Angiotensin I-converting enzyme ACE 2350*G and ACE-240*T-related genotypes and alleles are associated with higher susceptibility to endometriosis

Yao-Yuan Hsieh1,4, Chi-Chen Chang1, Fuu-Jen Tsai2,6, Chin-Moo Hsu2, Cheng-Chieh Lin3 and Chang-Hai Tsai2,5

1Department of Obstetrics and Gynecology, 2Department of Pediatrics and Medical Genetics, 3Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan, 4Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan and 5Taichung Health Care and Management University, Taichung, Taiwan, Republic of China

6To whom correspondence should be addressed at: Department of Pediatrics and Medical Genetics, China Medical University Hospital, No.2 Yuh-Der Road, Taichung, Taiwan. E-mail: d0704@www.cmuh.org.tw

Endometriosis displays features similar to malignancy, ranging from neovascularization to local invasion and aggressive spread to distant organs. The altered vascular-related genes might be related to the development of endometriosis. This study investigates whether angiotensin I-converting enzyme (ACE) *A2350G and A-240T gene polymorphisms could be used as markers of susceptibility in endometriosis. Women were divided into two groups: (1) endometriosis group (n = 150) and (2) non-endometriosis group (n = 159). Genomic DNA was obtained from peripheral leukocytes. ACE A2350G and A-240T gene polymorphisms were amplified by PCR and detected after restriction enzyme digestion with BstUI and XbaI. Genotypes and allelic frequencies in both groups were compared. We observed that genotype distribution and allele frequency of ACE 2350 and ACE-240 gene polymorphisms in both groups were significantly different. Proportions of ACE 2350*A homozygote/heterozygote/G homozygote in both groups were: (1) 66.7/29.3/4% and (2) 96.2/3.1/0.7%. Proportions of ACE-240*A homozygote/heterozygote/T homozygote in both groups were: (1) 43.3/46/10.7% and (2) 62.9/35.8/1.3%. We concluded that ACE 2350*G and ACE-240*T-related genotypes and alleles are associated with higher susceptibility to endometriosis. ACE A2350G and A-240T gene polymorphisms might be associated with endometriosis development.

Key words: angiotensin I-converting enzyme/ACE/endometriosis/polymorphism/SNP

Introduction

Endometriosis, a polygenic/multi-factorial disease, is associated with complex interactions between hormone and cytokine activation, immunoinflammatory processes and genetic factors (Vigano et al., 1998). Endometriosis displays some features of malignancy, including local invasion and aggressive spread to distant organs. Similar to tumour metastases, endometriotic implants require neovascularization to become established, grow and invade tissues. Neovascular processes are prominent in the endometrial tissue. Heritable genetic factors may contribute to the initiation and progression of endometriosis (Treloar et al., 1999).

Cardiovascular genes play a role in the regulation and growth of tumour and altered vascular-related genes might be related to the development of endometriosis. The renin–angiotensin system (RAS) regulates blood pressure through its effects on vascular tone, renal haemodynamics and fluid–electrolyte balance (Fornage et al., 1998). Angiotensin I-converting enzyme (ACE) regulates systemic circulation through angiotensin II formation and kinin metabolism. ACE cleaves angiotensin I to angiotensin II, which is the key component in RAS (Berge et al., 1994). The ACE and RAS genes are related to the regulatory pathway in cardiovascular disease (Zhu et al., 2001), while the ACE gene is implicated as a risk factor in coronary artery disease and myocardial infarction (Zhu et al., 2001).

Gene polymorphisms are useful tools in the study of multi-factorial disorders (Anderson et al., 1994). The analyses of single nucleotide polymorphism (SNP) can be implemented to determine the mechanisms of complex genetic disorders. Numerous chronic disorders, such as endometriosis, osteoporosis, hypertension, diabetes and asthma, have been attributed to genetic susceptibility. Most studies on ACE gene polymorphisms have been focused on their associations with cardiovascular diseases, serum ACE level and blood pressure (Zhu et al., 2001).

Angiogenesis and vascular remodelling play critical roles in the growth, invasion and regression of endometriosis (Donnez et al., 1998). The presence of angiotensin receptors has been demonstrated in the endometrial tissue. Angiotensin II in endometrial stromal cells was mediated via angiotensin I receptors (Braileanu et al., 2002). Angiotensin II could increase the intracellular calcium concentration by interaction with angiotensin receptor in endometrial stromal cells (Braileanu et al., 2001). Vasopressin also stimulates phospholipase C activity in endometrial explants (Braileanu et al., 2001). These findings suggest an underlying contribution of ACE for the development of endometrium and endometriosis. In this study, we aimed primarily to evaluate whether ACE A2350G and A-2240T gene polymorphisms are attractive markers for moderate/severe endometriosis susceptibility. To the best of our knowledge, this is the first survey in this field.
Materials and methods

Premenopausal Taiwanese women with surgically diagnosed endometriosis and non-endometriosis were included. All patients were divided into two groups: (1) endometriosis stage III/IV (n = 150); (2) non-endometriosis group (n = 159). All individuals with endometriosis accepted laparoscopy or laparotomy management and endometriosis was confirmed pathologically. The non-endometriosis status in the control group was confirmed by sonography and clinical evaluation. All patients had normal blood pressure without obvious cardiovascular disease. There were no significant differences between both groups in age (34.5 ± 4.2 versus 36.2 ± 5.1 years), weight (51.4 ± 3.5 versus 53.8 ± 4.2 kg) and height (159.4 ± 2.5 versus 157.4 ± 3.8 cm). In clinical practice, most women with minimal/mild endometriosis accept conservative medication instead of invasive management. Therefore, we only recruited the moderate/severe endometriosis women for the survey. All women had consented to peripheral blood sampling for genotype analyses. The studies were approved by the ethical committee and institutional review board of the China Medical University Hospital. Informed consents were signed by all women who donated their blood.

The ACE A2350G genotypes (intron 17) were determined as previously described (Zhu et al., 2001). The genomic DNA was prepared from peripheral blood leukocytes by the use of a genomic DNA isolation kit (Blossom, Taipei, Taiwan). A total of 50 ng genomic DNA was mixed with 20 pmol of each PCR primer in each total volume of 25 μl containing 10 mM Tris–HCl pH 8.3, 50 mM potassium chloride, 2.0 mM magnesium chloride, 0.2 mM each deoxynucleotide triphosphate and 1 U DNA polymerase (Amplitag; Perkin–Elmer, Foster City, CA, USA). Restriction enzyme digestion with restriction enzyme BstUI at 60°C for 30 min (n = 122), and XbaI at 37°C for 30 min (n = 137) were used to determine the ACE A2350G genotype. The allele DNA fragment size was obtained via the Internet (http://www.ncbi.nlm.nih.gov/LocusLink/).

The PCR primer sequences and conditions for each primer are listed in Table I. The PCR amplification was performed in a programmable thermal cycler GenAmp PCR system 2400 (Perkin–Elmer Applied Biosystems, Foster City, CA, USA). After PCR amplification, the individual gene polymorphism in individuals with and without endometriosis was surveyed, including ACE A2350G and ACE A-240T. The SNP information for the genes involved was obtained via the Internet (http://www.ncbi.nlm.nih.gov/LocusLink/).

The most common genotype and allele for ACE 2350 and ACE-240 gene polymorphisms in both groups were A homozygote and allele, respectively (P < 0.0001; Table II). Proportions of ACE-240*A homozygote/heterozygote/T homozygote in both groups were (1) 43.3/46/10.7% and (2) 62.9/35.8/1.3%, respectively (P < 0.0001; Table III). The percentage of ACE-240*A/T alleles in both groups were (1) 66.3/33.7% and (2) 81.8/18.2%, respectively (P < 0.0001; Table III).

The endometrium, which has prominent blood vessels and blood flow, is one of the few adult tissues that exhibits regular periods of rapid growth. Angiogenesis, therefore, is an important component for the growth and function of these tissues. Endometriosis is a disease of endometrial tissue shedding outside the uterus during

Table I. The primer sequences and PCR conditions for ACE A2350G and A-240T gene polymorphisms

<table>
<thead>
<tr>
<th>Polymorphisms</th>
<th>Primer sequences (5' → 3')a</th>
<th>PCR conditions (°C/s)</th>
<th>Restriction enzyme digestion</th>
<th>Allele</th>
<th>DNA fragment size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE A2350G</td>
<td>F-CTGACGAAATGTGATGGCCGC R-TGATGATTTCGACGTATTTCG</td>
<td>Denature 94/30 / Annealing 62/30 / Extension 72/45</td>
<td>BstUI at 60°C for 30 min</td>
<td>A</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td>103+19</td>
</tr>
<tr>
<td>ACE A-240T</td>
<td>F-TCGGGCTGGGGAGATCGAGC R-GAGAAGGGCTCCCTCTCTCT</td>
<td>95/30 / 58/30 / 72/45</td>
<td>XbaI at 37°C for 30 min</td>
<td>A</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>114+23</td>
</tr>
</tbody>
</table>

^{*F and R indicate forward and reverse primers}

Table II. Genotype and allelic frequencies for ACE A2350G gene polymorphism in individuals with and without endometriosis

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Endometriosis (n = 150)</th>
<th>Non-endometriosis (n = 159)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/A</td>
<td>100 (66.7)</td>
<td>153 (96.2)</td>
<td><0.0001</td>
</tr>
<tr>
<td>A/G</td>
<td>44 (29.3)</td>
<td>5 (3.1)</td>
<td></td>
</tr>
<tr>
<td>G/G</td>
<td>6 (4.0)</td>
<td>1 (0.7)</td>
<td></td>
</tr>
<tr>
<td>Allelic frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>244 (81.3)</td>
<td>311 (97.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>G</td>
<td>56 (18.7)</td>
<td>7 (2.2)</td>
<td></td>
</tr>
</tbody>
</table>

^a-value was calculated by Fisher’s exact test.
^b-value was calculated by χ²-test.

Table III. Genotype and allelic frequencies for ACE A-240T gene polymorphism in individuals with and without endometriosis

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Endometriosis (n = 150)</th>
<th>Non-endometriosis (n = 159)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/A</td>
<td>65 (43.3)</td>
<td>100 (62.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>A/T</td>
<td>69 (46)</td>
<td>57 (35.8)</td>
<td></td>
</tr>
<tr>
<td>T/T</td>
<td>16 (10.7)</td>
<td>2 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Allelic frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>199 (66.3)</td>
<td>257 (81.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>T</td>
<td>101 (33.7)</td>
<td>61 (18.2)</td>
<td></td>
</tr>
</tbody>
</table>

^a-values were calculated by χ²-test.

Results

Genotype distribution and allele frequency of ACE 2350 and ACE-240 gene polymorphisms in both groups were significantly different (Tables II and III). Proportions of ACE 2350*A homozygote/heterozygote/G homozygote in endometriosis and non-endometriosis populations were (1) 66.7/29.3/4% and (2) 96.2/3.1/0.7%, respectively (P < 0.0001; Table II). The percentage of ACE 2350*A/G alleles in both groups were (1) 81.3/18.7% and (2) 97.8/2.2%,
menstruation. These explants require a rich blood supply which enables them to survive and grow. The activation of angiogenesis, therefore, might be a key factor in pathogenesis of endometriosis (Inan et al., 2003).

ACE activity is associated with angiogenesis. ACE inhibition by perindopril improves myocardial angiogenesis (Tohli et al., 2004). Angiotensin II, a key regulator of blood pressure and body fluid homeostasis, exerts mitogenic effects on endothelial cells. Angiotensin II is also a humoral regulator of peripheral angiogenesis (Walther et al., 2003). ACE catalyses angiotensin II formation; therefore, the ACE activity is positively correlated with angiotensin II production.

Recently, ACE inhibitors were found to significantly inhibit tumour growth and angiogenesis along with suppression of the vascular endothelial growth factor (VEGF) level (Yasumatsu et al., 2004). Angiotensin II might have an important role in carcinogenesis and the anti-angiogenic activity is partly mediated by angiotensin II and ACE inhibition. ACE and angiotensin II inhibitors might be considered as useful anti-tumour agents. However, the mechanisms of suppression of the VEGF level are still unclear. Furthermore, in our previous survey, we also observed a correlation between VEGF and endometriosis (Hsieh et al., 2004). Considering all these observations ACE appears to have angiogenic and tumorigenic effects upon endometriosis.

The ACE gene, which is located on chromosome 17q23, contains some gene polymorphisms and candidate markers for hypertension and related diseases (Doria et al., 1994). The ACE gene polymorphism located on intron 17 of the ACE gene might be in linkage disequilibrium with other important gene variants. ACE gene polymorphisms are related to numerous diseases, including carotid artery wall thickness (Sayed-Tabatabaei et al., 2003), post-transplant erythrocytosis (Yildiz et al., 2003), diabetic nephropathy (Chang et al., 2003), Alzheimer’s disease (Kehoe et al., 2003), ischamc cerebrovascular disease (Um et al., 2003), dementia (Choi et al., 2003), segmental glomerulosclerosis (Dixit et al., 2002), cystic fibrosis (Arkwright et al., 2003), etc. ACE insertion/deletion (I/D) polymorphism affects the uteroplacental and umbilical flow as well as the recurrence of an adverse pregnancy outcome in women with pre-eclampsia (Mello et al., 2003). The ACE I/D and M235T polymorphisms are associated with an increased risk of developing coronary heart disease, hypertension and ventricular hypertrophy (Alvarez et al., 2000; Sethi et al., 2003). Three ACE gene polymorphisms [Alu insertion/deletion, 23949 (CT), 10698 (G)] might influence the development of systemic lupus erythematosus and nephritis (Parsa et al., 2002).

In contrast, some investigators have demonstrated the non-association between the ACE gene polymorphisms with individual diseases, including hypertension (Harrap et al., 1993), left ventricular hypertrophy (West et al., 1997), pregnancy outcomes, pregnancy-induced hypertension (Tamura et al., 1996) and nephropathisis (Omran et al., 1999). ACE-5466C and 4656 gene polymorphisms are not directly related to the occurrence of sarcoidosis (Schurrmann et al., 2001). However, the genotype frequencies of the insertion/deletion polymorphisms of the ACE gene and the M235T polymorphism for the angiotensin gene might not contribute to hypertension. This discrepancy might be due to different illness classifications, or racial and disease variations. In fact, different ethnic groups might influence the ACE gene distributions (McKenzie et al., 2001). Ethnic variation plays a major role in the genetic regulation of serum ACE activity and ACE gene polymorphism for cardiovascular disease (Bloem et al., 1996).

Zhu et al. (2001) demonstrated that ACE A2350G and A-240T polymorphisms are significantly associated with blood pressure and ACE concentration. The G allele for the ACE 2350 gene polymorphism is significantly associated with higher blood pressure and ACE concentration (Zhu et al., 2001). They suggested that allelic interaction of these gene polymorphisms might play an important role in the dissection of complex traits such as blood pressure. They also indicated that these associations were more obvious in female individuals than in male patients. Therefore, the gender-specific influence of these gene polymorphisms should be addressed in these studies.

In this study, we noted that the genotype distributions for ACE A2350G and A-240T gene polymorphisms were significantly different between the individuals with and without endometriosis. This finding is the first indicating that ACE gene polymorphisms might predispose to endometriosis development. We also observed that the ACE 2350*G-related genotypes and G allele appeared in a higher percentage among the moderate/severe endometriosis populations than the controls. This finding is compatible with the result of Zhu et al. (2001), who suggested that the ACE 2350*G allele might be associated with a higher risk of vascular lesion (higher systolic blood pressure) and higher ACE concentrations. Therefore, our data strongly suggest that the ACE gene polymorphisms might substantially contribute to the pathogenesis of endometriosis. The data also suggest that RAS might be involved in the pathogenesis of endometriosis.

The mechanisms of SNPs on individual disease remain uncertain. Despite SNPs not altering transcript levels, some investigators have demonstrated that the disequilibrium effects of certain genotypes might influence the related three-dimensional structure and efficiency of the transcripts (Shintani et al., 1999; Kennew et al., 2004; Shirasawa et al., 2004). Presumably, the distinct biological condition caused by ACE is among numerous contributions that influence endometriosis development. These contributions include genetic, dietary and environmental factors regulating hormonal and non-hormonal conditions. Furthermore, the ACE polymorphisms might be in linkage disequilibrium with other unidentified functional polymorphisms, which co-operatively influence the susceptibility to endometriosis.

In conclusion, associations of moderate/severe endometriosis with ACE*A2350G and A-240T gene polymorphisms exist. ACE 2350*G and ACE-240*T-related genotypes and alleles increase the susceptibility to endometriosis. The ACE gene polymorphisms likely contribute to the pathogenesis of endometriosis. Although the real role and mechanism of ACE gene polymorphisms has not yet been clarified, this polymorphism deserves more attention for realizing its importance to endometriosis development. Furthermore, this study could be extended to determine whether the RAS and its related gene polymorphism also affect the endometriosis formation. After the clarification of its role in endometriosis, ACE gene polymorphism may become a useful marker to predict the future development of endometriosis and to permit early therapeutic intervention in women at high risk of endometriosis.

References

Submitted on September 19, 2004; resubmitted on October 18, 2004; accepted on October 22, 2004