Preparation and separation of d(pT)$_{10-n}$ oligonucleotides

A.J. Raee, J. R. Lillehaug, R. K. Kleppe and K. Kleppe

Department of Biochemistry, University of Bergen, Bergen, Norway

Received 13 February 1975

ABSTRACT

A series of oligomers having the general formula d(pT)$_{10-n}$, n varying from 2 to 20, has been prepared by enzymatic joining of d(pT)$_{10}$, annealed on poly dA, employing T$_4$ polynucleotide ligase. The oligomers could be separated on 8 or 12% polyacrylamide gels. Such oligomers may prove useful as molecular weight markers and as initiators for various polymerases.

INTRODUCTION

Separation of nucleic acids on polyacrylamide gels for preparative and analytical purposes, has proven to be an exceedingly useful technique$^{1-3}$. This laboratory has for some time employed polyacrylamide gel electrophoresis in studying the mechanism of action of various enzymes involved in the nucleic acid metabolism, in particular T$_4$ polynucleotide kinase and ligase. The present work describes one aspect of this study, namely, the nature and separation of the products of the T$_4$ polynucleotide ligase catalyzed joining of d(pT)$_{10}$ annealed on poly dA. The method presented may prove useful in other areas of nucleic acids research as well.

MATERIALS

T$_4$ polynucleotide kinase and ligase were prepared as previously described4. Bacterial alkaline phosphatase was a product of Worthington Biochemical Corporation. Acrylamide and N,N'-methylenebisacrylamide were products of Eastman Kodak
Company. [γ-32p] ATP with a specific activity of approximately 50-100 Ci/mmole was prepared according to a modified procedure of Glynn and Chappell. Poly dA with average molecular weight of approximately 1x10^5 and d(pT)_10 were obtained from P-L Biochemicals. Prior to use d(pT)_10 was dephosphorylated by treatment with bacterial alkaline phosphatase, the reaction being carried out at 67°C to inactivate possible nucleases. The dT(pT)_9 was then phosphorylated at the 5'hydroxyl terminus by employing T₄ polynucleotide kinase and the phosphorylated oligonucleotide separated from excess ATP by gel filtration on a column of Sephadex G-50 equilibrated with 0.05M triethylammonium bicarbonate (TEAB). After separation the buffer was removed by lyophilization and the phosphorylated oligonucleotide dissolved in a small volume of 10 mM Tris/HCl pH 8.0, containing 0.1 mM EDTA.

METHODS

Conditions for joining of d(pT)_10. A typical reaction mixture for the T₄ polynucleotide ligase catalyzed joining of [5',32p] d(pT)_10 contained the following components: 50 mM Tris pH 8.0, 6 mM MgCl₂, 10 mM dithiothreitol (DTT), 0.6 mM ATP, 0.14 mM poly dA (phosphate), 0.14 mM [5',32p] d(pT)_10 (phosphate) and 400 units of T₄ polynucleotide ligase/ml. Poly dA and [5',32p] d(pT)_10 were annealed prior to addition of ATP, DTT and enzyme by heating the reaction mixture at 60°C for 5 minutes then letting it slowly cool to room temperature. The reaction temperature was 20°C and aliquots were removed at various times and assayed for resistance to bacterial alkaline phosphatase as described elsewhere. After approximately 1 hour the reaction had usually reached a plateau. The reaction was then
stopped by making the reaction mixture 50% with respect to formic acid and the mixture was then kept for 16 hours at 30°C. The latter treatment causes complete depurination of poly dA and thus serves to denature the poly dA-d(pT)₁₀⁻ₙ duplexes. Upon completion of this step the reaction mixture was lyophilized, then dissolved in 100 μl of 50% glycerol containing 7M urea and the marker dyes bromphenol blue and xylene cyanole. Aliquots of this mixture were subjected to gel electrophoresis.

Gel electrophoresis. Vertical gels (18x18x0.2 cm) of 8 or 12% polyacrylamide containing 7M urea were employed. The gels (95% acrylamide and 5% N,N'-methylenebisacrylamide) were used with a running buffer of 90 mM Tris, 90 mM boric acid and 0.4 mM EDTA, pH 8.3. The electrophoresis was carried out for 12-18 hours at room temperature and usually at 150 V. Upon completion of electrophoresis the gels were subjected to autoradiography.

RESULTS AND DISCUSSION

The [5′⁻³²P] d(pT)₁₀ oligonucleotide annealed on poly dA was joined to larger oligonucleotides by T₄ polynucleotide ligase and the oligonucleotides thus formed were then subjected to gel electrophoresis. Prior to electrophoresis the duplexes were denatured by depurination of poly dA. Heat denaturation alone, with or without formamide, proved unsatisfactory for this purpose as the strands rapidly reannealed. A separation pattern on a 12% polyacrylamide gel of the oligonucleotides formed is shown in Figure 1 A. It is clear that the action of T₄ polynucleotide ligase on the duplex poly dA-[5′⁻³²P] d(pT)₁₀ resulted in formation of a series of new
oligomers having the general formula \(d(pT)_{10-n}\). Oligonucleotides with \(n\) varying from 1 to 10 could clearly be separated on such a gel. The separation pattern on a 8% gel is given in Figure 1 B. In this case the lower molecular weight oligomers were run out of the gel to allow better separation of oligomers of higher molecular weight. Oligomers from \(d(pT)_{50}\) and up to \(d(pT)_{200}\) can be well separated by this technique. For both types of gels a plot of log (molecular weight) or log (oligomer size) vs relative mobility produced similar curves as shown in Figure 2. In the lower molecular weight regions these plots were linear.

The various oligomers could be eluted from the gel by cutting out the appropriate regions, crushing the gel to smaller pieces with a glassrod in a 15 ml centrifuge tube, then adding 1 M TEAB equal to twice the volume of the gel. This suspension was left at room temperature for approximately 15 hours, after which time the supernatant was pipetted off and the gel particles washed 3 times with 1 times the volume of 1 M TEAB. The TEAB was then evaporated off by lyophilization and the sample dissolved in a small volume of water. In order to remove the urea and the buffer from the gel the sample was subjected to gelfiltration on a small column of Sephadex G-50 (1x15 cm). Usually 70-80% recovery was achieved.

The mobility on the gel of single stranded nucleic acids will undoubtedly be influenced by such factors as stacking interactions and any tendency to form secondary and tertiary structures. Therefore, the mobility of various single stranded nucleic acids may be slightly different than that of the
Figure 1. A. Separation of d(pT)_{10-n} oligomers on a 12% polyacrylamide gel. Autoradiogram of the gel.
B. Separation of d(pT)_{10-n} oligomers on a 8% polyacrylamide gel. The lower molecular weight oligomers were run out of the gel. Marker oligonucleotide not shown.

Figure 2. Semi-logarithmic plots of the separation data shown in Figure 1.
Nucleic Acids Research

d(pT)_{10,n} of the same size. This was clearly revealed by comparing the mobility of d(pT)_{10} and d(pA)_{10} where the ratio of their relative mobilities was 1:1.1. Bearing these restrictions in mind the above oligomers may be useful as molecular weight markers. Furthermore, they are also well suited as initiators for various polymerases9-11.

ACKNOWLEDGEMENTS

This study was supported in parts by a grant from the Norwegian Research Council for Science and Humanities. We are also grateful to Dr. C.T. Korch for criticism of the manuscript.

Mailing address: Dr. Kjell Kleppe, Department of Biochemistry, University of Bergen, Bergen, Norway

REFERENCES

