Toxin resistance and/or male fertility reversion is correlated with defined transcription changes in the 1.5kb Aval region of cmsT

Ji Qin, C.M.-R.Fauron1, R.I.S.Brettell2, M.Milhous3 and A.G.Abbott*

Department of Biological Sciences, Clemson University, Clemson, SC 29634-1903, 1Department of Human Genetics, Howard Hughes Medical Building, Room 743 Wintrobe Building, University of Utah Medical Center, Salt Lake City, UT 84132, USA, 2CSIRO, PO Box 1600, Canberra City, Australia and 335 Pitt St., Apt. 2, Charleston, SC 29401, USA

Received March 19, 1987; Revised and Accepted June 24, 1987

ABSTRACT
Reversion of T type cytoplasmic male sterility (cmsT) to fertility is correlated with sequence changes in a 1.5kb Aval fragment. This 1.5kb Aval fragment is composed of 5' flanking sequences of ATPase subunit 6, one complete open reading frame (ORF 13) and part of the another (ORF 25). The sequence of the 1.5kb Aval fragment was compared to the sequences of homologous regions in the N(male fertile) and T revertant V3 mitochondrial DNA. Sequences were found to diverge between ORF13 and ORF25 coding regions.

To further characterize the transcription of these rearranged sequences, specific probes for ORF 13, ORF 25 and 5' flanking sequences of ATPase 6 were hybridized to Northern blots of N, cmsT and the T revertant V3 and V18 mtRNAs. Each revertant has a single ORF 25 homologous transcript in contrast to the multitranscript pattern in cmsT. ORF 13 homologous transcripts were not detected in either revertant cytoplasm. The loss of ORF 13 and/or altered ORF 25 transcription in the fertile revertants may be responsible for the male fertility and/or toxin resistance in these plants.

INTRODUCTION
Cytoplasmic male sterility (cms) is a maternally inherited type of male sterility in which pollen abortion occurs in the anthers, while development of other plant parts is normal. Since cytoplasmic male sterile plants fail to release functional pollen, they need not be hand emasculated for hybrid crosses.

There are three different male sterile cytoplasms in maize designated cmsS (U.S.D.A.), cmsC (Charrua), cmsT (Texas) and one male fertile cytoplasm designated N. Each sterile cytoplasm is distinguished by a unique set of nuclear fertility restorer alleles. CmsT cytoplasm is restored to fertility in a sporophytic fashion by two dominant restorer alleles Rf1 and Rf2 located on chromosome 3 and 9 respectively. S cytoplasm is restored gametophytically by a single dominant allele Rf3 located on chromosome 2. C cytoplasm is restored by Rf4, and like cmsT exhibits a sporophytic restoration pattern. Fertile cmsT and cmsS plants can be obtained through changes in the cytoplasmic gene systems. In cmsT, fertile cytoplasmic
revertants have been isolated from H. maydis toxin-resistant tissue culture selection schemes. Each cytoplasm has a unique mitochondrial DNA(mtDNA) organization as illustrated by restriction endonuclease fragment analysis. Similarly, the cytoplasmic revertants in both cmsT and cmsS have further mtDNA organizational changes. In contrast, chloroplast DNA (ctDNA) structure from the four major cytoplasms (N, cmsT, cmsS, cmsC) appears invariant except for one HindIII fragment in S cytoplasm.

T revertant plants have a very similar restriction pattern to cmsT. There is, however, one rearrangement in an XhoI fragment which is found consistently among a large proportion of T revertant lines investigated. This is seen as a size reduction of a 6.6kb XhoI fragment in cmsT to a 6.2kb fragment in the T revertant pattern. This restriction fragment size change is the result of a recombinational event occurring in an internal region of the 6.6kb XhoI fragment of cmsT. The entire 6.6kb XhoI fragment has been cloned as part of a larger 8.5kb Bam HI fragment. Using this clone (pB8.5T) the region of recombination has been delimited to a 1.5kb AvaI fragment in cmsT. The 1.5kb AvaI region of cmsT mtDNA is part of the chimeric transcription unit designated by Dewey et al. as TURF 2H3. TURF 2H3 contains portions of the 5' flanking sequences of ATPase 6, one short open reading frame (ORF 13) and a larger open reading frame (ORF 25). Correlated with fertility reversion in one cmsT revertant (V) is the loss of the 1.5kb AvaI fragment and appearance of a 2.1kb AvaI fragment. The 2.1kb AvaI region of V mtDNA has extensive homology to a similar sized region in N as evidenced from Southern hybridization analysis. Two possible mechanisms could explain this. Either the toxin selects for amplification of an N-like minor component of the mitochondrial DNA population in cmsT or the toxin selects a chance recombination in this region restablishing the progenitor N-like region.

Here we present mtDNA sequencing data and Northern blot analysis of revertant mtRNAs illustrating that a recombination 5' to the ORF 25 sequences and 3' to the ORF 13 sequences has occurred in the V revertant. This recombination redefines the ORF 25 transcription unit and eliminates ORF 13 transcription.

MATERIALS AND METHODS

All maize lines (B73N, B73T) except fertile cmsT revertant lines A188N/Wf9T, were obtained from Pioneer Hi-Bred International.

1. MtDNA and RNA extraction

Mitochondrial DNA from dark grown coleoptiles was isolated by the method of Kemble et al. with further purification on a neutral cesium gradients.
Fig 1. Restriction map of the cmsT clone pB8.5T showing the gene map of the 1.5kb AvaI fragment. The extent of homology of various cloned probes from other cytoplasms is depicted at the bottom of the Figure. Restriction sites: A, AvaI; B, Bam HI; E, Eco RI; H, HindIII; S, SalI; Ss, SstII; X, XhoI.

For mtRNA extraction, the final mitochondrial pellet was resuspended in 3 ml of 4M guanidinium isothiocyanate mixture and RNA extracted by methods outlined of Maniatis et al. 24

2. Northern blot hybridizations

Mt RNA samples were electrophoresed on 1.5% formaldehyde agarose gels and blotted as outlined in Thomas. 25 Northern blots were prehybridized in a solution containing 5X Denhardt's without BSA (0.1% Ficoll and 0.1% Polyvinylpyrrolidone), 5X SSC, 0.5% SDS and 100ug/ml salmon sperm DNA for 1 hour at 65°C and hybridized overnight with 32P nick translated DNA. 24,26 Filters were washed twice for 15 min. at 65°C with 2X SSC twice in 1X SSC and once in 0.3X SSC.

3. Fragment Isolation and Labeling

DNA fragments were separated by electrophoresis on 0.8% agarose gel in TAE buffer (0.04M Tris-acetate, 0.001M EDTA). Specific fragments were isolated by the electroelution method of Maniatis et al. 24

4. DNA Cloning and Sequencing

M13 cloning was done by the method of Messing et al. 27 Sau 3A fragments were ligated into the Bam HI site of M13mp18 and M13mp19. The ligation mixture was transfected in JM 101. Cells are plated on soft agar in presence of IPTG and X-gal. The deletion clones for sequencing were isolated using the method of Dale et al. 28 The primers RD 22 and RD 29 were obtained from I.B.I.
Fig 2. Comparison of 2.1kb HindIII region in cmsT with the 3.2kb Hind III regions in N and V3. The hatched lines are homologous regions between N and V3. The dark lines are homologous regions in N, cmsT and V3. The region from the right HindIII site to the vertical dotted line has been sequenced in each cytoplasm.

The 1.5kb Aval region of cmsT is homologous to a 3.2kb HindIII region in both N and the T revertant V3 mtDNA.

The cloning and characterization of the 1.5kb Aval region of cmsT has been previously described. These studies utilized and 8.5kb Bam HI clone (pB8.5T) of cmsT mtDNA which contains the 1.5kb Aval region in its entirety (Fig. 1). The 1.5kb Aval region is contained within the TURF 2B region.
Fig. 3. Nucleotide sequence of the right side of the 2.1kb HindIII region in cmsT and 3.2kb HindIII regions in N and V3. Line 1, 2, and 3 represent the N, V3, and T sequences, respectively. Asterisks signify nucleotides identical to the N nucleotides; dashes represent absence of matching nucleotides. Where bases differ from the N sequence the differing bases are depicted. The putative consensus 5' flanking sequence of ORF25 has been enclosed in a box.
described by Dewey et al. In V mtDNA a recombination has occurred in this 1.5kb AvaI region approximately 500bp 5' of the right HindIII site centered in ORF25. This recombination reestablishes a 3.2kb HindIII fragment in V which is very similar in sequence structure to a 3.2kb HindIII fragment in N mtDNA (Fig. 2). To position precisely the recombination point in the revertant V mtDNA and compare the homologous 3.2kb HindIII N mtDNA region, clones of these fragments were sequenced. For this purpose, the 3.2kb HindIII fragment of V was subcloned from a cosmid (VH3.3-1) and a 3.2kb HindIII cloned fragment of N mtDNA (pH3.2N) was selected from a pUC8 HindIII library. The extent of homology of these fragments to the AvaI 1.5kb region of cmsT was determined by restriction mapping and Southern hybridization (Fig. 2).

Sequence comparison of the 1.5kb AvaI homologous regions in N and the T revertant V mtDNAs

In order to be consistent with the published sequence of TURF 2H3 we have chosen the same nucleotide numberings as Dewey et al. Figure 3 shows the sequences of the homologous regions in N, cmsT and V aligned by the right end HindIII site of the 2.1kb cmsT region designated nucleotide 2018. The first line depicts the sequence of N, the second line the sequence of the T revertant V and the last line the sequence of cmsT.

Comparing N and T sequences over the region defined by the ORF 25 start codon (nucleotide 1640) to the HindIII site ending at nucleotide 2018 reveals a 97.5% sequence homology, with differences occurring at nucleotides 1667, 1668, 1669, 1671, 1675, 1866, 1899, 1926, and 1987. These differences have been described previously by Stamper, S. (personal communication). The N and T sequences between the ORF 25 start codon and the point of complete sequence divergence (nucleotide 1568) are 63.3% matched with differences occurring at nucleotides 1587-1594, 1597, 1600, 1606-1616, 1619, 1620, 1623, 1629, 1630. 5' to nucleotides 1568 the N and T sequences totally diverge (24.6% match). It is interesting to note that ORF 25 coding sequences are much more highly conserved than the immediate 5' flanking sequence; although the differences are most pronounced in one region defined by base 1587-1616. The high degree of sequence variation in this region suggests that this may be the site of recombination.

Comparing the N and fertile revertant V sequences 5' to nucleotide 1568 (Fig. 3), the V sequence is similar to the N sequence with a 72.4% nucleotide match. The nucleotide differences occur at position 1516, 1517, and 1518. In this same region V has an additional 9 nucleotides not present in N (nucleotide 1541-1549) and N has 6 nucleotides not present in V (nucleotide
Fig. 4. Northern blot hybridizations of N (lane 1), cmsT (lane 2) and V (lane 3) mtRNAs with A. ORF 25 specific probe; C. ORF 13 specific probe; B and D are the longer exposures of A and C. Transcript sizes are in nucleotides.
1510-1513, 1519, 1520). 3' to base 1568 up to the ORF25 start codon V_3 has a 63.3% nucleotide match to N in contrast to a 81.6% nucleotide match to T. From the ORF25 start codon to the HindIII site at nucleotide 2018 the V_3 an N sequences are 98.1% nucleotide matched while the V_3 and T sequences are 99.4% nucleotide matched. In this region, the V_3 sequence is more similar to the T than the N sequence as judged by the nature of the nucleotide differences, particularly those in the region of nucleotides 1667-1675. As found in the 5' flanking sequences of the Cytochrome Oxidase II genes of various plant species, the consensus sequence GGAGCAGAG has been located between nucleotide 1595-1604 in N and V_3. The T sequence in this region has two different nucleotide substitutions at position 1597 and 1600.

Northern blot analysis of ORF 13 and ORF 25 transcripts in N, cmsT and T revertant (V_3)

To further characterize how the rearranged coding sequences in the fertile revertant mtDNA alter the transcription unit defined by transcripts homologous to the 1.5kb AvaI region of cmsT, two specific probes were hybridized to a Northern blot containing N, cmsT and T revertant V_3 mtRNA. The first probe is an ORF 13 specific probe, isolated from a deletion clone of the 1.5kb AvaI region of pB8.5T that contains all the ORF 13 sequences and 300 nucleotides of the 5' ATPase 6 flanking sequences. The second probe is an ORF 25 specific clone (pH3.2N). Sequencing experiments, described above, show that the 1.5kb AvaI homologous region in pH3.2N is located at the right side of the 3.2kb HindIII region. The homology of these probes to the 1.5kb AvaI fragment is shown in Figure 1.

Figure 4A shows the hybridization pattern for the ORF25 specific probe on a Northern blot of N, cmsT and T revertant V_3 mtRNAs. This clone hybridizes to a 2900 nucleotide transcript in V_3, a 2100 and 1600 nucleotide transcripts in N, and several transcripts in cmsT ranging from 4000 to 1500 nucleotides (Fig. 4A). A long exposure of this blot is included (Fig. 4B).

Hybridization of the ORF13 specific probe is presented in Figure 4C. As shown previously by Dewey et al. 23, ORF 13 is absent in N and cotranscribed with ORF 25 in cmsT. Our data demonstrates the absence of ORF 13 transcription in the fertile revertant V_3. In the revertant V_3, rearrangement of the 1.5kb region of cmsT has redefined the transcription unit for ORF 25 and eliminated transcription of ORF 13.

Since the ORF 13 probe contains some 5' flanking sequence of the ATPase 6 gene (Fig. 1), any detectable hybridization signal might be due to this sequence. To eliminate this possibility a Northern blot of N, cmsT and T
Fig. 5. Southern blot hybridization of the 1.5kb Aval fragment of pB8.5T to Aval digestions of a V cosmid DNA (lane 1), cmsT mtDNA (lane 2), N mtDNA (lane 3) and V_{18} mtDNA (lane 4).

Revertant mRNA was probed with a pUC 8 N mtDNA clone (pH2.7N) which includes the ATPase 6 gene and its 5' flanking region. The expression of the ATPase 6 gene is the same in N, cmsT and the T revertant mitochondria and the minor hybridization signal to the ORF13 probe in the revertant and N mtDNA samples is caused by the 300bp of 5' flanking sequence of ATPase 6 (data not included).

During fertility reversion, rearrangements occur in the transcription units defined on the chimeric 1.5kb Aval fragment of cmsT. Rearrangements in this chimeric gene region can affect the transcription of one or both reading frames; therefore two hypotheses explaining cytoplasmic reversion are evident. One hypothesis would suggest that toxin resistance and/or male fertility requires a defined rearrangement creating a specific ORF 25 transcription unit. Alternatively, another hypothesis would suggest that toxin resistance and/or male fertility arises by loss of ORF 13 transcription and not altered transcription of ORF 25.

In order to examine these hypotheses, we chose to investigate other revertants for the molecular structure and expression of the sequences homologous to the 1.5kb Aval region of cmsT. Southern blot and Northern blot analysis of ORF 13 and ORF 25 regions in V_{18}.

One T revertant examined was a sister plant V_{18} regenerated from the same
Fig. 6. Northern blot hybridization of \(V_{18} \) (lane 1), cmsT (lane 2) and N (lane 3) mtRNAs with A. ORF 25 specific probe; B. ORF 13 specific probe. Transcript sizes are in nucleotides.

callus that gave the \(V_3 \) plant. A Southern blot of AvaI digested N, cmsT, \(V_{18} \) mtDNA and a \(V_3 \) cosmid clone hybridized with the 1.5kb AvaI fragment of cmsT is shown in (Fig. 5). In N, \(V_3 \) and \(V_{18} \) mtDNA, 1.5kb AvaI homologous sequences are present on a 2.1kb fragment in N and \(V_3 \) and two fragments of 1.2kb and 1.25kb in \(V_{18} \). This suggests the mtDNA rearrangements are not identical in \(V_3 \) and \(V_{18} \).

There are several other AvaI fragments homologous to the 1.5kb AvaI fragment in cmsT (Fig. 5). These are 1kb and 3.7kb in size and have identical structure in N, cmsT and \(V_3 \) mtDNAs. These have been identified previously and are due to the complex chimeric structure of the 1.5kb AvaI probe. A Northern blot hybridization analysis of \(V_{18} \) mtRNA (Fig. 6A, 6B) was done using ORF 13 and ORF 25 specific probes identical to those used for the \(V_3 \) Northern hybridization analysis described above. In \(V_{18} \), ORF 25 homologous sequences are present on a 1860 nucleotide transcript (Fig. 6A). This transcript size contrasts to those ORF 25 homologous transcripts in N and \(V_3 \), suggesting that a defined ORF 25 transcription unit is not necessary for fertility reversion.
and/or toxin resistance. As seen in the case of \(V_3 \), ORF 13 transcripts were not detected in \(V_{18} \) mtRNA. It is interesting to note that all fertile revertants we've examined have no detectable ORF 13 transcripts. This evidence supports but does not prove that ORF 13 transcription and translation may be responsible for male sterility in cmsT.

DISCUSSION

Reversion of T type cytoplasmic male sterility (cmsT) is correlated with sequence changes in 6.6kb XhoI fragment. This region carries mtRNA coding sequences on a 1.5Kb Aval fragment located at the left side of 6.6kb XhoI region. This 1.5kb Aval fragment is composed of the 5' flanking sequences of ATPase 6 gene, one complete open reading frame (ORF 13) and part of another (ORF 25) as described previously by Dewey et al.

Southern blot hybridization analysis of \(N \), cmsT and T revertant mtDNAs (\(V_3 \), \(V_{18} \)) indicates that the 1.5kb Aval homologous sequences are present on a 2.1kb Aval fragment in both \(N \) and \(V_3 \) and two smaller fragments 1.2kb and 1.25kb in \(V_{18} \). These new fragments appear to arise by sequence rearrangements in 1.5 Aval cmsT region.

The molecular structure of sequences homologous to 1.5kb Aval fragment of cmsT in \(N \) and \(V_3 \) have been examined by sequence analysis. These data confirm cosmid mapping experiments which suggest that during fertility reversion rearrangements occur in a region located between ORF 13 and ORF 25. The complete change in sequence between T versus \(N \) and \(V_3 \) is located a few base pairs after the ORF 13 stop codon at nucleotide 1568. 5' to this point, \(V_3 \) mtDNA is very similar to the \(N \) mtDNA sequence while in T the ORF13 sequence is found. 3' to this base up to the ORF 25 start codon, there is much less homology among the three genomes, indicating this region may be active in recombination.

The 5' flank of ORF25 may be crucial for translation of this gene. The presence of a consensus sequence in this region identical to a previously described sequence in the COII genes of other plant species is supportive of this hypothesis; however, it must be noted that this sequence was not found in the 5' flank of the maize COII gene. Interestingly recombination in this region during fertility reversion reestablishes this consensus sequence in \(V_3 \).

A Northern blot hybridization analysis of \(N \), cmsT and \(V_3 \), mtRNA using two probes each specific for a portion of the 1.5kb Aval coding region (ORF 13, ORF 25) was done. As evidenced from this study, the ORF 25 region is transcribed differently in \(N \), cmsT and \(V_3 \) mtRNA. The homologous transcript
sizes in bases are 2200 and 1600 in N, 4000, 1900, 1800 and 1500 in cmsT, and 2900 in V mtRNA. ORF 13 homologous transcripts are present in cmsT mtRNA, but are not detectable in N or V.

From the data above, fertility reversion and/or toxin resistance is correlated with loss of ORF 13 transcription and the presence of a uniquely sized ORF 25 transcript. Other fertile T revertants as well as T restored lines have changes in ORF 13 transcription patterns furthering supporting the hypothesis that ORF 13 transcription and translation are responsible for cmsT male sterility.

At this juncture further work needs to be done to assess the relative importance of ORF25 transcription pattern changes and how these may effect translation of this gene.

Further studies will focus on determining the molecular nature of the sequence rearrangement in V. This will provide informative comparisons with V, N and cmsT homologous coding regions.

ACKNOWLEDGEMENTS

This work is in partial fulfillment of Ji Qin's MS degree and was supported in part by a Pioneer Hi-Bred research grant. We would like to thank Dr. Elizabeth Grabau and Dr. Raymond Gesteland for reviewing this manuscript.

*To whom correspondence should be addressed

References