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APPENDIX C: SIMULATIONS

In order to check that the detected planetary signal does not
come from the filtering process, we conducted simulations
to test our three methods on two different data sets: one
where the presence of a planet was input in the simulation
(scenario #1), and one without any planet (scenario #2).
Stokes I and V LSD profiles were generated from the bright-
ness and magnetic maps found in Sec. 4, at the same dates of
observation as the real data, with a comparable noise level.
The added planet signature had the properties of the best fit
found with the second method (Sec. 5.2): K=0.154 kms−1,
Porb/Prot=15.29, φ=0.671. Applying ZDI to these data sets,
we reconstructed brightness and magnetic maps as in Sec. 4.
For both simulations, the maps we found look similar to the
ones reconstructed from the real data, with an information
loss amounting to 4% for the spottedness and ≃80 G for the
rms magnetic flux, but the main features, such as the polar
spot, are recovered. Fig. C1 shows the brightness maps for
simulation #1, at both epochs.

As in Sec. 5.1, synthetic RV curves are shown in Fig. C2,
C3 for simulations #1 and #2 respectively. While a sig-
nal is detected in the filtered RVs of simulation #1 (rms
107 m s−1), no significant signal is detected in the filtered
RVs in simulation #2 (rms 58 m s−1). Table C1 summarises
the characteristics of the best fit to the filtered RVs for both
scenarii, in comparison with a (K=0 km s−1, RV0=0 kms−1)
curve. The periodograms of the filtered RV curves, displayed
in Fig. C4 and Fig. C5, further confirm this, with simu-
lation #2 yielding no significant signal at the frequencies
found with our three methods in Sec. 5.

We note that changing the noise pattern can make the
FAP of the filtered RVs highest peak vary between 4% and

Scenario #1 Scenario #2

K=0.122±0.020 km s−1 K=0.036±0.021 km s−1

Porb/Prot=15.35±0.16
φ=0.647±0.026

RV0=0.018±0.014 km s−1

χ2
r =0.540 χ2

r =0.436

K=0 kms−1 K=0 kms−1

χ2
r =1.893 χ2

r =0.529

∆χ2=39.2 ∆χ2=2.7
∆(log Lr )=-16.57 ∆(log Lr )=-0.49

Table C1. Results found with the 1st method on both simulation
datasets. The first column shows the results on the scenario with
a planet and the second column shows the results on the scenario
without planet. For each, a comparison is made between the best
sine fit to the filtered RVs and a fit by a constant value, with the
reflex motion semi-amplitude K , the orbital period Porb in units
of Prot, the phase of inferior conjunction φ relative to cycle 11.0,
the mean RV RV0 and χ2

r . Differences in χ2 (summed on 29 data
points) and in logarithmic (loge) likelihood are given in the last
row.

Scenario #1

K=0.155±0.022 km s−1

Porb/Prot=15.32±0.14
φ=0.662±0.036
χ2

r =0.95226

K=0 kms−1

χ2
r =0.97529

∆χ2=30.0
∆(log Lr )=-10

Table C2. Characteristics of the best fit found with the 2nd
method on simulation #1 (top row), compared to a fit with a
no-planet model (i.e. K=0 kms−1, middle row). Differences in χ2

(summed on 2581 data points) and in logarithmic (loge) likelihood
are given in the last row.

26% for simulation #2 (no planet). It can also change the
relative power of the different orbital periods in the filtered
RVs for simulation #1: most of the time the ≃10.8 d period
is recovered as the highest peak with a FAP<0.5%, but the
≃9.0 d period reaches a smaller χ2

r in one case out of five.
This sheds light on why the different methods do not always
favour the same orbital periods in our analysis.

The second method also recovers the different orbital
periods from simulation #1, the ≃10.8 d one being the most
likely, with a ∆χ2 of 7.37 compared to the ≃13.4 d period
and 7.67 compared to the ≃9.0 d period. Fig. C6 shows the
χ2

r map around the minimum Porb≃10.8 d for φ=0.67 (value
at the 3-D local minimum), with the white colour bound-
ing the 99.99% confidence region. We chose not to apply
this method on simulation #2 (without planet) because it
runs computations for orbital parameters close to the local
minima found with the first method, and no such significant
minima were found for simulation #2.

GPR also successfully recovers the input planet period
in simulation #1, as shown in Fig. C7 on which the raw RVs,
the planet signal and the residual RVs at Porb=15.31Prot
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Scenario #1 Scenario #2

K=0.138±0.027 km s−1 K=0.060±0.052 km s−1

Porb/Prot=15.31±0.21
φ=0.646±0.038

θ1=1.14±0.21 km s−1

θ2=1.0002±0.0002 Prot
log Lr=-6.20 log Lr=-5.99

K=0 km s−1 K=0 km s−1

log Lr=-21.42 log Lr=-5.48

∆(log Lr )=-15.22 ∆(log Lr )=-0.51

Table C3. Characteristics of the best fit (first row) found with
the 3rd method on simulation #1 (left) and #2 (right), compared
to a fit with a no-planet model (i.e. K=0 km s−1, middle row).
Differences in logarithmic (loge) likelihood are given in the last
row.

Figure C1. Brightness maps reconstructed from the simula-
tion #1 data, for the 2015 Nov data subset (top) and the 2016
Jan data subset (bottom). Both maps feature a spot coverage of
≃8%.

are seen. The results of the MCMC runs are shown in the
phase plots of Fig. C8 and C9, demonstrating that no or-
bital period stands out in simulation #2, i.e., in the ac-
tivity jitter synthesised from the reconstructed brightness
maps, whereas several orbital periods are detected in simu-
lation #1, ≃10.8 d and ≃9.0 d being respectively the most
likely and the second most likely, with a Bayes factor of
only 1.25 between them. The comparison with a MCMC

run where no planet is subtracted is shown in table C3 for
both scenarii, demonstrating that, for scenario #1, taking
a planet into account in the model results in a significant
increase in the likelihood of the best fit, whereas it is not
the case for scenario #2.

We conclude that all three methods enable us to recover
the planet signal (scenario #1), and that the detected pe-
riods in the observational filtered RVs are not artifacts of
the numerical process (scenario #2). Furthermore, for our
particular observation window, the noise pattern can change
the relative likelihood of the different detected peaks, as can
the choice of the method to use.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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Figure C2. Simulation #1: raw, filtered and residual RV curves as derived with the method described in 5.1. The residual RVs feature
a rms value of 59 m s−1.
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Figure C3. Simulation #2: raw and filtered RV curves as derived with the method described in 5.1. The filtered RVs feature a rms
value of 58 m s−1.
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Figure C4. Simulation #1: periodograms of the raw (top), filtered (middle) and residual (bottom) RVs.

Figure C5. Simulation #2: periodograms of the raw (top) and filtered (bottom) RVs.
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Figure C6. Simulation #1: ∆χ2 map at φ=0.67 as derived with the method described in 5.2, centered around the minimum Porb=15.3 Prot.
Parameters values are found to be K=0.155±0.022 kms−1, Porb=15.32±0.14 Prot. The minimum value of χ2

r is 0.95226

Figure C7. Example of GPR for simulation #1. Top: raw RVs (red dots) and GP fit+planet (cyan), middle: curves as derived with the
method described in 5.3, for the local minimum Porb=15.31±0.21 Prot, K=0.138±0.027, φ=0.646±0.038,. The rms of the residual RVs
amounts to 47 m s−1.
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Figure C8. Simulation #1: phase plots of the MCMC run as described in 5.3. We find θ1=1.15±0.19 km s−1, θ2=1.0002±0.0002 Prot,
K=0.140±0.026 km s−1, and the dominant orbital periods Porb=15.31±0.21 Prot and Porb=12.74±0.13 Prot, with the corresponding phases
being φ=0.646±0.038 and φ=0.699±0.036 respectively.

Figure C9. Simulation #2: phase plots of the MCMC run as described in 5.3. We find θ1=1.09±0.19 km s−1, θ2=1.0003±0.0002 Prot
and K=0.060±0.053 km s−1.
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