In vitro expression and characterization of the translation start site of the \(\text{psbA} \) gene product (\(\text{Q}_B \) protein) from higher plants

Bennett N. Cohen, Timothy A. Coleman, John J. Schmitt and Herbert Weissbach

Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110, USA

Received 9 February 1984; Revised and Accepted 9 July 1984

ABSTRACT

The \(\text{psbA} \) gene from higher plants, which codes for the atrazine herbicide binding protein of photosystem II (\(\text{Q}_B \) protein), has been recently sequenced by various laboratories. From these data there are two potential translation sites, one yielding a protein of \(38,500 \) kd and another a protein of \(34,500 \) kd. In the present study, cloned \(\text{psbA} \) gene sequences from maize, tobacco, and pea have been expressed in a highly defined \(\text{E. coli} \) in vitro transcription/translation system. In order to determine the start site of translation, we also have employed a simplified \(\text{E. coli} \) system designed to synthesize the first di- or tripeptide of the gene product. From these results, it is clear that the first ATG of the longest open reading frame of the \(\text{psbA} \) gene, that begins \(\text{fMet-Thr} \), is not recognized in vitro. Instead, the next downstream Met at position 37 is the initiation site, since the expected dipeptide \(\text{fMet-Ile} \) is synthesized from all \(\text{psbA} \) clones. These data are in accord with the in vivo results that the gene product is a precursor protein of \(34,500 \) kd.

INTRODUCTION

Studies of gene expression during the past ten years have centered on the regulation of molecular responses to biochemical stimuli. In higher plants and other photosynthetic eukaryotic organisms, light plays an important role in the regulation of both nuclear and chloroplast coded genes. It is now evident that the light stimulation of gene expression is characterized by the increase in unique populations of nuclear and chloroplast mRNA species after dark grown plants are exposed to light (1-8). However, before the mechanism of this effect can be elucidated, a suitable assay system for the identification of factors that affect gene expression has to be developed.

We have chosen to examine the effect of light on the expression of the \(\text{Q}_B \) protein or herbicide binding protein (\(\text{psbA} \) gene product) from higher plants. This gene is found in the large unique copy region of the chloroplast genome adjacent to an inverted repeat sequence and codes for proteins ranging from \(33.5-34.5 \) kd depending on the species (9). Early studies on
the expression of the Q protein \textit{in vitro} from total chloroplast DNA and mRNA has yielded limited results, with the chloroplast coded Q protein only being expressed in eukaryotic \textit{in vitro} translation systems (10). The expression of this gene is light stimulated (11) and the Q protein mRNA constitutes a major portion of the mRNA synthesized by chloroplasts during light growth (12). The gene for this protein was first isolated by Bedbrook et al. (13) and since has been sequenced in \textit{Nicotiana debneyi}, \textit{Spinacea oleracea}, and \textit{Amaranthus hybridus} (14,15).

Previously, we have utilized a highly defined \textit{E. coli} based DNA-directed transcription/translation system to study the expression of various cloned bacterial genes (16-18). The chloroplast gene, \textit{rbcL}, which codes for the large subunit (LS) of ribulose-1,5-bisphosphate carboxylase (RuBPC), has also been expressed in crude and defined \textit{E. coli} expression systems (19,20). From our results and others, there is indication that \textit{E. coli} RNA polymerase can initiate properly on chloroplast DNA templates and exercise some specificity of transcription (20,21).

In this paper we describe the \textit{in vitro} expression of maize and tobacco Q proteins in a highly defined \textit{E. coli} \textit{in vitro} system. A simplified expression system based on the formation of the first dipeptide (22) of the gene product is also used to synthesize identical dipeptide products from maize, tobacco and pea psbA templates. From these latter experiments, we are able to determine that the start site of translation of the Q protein mRNA in an \textit{E. coli} \textit{in vitro} expression system is at the second AUG of the largest open reading frame of the Q protein mRNA.

\section*{MATERIALS AND METHODS}
\textbf{Chloroplast DNA Isolations and psbA Cloning}

Maize chloroplast DNA was purified from 7 day seedlings by a modification of the method of Bovenberg \textit{et al.} (23). After restriction digestion with endonuclease Bam HI, the Bam 8 fragment, which contains the psbA sequence (13), was isolated from low-melting point agarose (24). This fragment was ligated into the Bam HI site of \textit{pBR322}, transformed into \textit{E. coli RR1} and phenotypic transformants (Amp$^{\text{T}}$, Tet$^{\text{S}}$) isolated. Plasmids were screened by the method of Birnboim and Doly (25) and isolated by CsCl isopycnic centrifugation (26). Plasmids (pCMA) containing the psbA gene were selected by Southern hybridization to the purified maize Bam 8 fragment, which was 32P radiolabeled by complementary strand synthesis (27). All plasmids were purified two times in CsCl gradients for \textit{in vitro} expression.

6222
studies.

The 5' region of the pea psbA gene (Pisum alaska) in pBR322 was kindly supplied by Dr. J. Palmer and is referred to as pJP501 (28). Plasmid pNT32 was a gift of Dr. L. Bogorad. This plasmid contains the coding sequence for the tobacco psbA gene as a 3.2 kb fragment inserted into the EcoRI site of pBR322. Purified cloned chloroplast DNA fragments were isolated for in vitro studies from low-melting point agarose by Elutip™-d column chromatography (29).

In Vitro Protein Synthesis and Dipeptide Systems to Study psbA Gene Expression

Plasmid clones of the psbA gene from maize (pCMA) and tobacco (pNT32), were expressed in an E. coli directed coupled transcription/translation system (16-18) and the $[^{35}S]$labeled gene products analyzed by 12.5% NaDodSO₄/polyacrylamide gel electrophoresis and fluorography (30,31). Similarly, $[^{35}S]$methionine, $[^{3}H]$lysine, and $[^{3}H]$isoleucine incorporation into total protein was determined by CCl_3COOH precipitable counts on GF/C glass fiber filters. Due to the similarity in molecular weights between the θ_B proteins (~34 kd) and the plasmid coded β-lactamase, the maize psbA (pCMA) plasmid was either linearized by a partial Pvu I restriction digestion to prevent synthesis of full-length β-lactamase or purified chloroplast DNA fragments were isolated from appropriate clones as described above. In addition, plasmids or DNA fragments containing the psbA gene were tested for expression in a simplified in vitro expression system, in which the N-terminal di- or tripeptide of the gene products is synthesized (22,32). The assay for di- or tripeptide formation was based on extraction of the formylated peptide from acidic solution into ethyl acetate (33). Purified tRNA isoacceptor species were obtained from Subriden RNA, Rolling Bay, Washington.

RESULTS

Table I summarizes the templates that are used in these experiments. The original clone that was constructed contained the maize chloroplast psbA gene present on the Bam 8 fragment as previously described by Bedbrook et al. (13). The sequence of the maize gene was utilized to reconfirm the identities of pJP501 and pNT32 as plasmids that code for the pea (partial product) and the tobacco psbA gene product, respectively, by Southern hybridization (data not shown).

Figure 1 is a fluorograph of a 12.5% NaDodSO₄/polyacrylamide gel
Table 1: Summary of psbA Clones Used in the In Vitro Studies

<table>
<thead>
<tr>
<th>Clone</th>
<th>Source</th>
<th>Chloroplast DNA fragment</th>
<th>Size (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCMA</td>
<td>Maize</td>
<td>Bam 8</td>
<td>4.3</td>
</tr>
<tr>
<td>pJP-501</td>
<td>Pea</td>
<td>Pst I</td>
<td>5.0</td>
</tr>
<tr>
<td>pNT32</td>
<td>Tobacco</td>
<td>EcoRI</td>
<td>3.2</td>
</tr>
</tbody>
</table>

All fragments were cloned into pBR322 as described in Materials and Methods. Plasmid pJP-501 contains the 5' control region and only part of the coding region of the pea psbA gene.

analysis of the protein products synthesized in vitro from the cloned psbA genes. Lane 1 shows the proteins synthesized using as template a Pvu I linearized pCMA clone. A major in vitro product has a molecular weight of approximately 34,000, which corresponds to the unprocessed 34.5 kd maize

Fig. 1: In Vitro Protein Synthesis Analysis on NaDodSO₄ Polyacrylamide Slab Gel Electrophoresis Carried Out at 50 v for 16 hr. Equal CCl₃COOH precipitable counts (5 x 10⁶) were loaded in each lane. Lane 1, proteins synthesized from 1 μg Pvu I linearized pCMA; Lane 2, proteins synthesized from 0.4 μg 3.2 kb tobacco psbA DNA; Lane 3, no DNA template (17.5 μl reaction mix used as sample); and Lane 4, [¹⁴C]labeled carbonic anhydrase.
Table 2: Incorporation of Labeled Amino Acids into CCl₂COOH Insoluble Material Directed by DNA Fragments Containing the psbA Gene

<table>
<thead>
<tr>
<th>Labeled Amino Acid</th>
<th>[³⁵S]Met (pmol)</th>
<th>[³H]Lys (pmol)</th>
<th>[³H]Ile (pmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCM-A</td>
<td>2.4</td>
<td>0</td>
<td>8.5</td>
</tr>
<tr>
<td>pNT-32</td>
<td>2.9</td>
<td>0.1</td>
<td>8.6</td>
</tr>
<tr>
<td>pJP501</td>
<td>2.2</td>
<td>---</td>
<td>6.7</td>
</tr>
<tr>
<td>pBR322</td>
<td>4.6</td>
<td>9.3</td>
<td>17.7</td>
</tr>
</tbody>
</table>

A defined in vitro DNA-directed system was used (16-18). The incorporation of radioactivity into acid insoluble material was performed as described in Materials and Methods utilizing 0.05 μg of purified psbA insert DNA as template from the clones pCM-A, pNT-32, and pJP501. pBR322 was a control plasmid to show that [³H]lysine could be incorporated into acid insoluble material under the conditions used. Gel analysis of the products synthesized from the psbA containing DNA fragments showed that the Q₈ protein was labeled after incubation with [³⁵S]Met and [³H]Ile.

A protein seen in vivo (11). Lane 2 shows the in vitro products that are synthesized from a 3.2 kb fragment of pNT32 that contains the entire tobacco psbA gene sequence (L. Bogorad, personal communication). Again a product of about 34.5 kd is observed plus a lower molecular weight protein that has not yet been identified. Lane 3 is the coupled transcription/translation system without exogenous template and lane 4 is a [¹⁴C]labeled 30 kd protein standard. Analysis of the protein products from pJP501 was not performed because this template contains only a partial sequence of the pea psbA gene.

In order to further establish that the 34.5 kd protein synthesized in vitro is the Q₈ protein, differential incorporation of radiolabeled amino acids has been used. In vivo labeling studies had indicated that the Q₈ protein does not contain lysine (34). The lack of lysine in the protein has subsequently been verified from the DNA sequence of the gene (14,15). Therefore, isolated chloroplast DNA fragments were used as templates in the defined in vitro expression system containing either [³⁵S]methionine, [³H]lysine, or [³H]isoleucine. From the sequence data, the protein contains 11 and 28 residues of Met and Ile respectively, but as noted above no Lys.
All assays were performed with 0.5 μg of purified DNA fragments from the above clones. For fMet-Thr synthesis, the results are mean values from assays using either crude E. coli tRNA or purified iso-acceptor species of tRNA^Thr. For the experiments with isoleucine, the purified isoacceptor species tRNA^Ile was used. Di- and tripeptide synthesis were performed as described previously (22,32).

The data presented in Table II show that no [3H]lysine is incorporated in vitro into acid insoluble material directed by fragments containing the psbA gene, although both [35S]Met and [3H]Ile are. As a control for these experiments, it was shown that [3H]lysine is incorporated into protein when plasmid pBR322 is used as template.

The sequence data of Zurawski et al. (14) on N. debneyi and S. oleracea psbA genes and similar data on A. hybridus by Herschberg and McIntosh (15) show that the largest open reading frame of all the psbA genes begins with the amino acid sequence Met-Thr (ATG ACT). However, downstream there is another potential start site in the same reading frame that begins Met-Ile (ATG ATC). This latter sequence is also present in the maize psbA gene (personal communication, L. Bogorad). Table III is a compilation of the data obtained from experiments on the formation of the first dipeptide of the psbA product directed by the DNA fragments of the various clones. Using either crude E. coli tRNA or three different purified isoacceptor species of tRNA^Thr, aminoacylated with [3H]Thr, there is only a barely detectable level of fMet-Thr synthesis. However, as shown in Table III, there is excellent formation of fMet-Ile in the dipeptide system directed by the psbA clones from pea, tobacco, and maize. To further verify that the start site of translation is at the second AUG of the psbA genes, pea and tobacco DNA fragments were also used as templates for tripeptide synthesis. If the methionine at position 37 initiates, proline would be the expected third amino acid (14,15). As shown in Table II, the predicted tripeptide, fMet-Ile-Pro is formed. Figure 2 shows the effect of template
concentration on the synthesis of the dipeptide, fMet-Ile, using as templates purified DNA fragments obtained from the pea and tobacco psbA clones.

Experiments similar to those described above were performed on the psbA gene from Euglena gracilis as described by Hallick (35). Little or no synthesis of protein was observed in the coupled transcription/translation system. These negative results would be expected from the recent data on the psbA and rbcL gene sequences from E. gracilis which showed that they contain introns within the coding region (R. Hallick, personal communication (36)).

DISCUSSION

A review of data compiled on chloroplast gene expression in vitro shows the limited expression of various psbA mRNAs in reticulocyte lysate or wheat germ extracts (10). However, the data in this paper indicate that the cloned psbA gene sequences of maize and tobacco can be expressed in a highly defined E. coli based DNA directed transcription/translation system. The data in Figure 1 show that proteins of identical molecular weights as the Qb protein precursor have been synthesized in vitro from the maize and tobacco psbA genes. Recently, antibodies have been raised to the Qb
protein by using a synthetic peptide of the Qn protein. This antiserum
immunoprecipitated a single product from the in vitro synthesis reactions
that corresponded to the Qn protein precursor and also immunoprecipitated a
34.5 kd protein from maize and pea thylakoid membranes (Felix, A.M., Heimer,
E.P. and Cohen, B.N., manuscript in preparation). The in vitro synthesis
of higher plant QB proteins in the E. coli expression system should make it
possible to reclone these various psbA gene sequences into suitable E.
coli-based expression vectors for the overproduction of the QB proteins for
studies on their structure and function. The use of the E. coli in vitro
expression system represents a heterologous approach to examine chloroplast
gene expression. The system relies on the components of E. coli gene
expression (e.g. RNA polymerase, ribosomes, etc.) to function in place of
the corresponding chloroplast components. Because of this assumption, not
only were the products examined for size but also for labeled amino acid
incorporation. The results in Table II are indicative of those obtained in
vivo and seem to indicate that the E. coli factors are faithfully expressing
the chloroplast DNA sequences. Recent evidence comparing proteins expressed
in a crude E. coli expression system with a homologous tobacco in vitro
system also shows good correlation (Dr. D. Bourque, personal communication).

Furthermore, the use of the DNA-directed synthesis of the N-terminal
dipeptide, fMet-Ile, should facilitate investigations on the role of
chloroplast derived factors in regulating the expression of the QB protein
by providing a rapid and reproducible assay system. In addition to the
results from the in vitro studies described here, we have been able to show
that the proposed 38,500 kd translation product described by Zurawski et
al. (14) is not synthesized in vitro. This protein would require that
translation initiation begin at the first ATG of the largest open reading
frame, resulting in the formation of the dipeptide fMet-Thr. However, the
dipeptide studies described here show that fMet-Thr is not formed in this
in vitro system. Instead, the second AUG is utilized for initiation of
translation as shown by the formation of fMet-Ile and fMet-Ile-Pro as seen
in Table III. Our results are also in agreement with the reported size of
the in vivo synthesized QB protein precursors, i.e. 34.5 kd and the reported
maize sequence data (L. Bogorad, personal communication). Finally, Hirschberg
and McIntosh (15) have concluded, based on sequence data, that the second
AUG is the start site of translation in A. hybridus.

It should be noted that a similar situation with regard to the start
of translation is seen in the mRNA for the maize rbcL gene. There are two
potential translation start sites in the same reading frame, 18 base pairs apart (37) that would yield the dipeptide, fMet-Ser. Both of these sequence regions also contain potential ribosomal binding sites that are homologous to the 16S rRNA from maize (38). Experiments in this laboratory, using different tRNA isoacceptor species, have shown that the first dipeptide of the protein is synthesized from the second fMet-Ser sequence of the maize rbcL gene and that the other possible start site 18 bp upstream is not recognized (39).

ACKNOWLEDGEMENT

We would like to thank Dr. L. Bogorad and Dr. J. Palmer for providing psbA clones and some unpublished data. We would also like to thank Dr. R. Hallick for his data on the E. gracilis psbA gene and Dr. M. Edelman for his helpful discussions.

REFERENCES