Nucleotide sequence of the narL gene that is involved in global regulation of nitrate controlled respiratory genes of Escherichia coli

Robert P. Gunsalus, Lisa V. Kalman and Ramsey R. Stewart

Department of Microbiology and the Molecular Biology Institute, University of California, Los Angeles, CA 90024, USA

Received November 7, 1988; Revised and Accepted January 31, 1989

ABSTRACT
The DNA sequence was determined for the narL gene of Escherichia coli. This gene is involved in global regulation of a number of nitrate controlled genes including frdABCD, tor, narGHJI, and adhE which are associated with bacterial respiration and fermentation. Comparison of the deduced amino acid sequence of narL to that of other bacterial genes revealed significant homologies to the phoB, ompR, and virG gene products based on the presence of similar protein domains. These DNA binding proteins are members of two-component regulatory systems. The similarities suggest that narL may also participate in such a two-component regulatory system and that the narR gene, which lies upstream of narL, may encode a second component required for nitrate control of gene regulation. In vitro protein synthesis experiments using a narL plasmid identified a putative NarL protein of 29 kDa in size consistent with the DNA sequence analysis. Primer extension experiments revealed the presence of two 5' termini for narL mRNA, and indicates that transcription may be complex.

INTRODUCTION
The narL gene of Escherichia coli is necessary for controlling both positive and negative regulation of a number of operons involved in anaerobic cell growth. Strains containing mutations in narL are unable to repress transcription of fumarate reductase, alcohol dehydrogenase and trimethylamine-N-oxide dehydrogenase or induce expression of nitrate reductase synthesis in the presence of nitrate (1, 2, 3). These enzymes are involved in electron transfer reactions that allow energy to be generated by anaerobic respiration or by fermentation (4). Their production is carefully regulated in response to availability of alternative cellular electron acceptors, including nitrate, to insure optimal
energy production when cells are growing on a variety of fermentable and non-fermentable carbon substrates.

The narL gene is located at 27 min on the E. coli genetic map adjacent to narGHJI (1,5). It has been cloned by complementation of narL (=frdR2) mutants using a frdA-lacZ indicator system that responds to the presence of nitrate in the culture medium (3) and by restoration of narGHJI gene function (6). The narL gene product is required to form an active repressor protein for controlling frdABCD expression and an activator for induction of narGHJI (2, 3, 7, 8). We recently proposed a model for regulation of frdABCD gene expression whereby the narL and narR gene products act to sense nitrate and repress frdABCD gene expression (7, 9). Thus, when cells are grown in the presence of nitrate, RNA polymerase is unable to bind at the frd promoter and initiate transcription.

In this paper, we present the nucleotide sequence of the narL gene. This sequence was analyzed and compared to other bacterial regulatory proteins.

MATERIALS AND METHODS

Bacterial strains, bacteriophage and plasmids

The E. coli K-12 strains and bacteriophage used were: strain JM103, M13 phage manipulations (10); P90C, plasmid isolation (11); A19 for preparation of bacterial S-30 extracts (12); and LK4100 (as MC4100/λJ100 but recA), for mRNA preparation (7). M13mp18 and M13mp19 (New England Biolabs, Inc., Beverly, MA) were used for DNA sequence analysis. Plasmids pLK92, pLK63, pLK633 and pLK634 are described elsewhere (7) as is pACYC184 (13). Bacteriophage and plasmid procedures

General procedures for use of M13 phage and the preparation of DNA are as described (10).

DNA sequence analysis

DNA sequencing was performed by the Sanger dideoxy chain-termination method using Sequenase (14). Urea (7M) denaturing
polyacrylamide gels (6 or 8%) were used to separate the chain termination reaction products (15). DNA sequence data were stored and analyzed by computer using the University of Wisconsin Genetics Computer Group (16) and Staden software (17). Protein homologies were found using the FASTA routine searching the PIR data base (release 11).

In vitro protein synthesis

Bacterial S-30 extracts were used for in vitro transcription-translation reactions with the indicated plasmid DNA as template (12). Proteins were labeled with 35S-methionine (Amersham) and separated by SDS PAGE (18).

Primer extension reactions

Total bacterial mRNA was prepared as described (19). The primer extension reactions used to locate the 5' ends of the *narL* mRNA were performed as previously described (19). The DNA oligonucleotide TTCGGGAATAAAGGTGACC which is complementary to the region at the start of *narL* translation was used as a primer for DNA synthesis. The reaction products were separated using an 8% 7M urea polyacrylamide gel (15).

Materials

The universal M13 sequencing primer (#1212) was obtained from New England Biolabs, Inc., Beverly, MA, while additional primers were synthesized using an Applied Biosystems Synthesizer. Deoxyadenosine 5'-(α-35S)thio triphosphate was obtained from Amersham Corp., Arlington Heights, IL. Sequenase was obtained from U.S. Biochemicals. Other DNA sequencing reagents and enzymes were obtained from Bethesda Research Laboratories, Inc., Gaithersburg, MD, and Pharmacia, Inc., Piscataway, NJ. All other reagents were commercial products of the highest grade available.

RESULTS AND DISCUSSION

Sequencing strategy

The 1.16 kb *NsiI* fragment from plasmid pLK2 (*narR*') that contains the *narL* gene region was isolated and cloned into both
Sequence and properties of the narL gene

The DNA sequence of the region that complements the narL (=frdR2) mutation (3) was analyzed by computer and revealed a single open reading frame of greater than sixty codons in length that starts with either an ATG or GTG. This open reading frame is of sufficient size (254 codons) to encode the putative NarL protein as revealed by gene complementation experiments and confirmed by in vitro protein synthesis from plasmid DNA (see below). The deduced amino acid sequence, shown below the DNA sequence (position 102 to 866), is predicted to give a polypeptide of 28,177 daltons in size. A GTG initiation codon is predicted for initiation of narL translation based on the lack of
Figure 2. The nucleotide sequence and deduced amino acid sequence of the nontranscribed strand of the narL gene of *E. coli*. The complete DNA sequence of the region is shown. The +1 position indicates the location of the first of the two 5' mRNA termini (Fig. 3). Lines above the nucleotide sequence indicate possible -10 and -35 narL promoter sequences. The sites that correspond to the 5' termini of mRNA (Fig. 3) are represented by the carrots (▲).

any ATG codons which would produce a protein of sufficient size. Additionally, multiple termination codons are present in the other reading-frames (Fig 2). Thus it seems reasonable that the open reading frame shown is narL.
Identification of two 5' mRNA termini for narL

To establish that the open reading frame identified for narL was transcribed, primer extension reactions were performed using total cellular mRNA prepared from E. coli LK4100 containing either plasmid pLK63(narL*) or the plasmid vector pACYC184. As shown in Fig. 3, two 5' ends were revealed (lane 2). The mRNA ends correspond to the nucleotides at positions +1 and +33 (Fig. 2) which are 102 and 70 nucleotides before the predicted translational initiation site for narL (Fig. 2). Both 5' termini were observed in mRNA preparations from strains containing either a plasmid with narL* (pLK63) or without (pACYC184), although the
two bands seen in the strain lacking multiple copies of narL* were of weak intensity. This is apparently due to low abundance of the narL mRNA that is produced from the chromosome.

Identification of the NarL polypeptide

In vitro protein synthesis reactions were performed using bacterial S-30 extracts to catalyze transcription and translation products from narL using plasmid DNA templates (Fig. 4). When a narL* plasmid, pLK634, that complements narL but not narR mutants was used in the reaction, a polypeptide of 29 kDa was produced (lane 3). This protein was absent when a plasmid (pLK633) was used which lacks the right half of the narL open reading frame but contains the 3.4 kb region to the left of the BglII sites located in narL (Fig. 1). When either plasmid pLK63 that contains the entire narR*L* region, or pLK633 (narR*) that contains the region 5' to narL was used, a 66 kDa protein was observed. This protein apparently corresponds to the narR gene product that is immediately 5' to narL (Fig. 1; 6, 7, unpublished). All lanes also contain a polypeptide of 24 kDa that corresponds to the chloramphenicol acetyl transferase encoded by the plasmid vector.
Figure 5. Primary amino acid sequence homology alignment of NarL to OmpR, VirG, and PhoB proteins from procaryotic microorganisms. The sequences are aligned to show maximum similarity. Vertical lines indicate identity to narL while asterisks (*) indicate conserved amino acids. The numbering is relative to the N-terminus of NarL.

Features of the DNA sequence

The proposed narL gene is preceded by a potential ribosome binding site (AAAGGcG) located at position +91 to +96 (Fig. 2). Because two 5' termini were observed for narL, it is not clear whether two promoters exist for transcribing narL, or if mRNA processing or decay may be occurring. These termini correspond to nucleotide positions +1 and +33 (Fig. 2) and occur 102 and 70 nucleotides before the predicted start for NarL. Potential -35 and -10 regions for a RNA polymerase binding site are indicated at positions -35 to -6 (Fig. 2). No identifiable promoter sequence was found for the second 5' terminus.

Primary sequence homology to other proteins

Computer analysis was performed with the predicted narL amino acid sequence by comparing it to other bacterial proteins.
Homology was found between the *phoB* and *ompR* genes of *E. coli*, and the *virG* gene of *Agrobacterium tumefaciens* (20, 21, 22). The primary amino acid sequences were aligned by computer and optimized by hand to give the best apparent fit (Fig. 5). Using the same criteria used previously by others (21), we compared *NarL* to *PhoB*, *OmpR* and *VirG*. Comparison of the A domains of *PhoB*, *OmpR* and *VirG* to a similar amino terminal region in *NarL* (positions 41-161) showed 27%, 29% and 24% identity respectively. There were an additional 23%, 15% and 16% conserved residues between these regulatory proteins and *NarL*. The *PhoB*, *OmpR* and *VirG* A domains showed a similar to somewhat higher identity (28-45%) when compared to one another (21). The B domains of the proteins were less well conserved and showed a 10%, 14% and 16% identity when compared to *NarL* (positions 162-254). The *PhoB*, *OmpR* and *VirG* proteins appear to be more related to one another than to *NarL* as they have 34%-40% identity in the B domain. Another related regulatory protein, *NtrC* completely lacks the B domain, but shows a 20% identity to *NarL* with respect to its A domain.

Gene products (*PhoB*, *OmpR*, *VirG*, *NtrC*) are all members of two-component regulatory systems (23). Sequence relatedness of these proteins to *narL* suggests that it may have a similar function. This possibility is supported by observations that *narR* mutants of *E. coli* are also defective in nitrate control of genes involved in anaerobic electron transfer, including *frdABCD* and *narGHJI* (6, 7, unpublished). It may be inferred from the above studies that the product of the *narR* gene, which is 66 kDa in size (Fig. 4), may be the second component. If *narL* functions in a manner similar to the *ompR*, *phoB*, and *virG* genes, then it may code for a DNA binding protein. *NarL* apparently acts as a modulator for repression or activation of gene expression in response to the action of the *narR* gene product (a putative nitrate sensor). Experiments are in progress to test this possibility.

In sequence comparisons with proteins from other organisms, *narL* also revealed similarity to a number of kinases. These include creatine kinase (human and chicken), adenylate kinase...
Nucleic Acids Research

(chicken) and 6-phosphofructokinase (E. coli). The explanation for this observation is yet unclear but may indicate a role for NarL in phosphorylation/déphosphorylation.

ACKNOWLEDGEMENTS

We thank Gene Bryant, Steve Melville and Casey Case for assistance and advice in these studies. This work was supported by Public Health Service Grant AI-21678 from the National Institutes of Health. L.V.K. was supported in part by the Public Health Service Cellular and Molecular Biology Training Grant GM-07185.

REFERENCES

1974