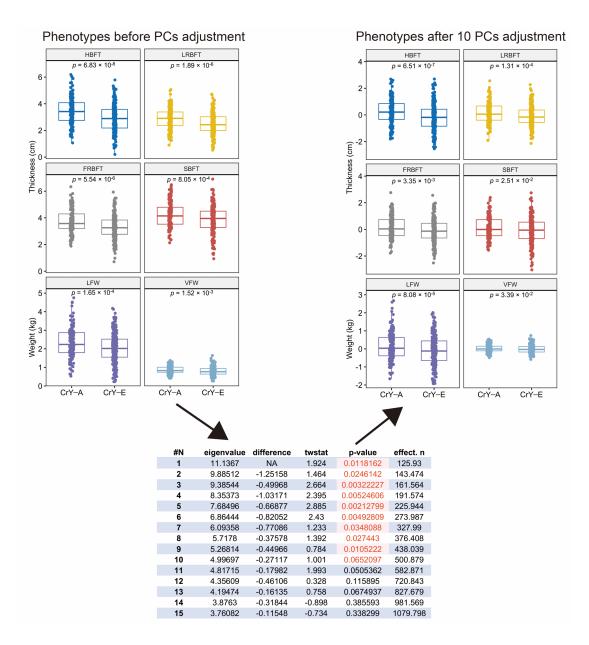

624 Supplementary Figure S10. Median joining haplotype network of MSY sequences 625 (n = 102). The circles represent different haplotypes with size proportional to the 626 number of individuals represented. Lines connect each haplotype to its most similar 627 relative and the number on the lines indicate mutation steps. Colors correspond with 628 the different pig breeds.

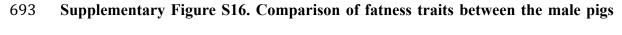

631 Supplementary Figure S11. The different haplotype patterns between the Y 632 chromosome and the X chromosome in Eurasian pigs. This plot includes all 101 633 Eurasian male pigs, which are divided into three groups: European pigs in MSY 634 Haplogroup E, Chinese pigs in MSY Haplogroup E and Chinese pigs in MSY 635 Haplogroup A. The haplotypes are constructed for each individual using all qualified 636 SNPs on Y and X chromosome. Alleles that are identical and different from the ones in the Duroc reference genome are indicated by orange and blue, respectively. The 637 638 abbreviations EP, NCDP, ECDP, WCDP, SCDP and CWB are as in Figure 1. 639

Supplementary Figure S12. Comparison of nucleotide variability within the proximal and distal regions of the Y chromosome and on autosomes. There are two different haplogroups on the proximal and distal regions of the Y chromosome (MSY) in all tested Eurasian pigs. Haplogroup A consists of Chinese pigs with Asian-origin MSY; Haplogroup E contains European pigs and some Chinese pigs with European-origin MSY. Statistics of segregation sites, theta, Pi values were calculated in a window size of 50 kb for European pigs in Haplogroup E, Chinese pigs in Haplogroup E, and Chinese pigs in Haplogroup A, respectively. Pi, nucleotide diversity referred to Tajima's Pi; theta, nucleotide diversity referred to Watterson's theta.

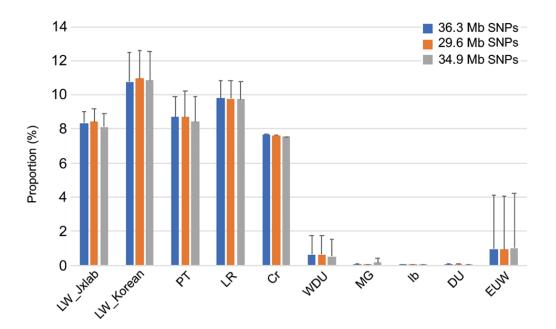


Supplementary Figure S13. Different phylogenetic relationships of Sus revealed by Y chromosome, mtDNA and autosomes. (A) Phylogenetic relationships among the 103 male Eurasian pigs constructed using the MSY sequence of the Build 11.1 Y chromosome. Inferred divergence time is shown on the Y-axis of the Bayesian tree. (B) Phylogenetic relationships among the 103 male Eurasian pigs constructed using the Build 11.1 chrM sequences via BEAST. Divergence time estimate of EUW (WB21M05) and CWB (CB11-2), 0.219 million years (Zhang et al. 2021), was used as softbound priors. (C) Neighbor-joining tree of these pigs based on autosomal data. The abbreviations EP, ECDP, NCDP, WCDP, CWB, SCDP and SWB are described in figure 1. S. verrucosus (Java warty pig) was set as the outgroup.





Supplementary Figure S14. Median joining haplotype network of chrM sequences (n = 102). The circles represent different haplotypes with size proportional to the number of individuals represented. Lines connect each haplotype to its most similar relative and the number on the lines indicate mutation steps. Haplogroup E here includes chrM haplotypes present only in Europe and haplogroup A includes chrM haplotypes fixed in Asia but present in some European breeds. Colors correspond with the different pig breeds. Full names of the pig breeds are detailed in supplementary table S1.


Supplementary Figure S15. Comparisons of allele frequency spectra (AFS) between the modelled and real data of four pairs of European and Chinese pig populations using $\partial a \partial i$: (A) LW&MG and MIN&HT; (B)WDU and BS; (C) LW and WZS; (D) LW and YNT. In every panel, there are five plots, which are: the best-fitted demographic model; marginal AFS of the real data for each pair of populations; AFS of the maximum-likelihood model simulation based on the real data; The residuals between the modelled and real data are shown in heat maps and bar graphs.

694 with Chinese chromosome Y and with European chromosome Y. (A) Phenotypes

- 695 before PCs adjustment. (B) the number of statistically significant principal components
- 696 using twstats method. (C) Phenotypes After PCs adjustment.
- 697
- 698

Supplementary Figure S17. Estimated percentage of the Asian component of **European pigs from an unsupervised ADMIXTURE analysis with K = 2.** Blue bars show the results of 36.3M SNPs used in our present study; red bars show the results of 29.6 M SNPs shared with Build 151 of the Sus scrofa dbSNP database; gray bars show the results of 34.9M SNPs called using the variance of Build 151 of the Sus scrofa dbSNP as known variants in the 200 Eurasian pigs. LW Jxlab, Large White our group sequenced; LW Korean, Large White submitted by a Korean group; PT, Pietran; LR, Landrace; Cr, Creole; WDU, White Duroc; MG, Mangalica; Ib, Iberian; DU, Duroc; EUW, European wild boar. All the SNPs dataset were filtered with LD of $r^2 = 0.4$.

715 5. Supplementary References

- Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W, et al.
- 717 2015. Adaptation and possible ancient interspecies introgression in pigs identified
- 718 by whole-genome sequencing. *Nat. Genet.* 47(3):217-225.
- Ai H, Huang L, Ren J. 2013. Genetic diversity, linkage disequilibrium and selection
- signatures in chinese and Western pigs revealed by genome-wide SNP markers.
- 721 *PLoS ONE* 8(2):e56001.
- Ai H, Yang B, Li J, Xie X, Chen H, Ren J. 2014. Population history and genomic
- signatures for high-altitude adaptation in Tibetan pigs. *BMC Genomics* 15834.

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. *Genome Res.* 19(9):1655-1664.

- 726 Alfonso L. 2005. Sex ratio of offspring in pigs: farm variability and relationship
- with litter size and piglet birth weight. *Span. J. Agric. Res.* 3(3): 287-295.
- 728 Baskin L, Danell K. 2003. Ecology of Ungulates: A Handbook of Species in Eastern
- Europe and Northern and Central Asia. *Springer Science & Business Media*15–38.
- 730 Bianco E, Soto HW, Vargas L, Perez-Enciso M. 2015. The chimerical genome of Isla
- del Coco feral pigs (Costa Rica), an isolated population since 1793 but with
 remarkable levels of diversity. *Mol. Ecol.* 24(10):2364-2378.
- 733 Bosse M, Megens HJ, Madsen O, Frantz LA, Paudel Y, Crooijmans RP, Groenen MA.
- 734 2014. Untangling the hybrid nature of modern pig genomes: a mosaic derived from
- biogeographically distinct and highly divergent Sus scrofa populations. *Mol. Ecol.*23(16):4089-4102.
- Felsenstein J. 2005. PHYLIP (Phylogeny Inference Package) Version 3.6.
 Distributed by the author, Department of Genome Sciences, University of
 Washington, Seattle.
- 740 FernaNdez-Llario P, Carranza J, Mateos-Quesada P. 1999. Sex allocation in a
- polygynous mammal with large litters: the wild boar. *Anim. Behav.* 58(5):1079-1084.
- Fitak RR. 2019. optM: an R package to optimize the number of migration edgesusing threshold models. *J. Hered.*
- 745 Frantz LA, Schraiber JG, Madsen O, Megens HJ, Bosse M, Paudel Y, Semiadi G,
- 746 Meijaard E, Li N, Crooijmans RP. 2013. Genome sequencing reveals fine scale
- 747 diversification and reticulation history during speciation in Sus. *Genome Biol.*

- 748 14(9):1719-1728.
- Giuffra E, Kijas JM, Amarger V, Carlborg O, Jeon JT, Andersson L. 2000. The origin

of the domestic pig: independent domestication and subsequent introgression.

751 *Genetics* 154(4):1785-1791.

- 752 Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-
- Gaillard C, Park C, Milan D, Megens HJ, et al. 2012. Analyses of pig genomes provide
- insight into porcine demography and evolution. *Nature* 491(7424):393-398.
- Guo W, Cao GH, Quan RC. 2017. Population dynamics and space use of wild boar in
- a tropical forest, Southwest China. *Global Ecology and Conservation* 11115-124.
- Hutter S, Vilella AJ, Rozas J. 2006. Genome-wide DNA polymorphism analyses
 using VariScan. *BMC Bioinformatics* 7(1):1-10.
- 759 Ji J, Zhou L, Huang Y, Zheng M, Liu X, Zhang Y, Huang C, Peng S, Zeng Q, Zhong L.
- 760 2018. A whole-genome sequence based association study on pork eating quality
- traits and cooking loss in a specially designed heterogeneous F6 pig population.
- 762 Meat Sci. 146160-167.
- 763 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
- 764 Wheeler transform. *Bioinformatics* 25(14):1754-1760.
- 765 Marsan S, Mattioli A. 2013. *II Cinghiale*75-76.
- 766 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella

767 K, Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome Analysis Toolkit: a

768 MapReduce framework for analyzing next-generation DNA sequencing data.

- 769 *Genome Res.* 20(9):1297-1303.
- McLaren DG. 1990. The potential of Chinese swine breeds to improve pork
 production efficiency in the US. *Urbana* 5161801.
- 772 Merta D, Bobek B, Albrycht M, Furtek J. 2015. The age structure and sex ratio in
- wild boar (Sus scrofa) populations as determined by observations of free-roaming
- populations and by harvests of collective hunts in southern Poland. *Eur. J. Wildl.*
- 775 *Res.* 61(1):167-170.
- Nishida S, Otsuka J, Yanagishi T, Sugaya T. 1977. Sex ratio of offspring in domestic
- animals. *The Japanese journal of animal reproduction* 23(2):55-59.
- Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T,
 Webster T, Reich D. 2012. Ancient admixture in human history. *Genetics*
- 780 192(3):1065-1093.

- 781 Phillips RW, Hsu TY. 1944. Chinese swine and their performance: compared with
- 782 modern and crosses between Chinese and modern breeds. J. Hered. 35(12):365-379. 783
- 784 Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from 785 genome-wide allele frequency data. *PLoS Genet.* 8(11):e1002967.
- 786 Posada D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 787 25(7):1253-1256.
- 788 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006. 789 Principal components analysis corrects for stratification in genome-wide 790 association studies. Nat. Genet. 38(8):904-909.
- 791 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing 792 genomic features. *Bioinformatics* 26(6):841-842.
- 793 Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR, Consortium WGS, Wilkie AO,
- 794 McVean G, Lunter G. 2014. Integrating mapping-, assembly- and haplotype-based
- 795 approaches for calling variants in clinical sequencing applications. Nat. Genet. 796 46(8):912-918.
- 797 Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference 798 under mixed models. *Bioinformatics* 19(12):1572-1574.
- 799 Safranski TJ. 2008. Genetic selection of boars. *Theriogenology* 70(8):1310-1316.
- 800 Sanderson MJ. 2002. Estimating absolute rates of molecular evolution and
- 801 divergence times: a penalized likelihood approach. *Mol. Biol. Evol.* 19(1):101-109.
- 802 Skinner BM, Sargent CA, Churcher C, Hunt T, Herrero J, Loveland JE, Dunn M,
- 803 Louzada S, Fu B, Chow W, et al. 2016. The pig X and Y Chromosomes: structure,
- 804 sequence, and evolution. Genome Res. 26(1):130-139.
- 805 Taylor, Roese. 2006. Basic Pig Husbandry - The Boar, The Pig Site1-12.
- 806 White S. 2011. From globalized pig breeds to capitalist pigs: a study in animal 807
- cultures and evolutionary history. *Environmental History* 16(1):94-120.
- 808 Zhang Y, Sun Y, Wu Z, Xiong X, Zhang J, Ma J, Xiao S, Huang L, Yang B. 2021.
- 809 Subcutaneous and intramuscular fat transcriptomes show large differences in
- 810 network organization and associations with adipose traits in pigs. Science China
- 811 *Life Sciences*1-15.
- 812 Zhu Y, Li W, Yang B, Zhang Z, Ai H, Ren J, Huang L. 2017. Signatures of selection and
- 813 interspecies introgression in the genome of Chinese domestic pigs. Genome Biol.

814 Evol. 9(10):2592-2603.