Isolation and nucleotide sequence of a mouse histidine tRNA gene

Jang H. Han and John D. Harding

922 Fairchild Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA

Received 8 June 1982; Revised 7 July 1982; Accepted 23 July 1982

ABSTRACT

We have sequenced a 1307 base pair mouse genomic DNA fragment which contains a histidine tRNA gene. The sequence of the putative mouse histidine tRNA differs from the published sequence of sheep liver histidine tRNA by a single base change in the D-loop. It does not contain an unpaired 5' terminal G residue, as reported for Drosophila and sheep histidine tRNAs. The gene does not contain introns. The 3' flanking region contains a typical RNA polymerase III termination site of 6 consecutive T residues. 523 residues after the 3' end of the his tRNA coding region, the mouse DNA contains a sequence 72% homologous to part of the consensus sequence of the B1 (alu) family.

INTRODUCTION

Eucaryotes contain many families of reiterated genes. In mammals, the individual members of most reiterated gene families are dispersed in the genome rather than clustered in tandemly repeated units (reviewed in Ref. 1). The ubiquity of dispersed repetitive families implies that elucidation of their structure, modes of regulation and evolutionary history will be important for understanding the molecular biology of eucaryotic cells.

Eucaryotic tRNA genes are reiterated and generally dispersed in the genome. Individual members of some families are widely separated in humans (2), yeast (3-5), silkworms (6) and Drosophila (7). Other Drosophila tRNA gene families are organized in a few clusters at different chromosomal loci. Genes of different families are sometimes present in the same cluster and sometimes not (8-11). A number of Xenopus tRNA genes are present in a large tandemly repeated DNA sequence which, however, does not contain regular repeating sequences near the tRNA genes (12).

We have recently isolated several cloned fragments of the mouse genome which contain tRNA genes in order to obtain detailed information about mouse tRNA gene organization. In this paper we report the nucleotide sequence of a 1307 bp segment of mouse DNA which contains a single histidine tRNA gene.
and a truncated Bl (alu) family member.

MATERIALS AND METHODS

Preparation of a Mouse Recombinant DNA Library

The recombinant DNA library was prepared according to Refs 13 and 14. The components of the library are shown in fig. 1. High molecular weight DBA-2 mouse liver DNA was partially digested with EcoRI under a number of reaction conditions and fractionated by sucrose density gradient centrifugation (14). Phage Acharon 4A DNA (15) was circularized, ligated and restricted with EcoRI. The 31 kb lambda "arms" were separated from the nonessential internal DNA sequences by sucrose density gradient centrifugation. Eleven micrograms of fractionated mouse genomic DNA (c. 12-20 kb in size) (fig. 1, lane 3) was incubated with 20μg of the 31 kb Acharon 4A arms (fig. 1, lane 2) and 8 units of T4 ligase (Bethesda Research Labs) at 12° for 15 hours in 66mM Tris HCl (pH 7.6), 6.6mM MgCl2, 10mM dithiothreitol, 1mM ATP, 1mM spermidine and 250μg/ml of autoclaved gelatin. The resulting DNA molecules (fig. 1, lane 4) were packaged in vitro and transduced into E. coli DP50 SupF. Packaging extracts were prepared by modifications of published methods (16). The bacteria were plated onto NZYDT plates and the phage were recovered from the top agar and stored as described (13). Greater than 99% of the phage were recombinant as judged by the XG plate assay (15).

Screening the Recombinant Library

Phage from the recombinant library were spread on a lawn of E. coli DP50 SupF grown on NZYDT agar. The resulting plaques from NZY top agarose were transferred to cellulose nitrate filters by the method of Benton and Davis (17). After washing with 4X SET (1X SET is 0.15M NaCl, 2mM EDTA, 30mM Tris HCl, pH 7.5) each filter was prehybridized with 4X SET, 50% (v:v) deionized formamide, 0.2% (w:v) each, Ficoll-400, Polyvinyl Pyrrolidone-360, and Bovine serum albumin, 0.1% (w:v) Sodium dodecyl sulfate, 100μg/ml PolyA, and 100μg/ml E. coli tRNA for 2 hours at 37°C. Each filter was hybridized with 1 ml of the above solution containing 2 x 10^7 cpm of iodinated mouse liver tRNA for 24 hours at 37°. Following hybridization the filters were washed for one hour at 37° in hybridization buffer lacking probe and then with 4X SET, 50% formamide for three hours at 37%. Autoradiographs of duplicate filters made from each plate were compared in order to distinguish signals from background spots. Phage plaques were picked and successively replated until more than 90% of individual plaques hybridized with the tRNA probe. In order to verify the fact that a plaque-purified phage harbored a tRNA gene, phage DNA was
purified, digested to completion with EcoRI, electrophoresed on a 0.6% agarose gel in 40mM Tris HCl, 5mM sodium acetate, 1mM EDTA (pH 7.7) transferred to nitrocellulose (18) and hybridized with iodinated mouse tRNA (fig. 1, lanes 5,6).

M13 Shotgun Sequencing

Target DNA preparation: Lambda phage λMt1 contained a 1307 bp XbaI fragment which hybridized with iodinated mouse tRNA (fig. 2). This XbaI fragment was isolated from an agarose gel by electroelution and circularized by incubation with T4 DNA ligase as described below for sticky end ligations. The DNA was cleaved with Sau3A, AluI or HaeIII.

Vector DNA preparation: Phage M13mp7 (19) was digested with BamH1 (for cloning Sau3A cut target fragments) or HincII (for AluI or HaeIII targets). Control experiments indicated that restricted vector preparations contained less than 5% uncleaved DNA and that restricted-religated preparations gave less than 2% white plaques when plated on indicator plates.

Ligation and plating: For sticky end ligation of Sau3A fragments to BamH1 digested M13mp7, 25 ng of vector DNA was mixed with 75ng of target DNA and incubated at 12°C overnight in 20μl of 66mM Tris HCl, pH 7.5, 6.6mM MgCl₂, 10mM dithiothreitol, 66μM ATP and 0.5 units of T4 DNA ligase (BRL). For blunt end ligation of AluI or HaeIII fragments to HincII cut M13mp7, the same amount of vector and target DNAs were incubated at 4°C overnight in 10μl of the above solution containing 500μM ATP and 1 unit of T4 DNA ligase. The ligated DNA was transfected into CaCl₂ treated JM103 and plated on X-Gal plates (19).

Subcloning the entire 1307 bp XbaI fragment into M13mp7: The sticky ends of the XbaI fragment was filled in by incubating 75ng of DNA in 5μl of T₄ ligase buffer containing 50μM each dNTP and 0.1 unit of T4 DNA polymerase at 37°C for 30 min. ATP (final concentration of 500μM) and vector DNA (HincII cleaved M13mp7, 25ng) were added and the volume was adjusted to 10μl with T₄ DNA ligase buffer. The mixture was incubated at 4°C overnight. The ligated DNA was transfected into JM103 as described above.

Sequencing: About 25 white plaques were picked from the several hundred arising from each ligation and partially sequenced by the T-screen procedure (20). Based on the T-screen data, several clones from the Sau3A, AluI and HindIII digestions as well as a clone containing the entire XbaI fragment were sequenced by the dideoxy chain termination method (21) using 8% or 6% thin sequencing gels (22). The sequences of the various subclones were assembled into the complete sequence of the 1307 bp XbaI fragment using the
RESULTS AND DISCUSSION

Isolation of Mouse tRNA Genes

In order to isolate mouse tRNA genes, we (with our colleague, James Looney) prepared a recombinant DNA library from DBA2 mouse liver DNA and the vector, \(\lambda \) charon 4A, as described in Materials and Methods. Fig. 1 (lanes 1-4) shows an agarose gel of the components of the library. The recombinant DNA library was screened with iodinated mouse liver tRNA and several clones were purified to homogeneity. The clone characterized in this paper is termed \(\lambda \)Mtl. As shown in Fig. 1, lane 5, EcoRI digestion of \(\lambda \)Mtl yields 3 fragments, the middle of which is a c. 15 kb mouse genomic DNA insert which hybridizes with iodinated mouse tRNA (lane 6). Further Southern blot analysis of \(\lambda \)Mtl indicated that a Xbal fragment c. 1300 bp in size hybridized with the tRNA probe (fig. 2). This fragment was isolated by preparative agarose gel electrophoresis and sequenced by the M13 shotgun method, as described in Materials and Methods.

Nucleotide Sequence

The sequence of the Xbal fragment was determined from the overlapping sequences of 21 randomly chosen M13 subclones derived from Sau3A, Alul and HaeIII digests, as diagrammed in Fig. 3. In addition, part of one end of the sequence was determined from a M13 subclone of the entire fragment (X3). Each part of the 1307 bp sequence was derived from at least 2 different overlapping M13 subclones, over 80% from 3 or more clones. Both strands of the sequence were determined with the exception of residues 920-1000. The redundancy inherent in the shotgun technique helped assure the accuracy of the sequence determination. The ends of the sequence were determined from subclone H2 which contained an internal Xbal site and overlapped subclones which were on opposite ends of the sequence (X3 at the 3' end relative to the orientation of the tRNA coding sequence and several Alul clones at the 5' end, fig. 3). This was expected since we self-ligated the purified Xbal fragment prior to restriction and subcloning.

Two technical comments concerning the sequencing may be of interest to others using the shotgun technique. First, we have modified the blunt end ligation reaction conditions to give very efficient ligation (see Materials and Methods). Second, the subclones are distributed relatively uniformly over the entire 1307 bp sequence. However, we never detected a subclone of the entire Xbal fragment in the orientation opposite to that of X3.
Figure 1. Isolation of clone λMtl. Lanes 1-4, an Ethidium Bromide stained 0.6% agarose gel showing components of the recombinant DNA library: Lane 1, EcoRI digested phage λcharon 4A DNA, lane 2, the 31kb, ligated λarms, lane 3, fractionated mouse genomic DNA (c. 12-20kb in size), lane 4, DNA isolated after ligation of the arms and the mouse genomic DNA. Lane 5, EcoRI restricted λMtl. Lane 6, an autoradiogram of a Southern blot of lane 5 hybridized with iodinated mouse tRNA.

The Histidine tRNA Gene Coding Sequence. The complete nucleotide sequence of the 1307 bp XbaI fragment from λMtl is shown in fig. 4. In order to identify the tRNA gene(s) in the sequence we searched it for GTTC and GATC tetranucleotides, one of which is present in the T-pseudo U stem and

Figure 2. Southern blot analysis of λMtl. Left lane; agarose gel profile of XbaI digested λMtl. The size in kb of HindIII digested λ DNA fragments and HaeIII digested φX-174 fragments run in parallel lanes are given at the left. Right lane, an autoradiogram of a Southern blot of the XbaI digest hybridized with iodinated mouse tRNA.
Figure 3. M13 Subclones used to Sequence the 1307 Base Pair XbaI Fragment of λMt1.

The upper bar represents the 1307 bp sequence with relevant restriction sites indicated. The filled in region is the histidine tRNA coding region which is transcribed from left to right. The sequences of M13 subclones are indicated below the bar. Subclones marked S, A, and H were derived from Sau3A, Alul and HaeIII digests, respectively, of the XbaI fragment. The sequence X3 was obtained by cloning the fragment directly into M13. The beginning of the mouse DNA insert relative to the M13 sequencing primer is indicated by a vertical line; the arrowhead indicates the end of the sequence read from the gel. An arrowhead followed by a vertical line indicates that the entire mouse DNA insert of the subclone was sequenced. Arrows pointing to the right indicate that DNA corresponding to the coding strand (as defined by the orientation of the histidine tRNA gene) of the 1307 bp fragment was sequenced, arrows pointing to the left indicate that the non-coding (tRNA-like) strand was sequenced.

loop of most eucaryotic tRNAs (24), and then constructed a tRNA coverleaf structure from the surrounding residues. This analysis indicated that the sequence contained a single tRNA gene, located at residues 462-533 (solid box in fig. 4). The cloverleaf structure encoded by these residues is shown in fig. 5. It contains the histidine anticodon, 5'-GTG-3' and the invariant residues characteristic of eucaryotic tRNAs (24). This sequence differs in only two respects from the published sequence of the sheep liver major histidine tRNA isoacceptor (25). It contains a G residue at position 16 in the D loop (underlined in fig. 5) rather than a U as in the sheep tRNA. In addition, both sheep liver (25) and Drosophila (26) histidine tRNAs contain an unpaired 5' terminal G residue. The DNA sequence of fig. 4 contains a C at this position and we have not included this in fig. 5. Based on the correspondence of the mouse sequence presented here with that of the sheep liver tRNA, we conclude that λMt1 can encode a biologically active histidine tRNA.

In common with most other eucaryotic tRNA genes, the DNA sequence shown
Figure 4. Nucleotide Sequence of the 1307 bp Xbal Fragment of λmt1.

The tRNA-like (non-coding) strand is shown with the 5' end at the left. The histidine tRNA coding region (residues 462-533) is enclosed in the solid box; sequences 7 bp or larger repeated in the tRNA coding region are underlined (some of these are on the coding strand). The sequence homologous to part of a Bl family consensus sequence is enclosed in the dashed box (residues 1057-1113).

in fig. 4 does not encode the 3' terminal CCA residues found in the mature tRNA. The gene does not contain an intervening sequence.

Flanking Sequence. The DNA sequences flanking the histidine tRNA coding region have little obvious homology with other eucaryotic tRNA genes. Two common features are, however apparent. Sixteen residues after the end of the coding region are 6 consecutive T residues, which, in analogy with other genes copied by RNA polymerase III, is probably a transcription termination region (27). The 1307 bp sequence also contains 6 regions of 7 or more consecutive nucleotides which are repeated in the tRNA coding region, as underlined in
Figure 5. Cloverleaf Structure of the Histidine tRNA Encoded by Residues 462-533. The single residue in the D-loop which differs from the published sequence of sheep liver his tRNA (25) is underlined.

fig. 4. Three of these are on the coding strand and 4 on the non-coding strand. Similar repeats have been noted near other tRNA genes; their significance, if any, is unknown (2,7).

Sequence of a Bl (alu) Family Fragment. Analysis of the sequence of fig. 4 for other known genes suggests that residues 1057-1113 (enclosed in the dashed box) are related to one end of a Bl family sequence. The Bl family is dispersed and highly repeated in the mouse genome (28) and is related

Figure 6. Homology Between Residues of the 1307 Base Pair Xbal Fragment and a Bl Family Consensus Sequence. Residues marked Mt1 are from fig. 4. Residues marked Bl are the complement of the Bl family consensus sequence in ref. 28.
to similar families in other mammals, usually termed alu families (29). A comparison of a B1 consensus sequence (28) with residues 986-1113 is shown in fig. 6. Residues 1057-1113 of the 1307 bp sequence share 72% homology with residues 72-129 of the B1 consensus sequence if a single nucleotide gap is introduced to maximize the homology. The homology region can perhaps be extended to include the hexanucleotide GAAGTC at residues 1048-1053 which is also present in the B1 sequence (residues 62-67). Beyond this, the two sequences exhibit little homology. Therefore, the 1307 bp sequence appears to contain a truncated B1 family member which has perhaps accumulated point mutations. This sequence does not contain the internal residues shown to be necessary for in vitro transcription of alu family sequences by RNA polymerase III (30). More extensive analysis of murine B1 sequences is necessary to determine whether this sequence has a function or any significance relative to the histidine tRNA gene.

ACKNOWLEDGEMENTS

We wish to thank James Looney for helping prepare the recombinant DNA library, Barbara Ross for running sequencing gels, Craig Squires for his very generous help with computer analysis, Catherine and Craig Squires for supplying M13 strains and much helpful advice, and Marina Hatch and Beth Jacober for typing the manuscript. Supported by NIH Grant GM26884 and National Foundation, March of Dimes Basil O'Connor Grant 5-233 to JDH. Computer analysis was supported by NIH Grant RR00442 to the Columbia Biology Department Computer Graphics Facility.

* To whom to address correspondence.

REFERENCES