The nucleotide sequence of a valine accepting tRNA from *Lupinus luteus* (lupin) seeds

M. Barciszewska and D. S. Jones

Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61704 Poznan, Poland and ¹Department of Biochemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK

Submitted December 30, 1986

Origin The isolation of crude tRNA from yellow lupin seeds, the purification of tRNAVal and methods for the nucleotide sequence determination have been described previously [1]. The results show the tRNAVal to have the cloverleaf structure shown in the figure.

Discussion Although the sequences of tRNAVal species from eubacteria, halobacteria, yeasts, mammals and plant chloroplasts are known [2], this is the first reported sequence of a cytoplasmic plant tRNAVal. As might be expected the sequence of this cytoplasmic tRNAVal shows little resemblance to a plant chloroplast tRNAVal (spinach) but it has 80% homology with mammalian tRNAVal [2]. The homologies between other isoaccepting mamalian and plant tRNAs are of the same order (e.g. that for tRNAPhe is 82%).

The nucleoside modification pattern shows several interesting features. This tRNAVal fits into the AAC anticodon class of tRNA but, as with other eukaryotic tRNAs belonging to genetic code 'family boxes', the A in the first position of the anticodon has been replaced by I. In general the nucleoside modification pattern is similar to that of mammalian tRNAVal, however, whereas the mammalian species have several modifications to cytidine, no C modifications are present in lupin tRNAVal. This is not due to the lack of the modification enzymes since modified Cs are present in other lupin tRNAs. Also, in mammalian tRNAVal, U$_{54}$ is unmodified whereas, in the plant tRNAVal, residue 54 is occupied by the more normal T. This is quite the reverse of the situation in tRNAGly where it is the plant tRNA which has the unmodified U at this position [3] whereas the mammalian tRNAGly has T$_{54}$. Since T$_{54}$ has been shown to have a role in the modulation of eukaryotic protein synthesis, these differences may have significant implications.

M.B. acknowledges support from The Royal Society/Polish Academy of Sciences, exchange programme.