Human proαI(Ⅰ) collagen: cDNA sequence for the C-propeptide domain

Jyrki K. Mäkelä, Markku Raassina, Anette Virta and Eero Vuorio

Department of Medical Biochemistry, University of Turku, SF-20520 Turku, Finland
Submitted December 3, 1987

We have previously constructed a cDNA clone pHCAL1, covering most of the C-terminal propeptide domain of human proαI(Ⅰ) collagen mRNA, by inserting a 678 bp EcoRI-XhoI fragment of cDNA into pBR322 (1). Since the XhoI/SalI ligation prevented removal of the insert, we used the same strategy to obtain a similar clone in pUC8. RNA was isolated from fetal calvarial bones. The cDNA was digested with EcoRI and XhoI and fractionated on a 1% agarose gel. Fragments of 650-700 bp were cloned in pUC8 at the polylinker site, which now permits easy removal of the insert (2). The new clone was named pHCAL1U since the RNA was isolated from another individual.

SEQUENCING OF PHCAL1U

The cDNA was digested with EcoRI and XhoI and fractionated on a 1% agarose gel. Fragments of 650-700 bp were cloned in pUC8 at the polylinker site, which now permits easy removal of the insert (2). The new clone was named pHCAL1U since the RNA was isolated from another individual. Sequencing of pHCAL1U by the Sanger dideoxy method filled the two gaps (nucleotides 67 and 487) which remained in the previously published sequence (3). Three base differences were observed (shown above pHCAL1U sequence): two of these bordered the missing nucleotide (positions 66 and 68). The third difference (a transversion at nucleotide 616) changes the codon from TCC (ser, ref. 3) to ACC (thr), and may represent individual variation. The corresponding chick sequence also contains ACC (4). The approach outlined here is useful for studies on individual variation which is important to recognize when searching for disease-related mutations in type I collagen.

ACKNOWLEDGEMENTS

Financial support from the Academy of Finland is gratefully acknowledged.

REFERENCES