A polymorphic synonymous mutation in human ornithine-δ-aminotransferase (N378N)

Laura S. Martin¹, Grant A. Mitchell², Jacques Michaud², Lawrence C. Brody¹, ³ and David Valle¹, ³*

¹Department of Pediatrics, Johns Hopkins University School of Medicine, ²Section de Genetique Medicate, Ste-Justine Hopital, Montreal and ³Laboratory of Genetics, Howard Hughes Medical Institute, Baltimore, MD, USA

Source/Description: We examined the 10th exon of the human ornithine-δ-aminotransferase (OAT) gene (Mitchell et al., 1988) by PCR amplification and sequencing of genomic DNA from a series of controls and individuals with gyrate atrophy of the choroid and retina.

Polymorphism: We detected a C→T transition at OAT cDNA residue 1134 (codon 378) in the context AACGCT. The mutation was confirmed by sequencing cloned cDNAs from a heterozygote. Because AAC and AAT both code for asparagine, this CpG dinucleotide alteration produces a synonymous mutation (N378N). The published human OAT cDNA sequences all have a C at this position (Inana et al., 1986; Ramesh et al., 1988; Mitchell et al., 1988), whereas the normal rat sequence has a T.

Frequency: In 31 unrelated Caucasian controls we found the following frequencies:

- (H1) AAC: 0.71
- (H2) AAT: 0.29

There were 15 AAC homozygotes, 14 AAC/AAT heterozygotes and 2 AAT homozygotes.

Enzyme Tested: This transition does not alter a known restriction endonuclease site.

Chromosomal Location: 10q26.

Mendelian Inheritance: Codominant segregation was observed in 7 two generation families (22 meioses).

Probe Availability: Contact David Valle.

Acknowledgements: This work was supported by a grant from the National Institutes of Health (EY02948) (DV) and a grant from the Stelter Research Fund for Women Physicians (LM). GM was supported by the Fonds de la Recherche en Sante du Quebec and the Medical Research Council of Canada. LB and DV are supported by the Howard Hughes Medical Institute.


A rare mitochondrial DNA BstNI polymorphism in a family with type II diabetes

J.M.Walter van den Ouweland*, Herman Lemkes¹ and J.Antonie Maassen

Department of Medical Biochemistry, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden and ¹Department of Endocrinology and Metabolic Diseases, University Hospital, Leiden, The Netherlands

Source/Description: Mitochondrial DNA (mtDNA) of a family with a maternally inherited form of type II diabetes associated with a sensorineural hearing loss was analyzed by RFLP. Southern blot analysis of leucocyte DNA showed an unusual pattern when digested with restriction enzyme BstNI. Besides a site loss located in the ATPase 6 gene, as reported previously (1), also a site gain is present located in the ND 3 gene. Sequencing analysis revealed a synonymous substitution of A for G at position 10.097 (2).

Polymorphism: With BstNI digestion of a PCR amplified fragment encompassing the polymorphic site (forward primer (9.375–9.394); reverse primer (10.254–10.273)), only homoplasmy was detected when visualized on ethidium stained agarose gels.

Frequency: All 260 controls tested, including 60 regional samples (25 diabetes), were wild-type for this BstNI morph.

Not Polymorphic For: Not applicable.

Chromosomal Localization: Not applicable.

Mendelian Inheritance: Strictly maternal inheritance in a pedigree of 30 individuals.

Probe Availability: Not applicable.

Other Comments: Not applicable.

Acknowledgements: This work was supported by a grant of the Diabetes Fonds Nederland.


Southern blot analysis of leucocyte DNA digested with BstNI, probed with purified HeLa cell mtDNA. (P) patient; (C) control. Fragment sizes (kb) are indicated.

* To whom correspondence should be addressed